A REMARK ON HOMOGENEOUS CONVEX DOMAINS

SATORU SHIMIZU

§ 0. Introduction

In this note, by a homogeneous convex domain in \mathbb{R}^n we mean a convex domain Ω in \mathbb{R}^n containing no complete straight lines on which the group $G(\Omega)$ of all affine transformations of \mathbb{R}^n leaving Ω invariant acts transitively. Let Ω be a homogeneous convex domain. Then Ω admits a $G(\Omega)$ -invariant Riemannian metric which is called the canonical metric (see [11]). The domain Ω endowed with the canonical metric is a homogeneous Riemannian manifold and we denote by $I(\Omega)$ the group of all isometries of it. A homogeneous convex domain Ω is called reducible if there is a direct sum decomposition of the ambient space $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$, $n_i > 0$, such that $\Omega = \Omega_1 \times \Omega_2$ with Ω_i a homogeneous convex domain in \mathbb{R}^{n_i} ; and if there is no such decomposition, then Ω is called irreducible.

The purpose of this note is to prove the following:

Theorem. Let M be a homogeneous Riemannian manifold whose universal covering is isometric to a homogeneous convex domain Ω in \mathbb{R}^n endowed with the canonical metric. If Ω is irreducible and not affinely equivalent to a convex cone, then M is simply connected, that is, M itself is isometric to Ω .

It is already known in [2] that an analogous fact holds for a homogeneous bounded domain in C^n .

We prove the above theorem along the same line as in [2] by using results of Tsuji [9], [10].

The author would like to thank Professor Tsuji for his helpful advices.

§1. The center of a group of affine automorphisms of Ω

First we discuss the connection between the irreducibilities of a homogeneous convex domain and the cone fitted onto it. For the purpose we

Received November 13, 1984.

need the notion of T-algebras. The details for it can be found in [11].

Let Ω be a homogeneous convex domain in \mathbb{R}^n and V the cone fitted onto it, that is,

$$V = \{(\lambda x, \lambda) \in \mathbb{R}^n \times \mathbb{R} \mid x \in \Omega, \ \lambda > 0\}.$$

Note that V is a homogeneous convex cone in \mathbb{R}^{n+1} (cf. the proof of Proposition 2 in this section). By a theorem of Vinberg [11], we may assume that $\Omega = \Omega(\mathfrak{A})$ and $V = V(\mathfrak{A})$, where $\mathfrak{A} = \sum_{1 \leq i, j \leq r} \mathfrak{A}_{ij}$ is a T-algebra of rank r ($r \geq 2$) and the notations $V(\mathfrak{A})$ and $\Omega(\mathfrak{A})$ bear the same meanings as in [9], [10]. We put dim $\mathfrak{A}_{ij} = n_{ij}$. A criterion for Ω and V to be irreducible can be given in terms of the T-algebra \mathfrak{A} as follows:

- (i) (Tsuji [10]) $\Omega = \Omega(\mathfrak{A})$ is irreducible if and only if, for every pair (i,j) of indices with $1 \leq i \leq j \leq r-1$, there exists a series i_0,i_1,\cdots,i_p of indices such that $1 \leq i_\alpha \leq r-1$ ($0 \leq \alpha \leq p$), $i_0 = i$, $i_p = j$ and $n_{i_{\alpha-1}i_{\alpha}} \neq 0$ ($1 \leq \alpha \leq p$).
- (ii) (Asano [1]) $V = V(\mathfrak{A})$ is irreducible if and only if, for every pair (i,j) of indices with $1 \leq i \leq j \leq r$, there exists a series i_0, i_1, \dots, i_p of indices such that $1 \leq i_{\alpha} \leq r$ $(0 \leq \alpha \leq p)$, $i_0 = i$, $i_p = j$ and $n_{i_{\alpha-1}i_{\alpha}} \neq 0$ $(1 \leq \alpha \leq p)$.

Proposition 1. In the above notation, if Ω is irreducible and not affinely equivalent to a convex cone, then V is irreducible.

Proof. Since $\Omega = \Omega(\mathfrak{A})$ is not affinely equivalent to a convex cone by assumption, it follows from the definition of $\Omega(\mathfrak{A})$ that there exists an index i such that $1 \leq i \leq r-1$ and $n_{ir} \neq 0$. By (i) and (ii), this implies that V is irreducible.

Remark. If Ω is a convex cone, then the cone V fitted onto Ω is reducible. In fact, one has $V = \Omega \times R_+$, where R_+ denotes the cone of positive real numbers.

We fix notations. Let G be a group. For a subset H of G, $C_G(H)$ denotes the centralizer of H in G, and the center of G is denoted simply by C(G). When G is a topological group, the connected component of G containing the identity element is denoted by G. The unit element of a group is denoted by e. The identity matrix of degree e is denoted by e.

1. A(n, R) denotes the group of all affine transformations of R^n .

The aim of this section is to prove the following:

Proposition 2. Let Ω be an irreducible homogeneous convex domain

in \mathbb{R}^n which is not affinely equivalent to a convex cone. If a subgroup G of $G(\Omega)$ acts transitively on Ω , then one has $C_{A(n,R)}(G) = \{e\}$ and hence $C(G) = \{e\}$. In particular, one has $C(G(\Omega)) = C(G(\Omega)^*) = \{e\}$.

For the proof, we need the following result:

(iii) (Rothaus [7]). Let V be an irreducible homogeneous convex cone in \mathbb{R}^n . If a subgroup G of G(V) acts transitively on V, then one has $C_{GL(n,\mathbb{R})}(G) = \{\lambda 1_n \mid \lambda \in \mathbb{R}\}.$

Proof of Proposition 2. Let V be the cone fitted onto Ω . Let ρ denote the group homomorphism

$$A(n, \mathbf{R}) \ni a \longmapsto \begin{pmatrix} f(a) & q(a) \\ 0 & 1 \end{pmatrix} \in GL(n+1, \mathbf{R}),$$

where f(a) and q(a) denote, respectively, the linear and the translation parts of $a \in A(n, \mathbb{R})$. Then one has $\rho(G(\Omega)) \subset G(V)$. The pair (ρ, ι) of the group homomorphism $\rho \colon G(\Omega) \to G(V)$ and the natural embedding $\iota \colon \Omega \to V$ given by $\iota(x) = (x, 1)$ is equivariant, that is, $\iota(ax) = \rho(a)\iota(x)$ for all $a \in G(\Omega)$, $x \in \Omega$. Since G acts transitively on Ω by assumption, this shows that the subgroup $G' = \rho(G) \cdot \{\lambda 1_{n+1} | \lambda > 0\}$ of G(V) acts transitively on V. By Proposition 1, V is an irreducible homogeneous convex cone in \mathbb{R}^{n+1} . Therefore, using (iii), we see $C_{GL(n+1,\mathbb{R})}(G') = \{\lambda 1_{n+1} | \lambda \in \mathbb{R}\}$. Let $a \in C_{A(n,\mathbb{R})}(G)$. Then one has $\rho(a) \in C_{GL(n+1,\mathbb{R})}(G')$. Hence $\rho(a)$ is a scalar matrix and this implies a = e by the definition of ρ .

A homogeneous convex domain $\Omega(n)$ in \mathbb{R}^n $(n \geq 2)$ defined by

$$\Omega(n) = \{(x^1, \dots, x^n) \in \mathbf{R}^n \mid x^1 > (x^2)^2 + \dots + (x^n)^2\}$$

is called the elementary domain. Every elementary domain is irreducible and not affinely equivalent to a convex cone. The following result is known:

(iv) (Tsuji [9]). Let Ω be an irreducible homogeneous convex domain which is not affinely equivalent to the elementary domain. Then one has $I(\Omega)^{\circ} = G(\Omega)^{\circ}$.

Combining (iv) with Proposition 2, we obtain

LEMMA. Let Ω be an irreducible homogeneous convex domain which is affinely equivalent to neither a convex cone nor the elementary domain. If a connected Lie subgroup G of $I(\Omega)$ acts transitively on Ω , then one has $C(G) = \{e\}$.

Remark. The above lemma remains valid for the elementary domain (cf. the proof of our theorem in the next section and Corollary 2 in Section 3).

§ 2. Proof of Theorem

First, suppose Ω is affinely equivalent to the elementary domain $\Omega(n)$. Then, since $\Omega(n)$ endowed with the canonical metric is of negative sectional curvature (see, e.g., [8]), M is a connected homogeneous Riemannian manifold of negative sectional curvature. Hence our assertion follows from [6, Theorem 8.3, p. 105].

Next, suppose Ω is not affinely equivalent to the elementary domain. We set $G=I(M)^{\circ}$. Then one has a natural identification M=G/K, where K is an isotropy subgroup of G at some point of M. Let \tilde{G}' be the universal covering group of G and let π be the covering projection of \tilde{G}' onto G. Then one has $M\simeq \tilde{G}'/\pi^{-1}(K)$ and $\Omega\simeq \tilde{G}'/\tilde{K}'$, where $\tilde{K}'=\pi^{-1}(K)^{\circ}$. We put

$$egin{aligned} arDelta_0 &= \{g \in ilde{G}' \,|\, g \cdot y = y ext{ for all } y \in arOmega \} \;, \ arDelta &= \{g \in ilde{G}' \,|\, g \cdot x = x ext{ for all } x \in M \} \;. \end{aligned}$$

It follows that $\Delta_0 \subset \Delta$. We note that, since G acts effectively on M, Δ is a discrete subgroup of \tilde{G}' . Put $\tilde{G}'/\Delta_0 = \tilde{G}$ and $\tilde{K}'/\Delta_0 = \tilde{K}$. Then \tilde{G} is a connected Lie subgroup of $I(\Omega)$, and one has $\Omega \simeq \tilde{G}/\tilde{K}$. Moreover, one has the following commutative diagram:

$$ilde{G}'$$
 $ilde{G}$
 $ilde{G} = ilde{G}'/arDelta_0 \xrightarrow{\pi'} ilde{G}'/arDelta \simeq G$.

Since $\ker \pi' \subset C(\tilde{G})$, we see by the lemma in the previous section that π' is an isomorphism of \tilde{G} onto G_{\bullet} . Therefore $\pi'^{-1}(K)$ is compact, because so is K. It is easy to see $\tilde{K} = \pi'^{-1}(K)^{\circ}$, and hence \tilde{K} is compact. Since Ω is a cell (see [11]) and since $\Omega \simeq \tilde{G}/\tilde{K}$, \tilde{K} is a maximal compact subgroup of \tilde{G} . Therefore one has $\tilde{K} = \pi'^{-1}(K)$, and this implies $\Omega \simeq \tilde{G}/\tilde{K} \simeq G/K = M$.

§3. Corollaries and Remarks

An affine manifold M of dimension n is a manifold which admits an atlas $\{(U_a, \phi_a)\}$ such that each coordinate change $\phi_a \circ \phi_{\beta}^{-1}$ is an affine trans-

formation of R^n (cf. [5]). A diffeomorphism f of M is called an affine transformation of M if it is affine with respect to the atlas $\{(U_\alpha, \phi_\alpha)\}$, that is, if each transformation $\phi_\alpha \circ f \circ \phi_\beta^{-1}$ is an affine transformation of R^n , and M is called homogeneous if the group G(M) of all affine transformations of M acts transitively on it. Note that a domain Ω in R^n is naturally an affine manifold and the group $G(\Omega)$ defined in the introduction coincides with the one defined above.

COROLLARY 1. Let M be a homogeneous affine manifold whose universal covering is affinely equivalent to a homogeneous convex domain Ω in \mathbb{R}^n . If Ω is irreducible and not affinely equivalent to a convex cone, then M is simply connected, that is, M itself is affinely equivalent to Ω .

Proof. Let Γ be the covering transformation group of the covering $\Omega \to M$. By assumption, Γ is a subgroup of $G(\Omega)$, and hence the canonical metric of Ω is Γ -invariant. With respect to the induced Riemannian metric, M is a homogeneous Riemannian manifold. Indeed, since every element of G(M) lifts to an element of $G(\Omega) \subset I(\Omega)$, G(M) acts as an isometry group, and its action on M is transitive by assumption. Thus the theorem shows that M is simply connected.

COROLLARY 2. Let Ω be an irreducible homogeneous convex domain which is not affinely equivalent to a convex cone. If a Lie subgroup G of $I(\Omega)$ acts transitively on Ω , then one has $C(G) = \{e\}$. In particular, one has $C(I(\Omega)) = \{e\}$.

Proof. If Ω is affinely equivalent to the elementary domain, then this is a direct consequence of [6, Theorem 8.4, p. 107] (cf. Proof of Theorem). Otherwise, the proof goes as follows: Since $C(G) \subset C(\overline{G})$, where \overline{G} is the closure of G in $I(\Omega)$, we may assume that G is a closed subgroup of $I(\Omega)$. The subgroup C(G) of $I(\Omega)$ is discrete. Indeed, using the lemma in Section 1, we see $C(G) \subset C(G) = \{e\}$. The same reasoning as in the proof of [6, Theorem 8.4] yields that C(G) acts properly discontinuously and freely on Ω and the quotient space $C(G)\backslash\Omega$ is a homogeneous Riemannian manifold with respect to the induced Riemannian metric. By the theorem, $C(G)\backslash\Omega$ is simply connected. Hence we conclude that $C(G) = \{e\}$. q.e.d.

Remark 1. In our theorem and Corollary 1, the assumption that Ω is not affinely equivalent to a convex cone can not be removed. Indeed, let Ω be a homogeneous convex cone in \mathbb{R}^n and put $M = \Gamma \setminus \Omega$, where $\Gamma = \mathbb{R}^n$

 $\{2^k1_n\,|\,k\in Z\}\subset G(\varOmega)$. Since $\Gamma\subset C(G(\varOmega))$, the transitive action of $G(\varOmega)$ on \varOmega induces a transitive action of $G(\varOmega)$ on $M=\Gamma\backslash \varOmega$ as an affine transformation group. This implies that M is a homogeneous affine manifold whose universal covering is affinely equivalent to \varOmega . Therefore M is also a homogeneous Riemannian manifold whose universal covering is isometric to \varOmega endowed with the canonical metric. However M is clearly not simply connected.

Remark 2. Consider the following problem:

Let M be an n-dimensional homogeneous affine manifold which is projectively hyperbolic in the sense of Kobayashi [4]. Then, is M a homogeneous convex domain in \mathbb{R}^n ?

This is an affine analogue of Kobayashi's problem concerning homogeneous hyperbolic (complex) manifolds (cf. [3, Problem 12, p. 133]).

Since the intrinsic distance of M is complete, the universal covering of M is affinely equivalent to a convex domain in \mathbb{R}^n containing no complete straight lines (see [5]). Therefore Corollary 1 shows that the answer to the above problem is affirmative when the universal covering Ω of M is irreducible (note that Ω is necessarily homogeneous) and not affinely equivalent to a convex cone.

REFERENCES

- [1] H. Asano, On the irreducibility of homogeneous convex cones, J. Fac. Sci. Univ. Tokyo, 15 (1968), 201-208.
- [2] S. Kaneyuki, Homogeneous bounded domains and Siegel domains, Lect. Notes in Math., 241, Springer, 1971.
- [3] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.
- [4] —, Intrinsic distances associated with flat affine or projective structures, J. Fac. Sci. Univ. Tokyo, 24 (1977), 129-135.
- [5] —, Projectively invariant distances for affine and projective structures, in Differential Geometry, Banach Center Publications, Vol. 12, PWN-Polish Scientific Publishers, Warsaw, 1983, 127-152.
- [6] and K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley-Interscience, New York, 1968.
- [7] O. Rothaus, The construction of homogeneous convex cones, Ann. of Math., 83 (1966), 358-376.
- [8] H. Shima, Homogeneous convex domains of negative sectional curvature, J. Differential Geom., 12 (1977), 327-332.
- [9] T. Tsuji, On the group of isometries of an affine homogeneous convex domain, Hokkaido Math. J., 13 (1984), 31-50.
- [10] —, The irreducibility of an affine homogeneous convex domain, Tohoku Math. J., 36 (1984), 203-216.

[11] E. B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc., 12 (1963), 340-403.

Mathematical Institute Tohoku University Sendai, 980 Japan