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Abstract

Centre manifolds arise in a rational approach to the problem of forming low-
dimensional models of dynamical systems with many degrees of freedom. When
a dynamical system with a centre manifold is subject to a small forcing, F , there
are two effects: to displace the centre manifold; and to alter the evolution thereon.
We propose a formal scheme for calculating the centre manifold of such a forced
dynamical system. Our formalism permits the calculation of these effects, with
errors of order |F|2 . We find that the displacement of the manifold allows a re-
parameterisation of its description, and we describe two "natural" ways in which
this can be carried out. We give three examples: an introductory example; a five-
mode model of the atmosphere to display the quasi-geostrophic approximation;
and the forced Kuramoto-Sivashinsky equation.

1. Introduction

In many physical systems with a large number of degrees of freedom, the
long-time behaviour, after the exponential decay of transients, is dominated
by the relatively slow evolution of a small number of "modes". These modes
may be, for example, the components of a Fourier decomposition of the
system. The class of motions described by these modes forms some low-
dimensional invariant manifold of the system. It is useful then to reduce
the original system to a model system with only a few degrees of freedom,
but with the same long-time behaviour as the original, larger system. One
example of a rigorous theory which allows such a reduction in the number of
degrees of freedom is the theory of centre manifolds.
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Perhaps the simplest approximation for a dissipative nonlinear dynamical
system is to ignore, that is set to zero, all the linearly damped modes, and
to consider just the marginal modes—namely, the modes for which a linear
stability analysis predicts a zero temporal growth-rate. This results in the ap-
proximation of the full system by its centre eigenspace which is the (linear)
vector space spanned by the marginal modes. The centre eigenspace is not
in general invariant under the evolution of the full nonlinear system and so
cannot contain exact solutions of the system. However, its natural modifica-
tion, called the centre manifold, is invariant under the evolution of the full
system and becomes tangent to the centre eigenspace as the amplitudes of
the marginal modes tend to zero. (If there are any linearly unstable modes in
the dynamics then these should also be included to form the centre-unstable
eigenspace which is tangent to the evolution-invariant centre-unstable man-
ifold.) The simple approximation of neglecting the linearly damped modes
then may be viewed as the centre manifold (or the centre-unstable manifold)
being approximated by its tangent space at the origin. Once it is appreciated
that these manifolds lie at the heart of many accepted numerical and ana-
lytical approximations then it is clear that to approximate them better is a
worthwhile aim. The purpose of a model system which is derived through the
theory of centre manifolds is to describe accurately the long-time behaviour of
the original dynamical system, and in practice even the crudest improvement
to the tangent-space approximation for the centre manifold, M, typically
improves this description significantly. The value of centre manifold theory
is well illustrated by its ability to provide suitable initial conditions for the
model from the initial conditions of the full system [13].

Centre-manifold theory is usually applied to autonomous dynamical sys-
tems in the so-called "standard form", although Coullet & Spiegel [3] and
Roberts [12] have described how to avoid the tiresome changes of variables
which are necessary in general to put a system into standard form, and in-
stead perform algebraic manipulations directly on the system as given, to
find the centre manifold, Mo. If we choose physically-meaningful parame-
ters to describe Mo, then the model system resulting from the reduction to
the centre manifold captures all the interesting dynamics of the full physical
system. Many traditional approximations of physics and engineering involve
the construction of such a "coarse" approximation from a "fine" exact theory
[10]. Such approximations may be derived from a centre-manifold analysis:
examples are shear dispersion [8] and beam theory [9, 15]. In each case, the
traditional approximation is found as a crude low-order description of the
centre manifold, and the approximation is improved by corrections which
take into account more details of the shape of the centre manifold. Whereas
the traditional approximation can be, and often is, derived from physical
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considerations (heuristics), the (small) correction terms which are necessary
for a fuller description of the centre manifold are much harder to derive
heuristically.

In this paper we describe a procedure for the systematic calculation of
centre manifolds for forced dynamical systems. There are two effects of
forcing: firstly, to shift the centre manifold M to which trajectories are
attracted as / —> oo; and secondly, to alter the slow evolution on M . The
second effect has been quantified by Roberts [13, 15], who has shown how to
derive the appropriate forcing for the marginal modes on the centre manifold
from the full forcing of the original system. In this paper we show how his
methods may be extended to quantify the first effect (giving the position of
the forced centre manifold), and to better understand the second effect.

We begin in Section 2 by examining the effects of forcing on a set of two
ordinary differential equations. With this simple example we introduce the
concepts which are used in later sections to characterise the centre manifolds
of more general dynamical systems. The example is somewhat artificial: the
unforced system can be solved analytically [12, 13], and the reduction in
dimension which is achieved by the centre-manifold analysis is rather in-
significant. However, many of the ideas which we use in later sections were
developed by working with this simple system. Section 3 generalises the re-
sults of Section 2 to any dynamical system in standard form. As an example
of the analysis of Section 3, we consider in Section 4 a modified version of
Lorenz & Krishnamurthy's [7] five-mode model of the general atmospheric
circulation and find the first few terms in the power-series expansion of the
centre manifold, M. This particular centre manifold corresponds to the
quasi-geostrophic, or slow manifold, and meteorologists need to "balance"
their raw data by projecting onto it—but they can do this only if they know
where the manifold is located.

The calculation of the forced centre manifold for dynamical systems which
are not in standard form is described in Section 5. The structure of the equa-
tion for M is rather more complicated than when the original dynamical sys-
tem is in standard form, but M can still be found by power-series expansion
or by an iteration scheme. We illustrate this in Section 6 by the calcula-
tion of M for the forced Kuramoto-Sivashinsky equation (a model used in,
for example, flames and viscous fluid flow), and describe how a pitchfork
bifurcation is modified by the forcing.

Once a problem has been suitably posed for centre-manifold analysis, the
calculation of M is entirely systematic, and is usually achieved through power
series or by iteration. In practice, it is convenient to relegate the details of
solving the equations for the centre manifold to some computer algebra pack-
age, as we have done with REDUCE. This is a major benefit, which in some
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cases allows sufficiently many terms in a power series to be calculated to deter-
mine the radius of convergence, and thereby obtain definite estimates of the
usefulness of the approximation [8, 15]. Although only the first correction in
the magnitude of the forcing is discussed here, it would be possible to extend
the analysis to arbitrary order in the forcing. However, the complications in
detail upon doing so are considerable.

A result of the standard-form analysis is that both the unforced and forced
centre manifolds, Mo and M respectively, are necessarily parameterised by
the amplitudes of the marginal modes. For systems in a more general form,
as examined in Section 5, the choice of parameters for Mo and M is at our
disposal. In certain circumstances it is sensible to use the same parameters to
describe both Mo and M: this is particularly advantageous if the parameters
have some physical meaning. However, if the forcing is time-dependent then
the evolution equation has a memory in that the evolution on M depends
not only on the instantaneous value of the forcing, but also upon previous
values. In other cases a rather complicated, and less meaningful, choice of
parameters may, in fact, be more appropriate as the awkward "memory"
effect disappears from the evolution equation.

2. A system with an exact centre manifold

Before embarking on the general formalism which we propose for forced
systems, we consider a simple example [12, 13] where the unforced system
can be solved exactly, in particular the centre manifold is known analytically.
This example illustrates the principal ideas with little algebraic detail to cloud
the picture.

When there is no forcing, that is when F = (Fx, Fy)
T = 0, the system

x = -xy + Fx, y = -y + x2-2y2 + Fy (1)

has a centre manifold, Mo, given by

y = x2. (2)

All nearby trajectories approach Mo exponentially quickly, and once on Mo

their long-term evolution is much slower, given by

x = -x\ (3)

The centre manifold is unique up to exponentially small terms of order

e~1/2x2 [12].

2.1 Constant forcing
When F is steady and small, but non-zero, we still expect a centre mani-

fold to which neighbouring trajectories are attracted, but two aspects of the
asymptotic behaviour of (1) change: the position of this centre manifold
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FIGURE 1 (a). Evolution of a set of points from random initial conditions under (1) when the
forcing is F = (-0.05, -0.05)T . The positions of the points are plotted every 0.1 time-units,
and they clearly converge to the centre manifold, H .

(which for the forced system we denote by M, rather than Mo); and the
evolution on the centre manifold M .

Figure l(a) shows a definite example: trajectories evolving under (1) from
a series of random initial conditions are plotted at discrete times for the
case Fx = Fy = -0.05 . It is clear that there is some central curve to which
trajectories are quickly attracted. Figure 1 (b) on p. 406 shows the positions
of the points after a time integration of six time units (marked as crosses).
Solutions no longer approach the curve y = x2 (the dotted line in Figure
l(b)) as t —> oo: instead, as shown in the figure, the long-time behaviour of
(1) is confined to a curve At of the form

y = x2 + nx{x)Fx + r,y{x)Fy + O(\F\2), (4)

with the evolution on M given by the x-evolution equation of (1), with
y as in (4). We may now derive two expressions for y on M: the first
follows from an application of the chain rule (y = xdy/dx) to (4), and the
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FIGURE l(b). Crosses mark the position after six time-units of the points whose trajectories
are shown in (a). The solid line is the centre manifold, calculated to O(|F|), from (5). The
dotted line is the position of the unforced centre manifold Mo .

x-evolution equation of (1); the second follows from direct substitution of
(4) into the y-evolution equation of (1). By equating these two expressions,
we find that the centre manifold for (1) is

y = x2 - 2xc(x)Fx - 2x2) Fy + O(|F|2), (5)

where c(x) = $2x \ / l - 2X2T e rdr. The centre manifold Al is parame-
terised by x, whose evolution is, from (1),

x(t) = -x3 + (l + 2x2c(x)) Fx-x(l- 2x2)Fy + O(\F\2). (6)

The forced centre manifold Al is shown by the solid line in Figure l(b).
There is good agreement between our analysis and the numerical results for
the full system (1).

The centre manifold Al0 of the unforced system may be described para-
metrically as

x = s, y = s2. (7)
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Roberts [13] gave a simple argument which showed, by considering the pro-
jection of the forcing F on Mo, that for (1) (for small F) the evolution of
5 should be given by

s = -s
3 + (l+2s2)Fx-sFy + O(\F\2). . (8)

This modified evolution equation gives information abut the dynamics of the
forced system, its bifurcations and the long-time behaviour, but does not in-
dicate the position of M . Clearly, knowledge of this position is necessary for
quantitative prediction using the model (that is, using the centre manifold
M as an approximation to the full system (1)). Furthermore, the evolution
equations (6) and (8) appear different. However, there is no inconsistency
since the two equations are equivalent under a near-identity transformation
x = x(s), which corresponds to a re-parameterisation of X . Clearly, the
choice of parameter s used to describe M determines the form of the evo-
lution equation for s.

In order to calculate the forced centre manifold, M , of (1), we pose that

il [ l + [ l i l + < | | ) (9)
where s evolves according to the equation

j ] 2 (10)
Then substitution into (1) and consideration of the terms of order |F| gives
the four equations

-s3dt}

-s'd%

s3dr,}

,/ds =

,/ds =

./ds =

,/ds =

-srjx-

-sr,y-

- 2stx -
• 2s£y - •

°x +
°y>
4s\

1,

-2sax,

- 2say + 1.

(11)

(12)

(13)

(14)

These are four equations in six unknown functions, and the remaining
two degrees of freedom left to us correspond to the freedom to choose the
new parameterisation of M as we wish. If we choose to identify s to be
x, as in the unforced problem, then £x and £ are each identically equal
to zero—these would be our two remaining equations. Then by solving (13)
and (14) we arrive at (5) and (6).

Before we describe the parameterisation by s of M for which (8), rather
than (6), is the appropriate evolution equation, let us follow the argument of
Roberts [13] which gives rise to (8).
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In general, a centre manifold is approached exponentially quickly by neigh-
boring trajectories, and to each solution (x(t), y(t)) of the full system (in this
case (1)) there corresponds a solution s(t) of the evolution equation on the
centre manifold M (defined parametrically by (x, y) = (X(s), Y(s))) for
which (X(s(t)), Y(s(t))) has the same behaviour as {x(t), y(t)) to an expo-
nentially decaying error as t —> oo. Similarly, to each point sQ on M there
corresponds a one-dimensional isochronic manifold which consists of those
initial points (x0, yQ) whose subsequent evolutions have the same long-term
behaviour under .the full system as does the evolution starting from sQ on
M . For a general system, if M has dimension m then the isochronic man-
ifold corresponding to each s0 has codimension m . Now imagine applying
an impulsive forcing so that the solution s(t) is "kicked" a small distance
off the centre manifold. If the direction of the impulse is such that the point
remains on the same isochronic manifold then, by definition, its long-term
behaviour is unaffected by the impulse. It is only the component of any
impulse orthogonal to the isochronic manifold which significantly affects the
long-term behaviour. (Note that this is not the same thing as ignoring the
component of the impulse which is normal to M , since the isochronic man-
ifolds are not in general orthogonal to M .) Any continuous forcing can be
viewed as the limit of a sequence of such impulses, and therefore the correct
evolution equation for s on At for a forced system is obtained by consider-
ing only the components of the forcing normal to the isochronic manifolds.
From these considerations, (8) can be derived.

However, this method of projecting the forcing has drawbacks: firstly, the
isochronic manifolds are typically as difficult to calculate exactly as the orig-
inal full problem is to solve; and secondly, the position of the new, displaced
centre manifold for the forced system is not found. The first of these can be
overcome in a neighbourhood of At since it turns out to be straightforward
to calculate the tangent-space approximations to the isochronic manifolds
[13]. A knowledge of these tangent spaces is sufficient for the projection of
small forces, where we ignore terms that are nonlinear in the forcing (that
is, a linear projection is sufficient). The second problem is addressed below
where we extend Roberts' argument to calculate At .

It turns out that (8) is the appropriate evolution equation if we choose the
parameterisation of At in such a way that points on At0 and At which lie
on the same isochronic manifold have the same value of the parameter s.
Since points which both start on the one isochronic manifold remain on the
same isochronic manifold (albeit a different isochronic manifold at different
times), then any component of the forcing which is parallel to the isochronic
manifolds must make zero contribution to (10), so that solutions on At0 and
At remain "synchronised". Now a solution uF = (xF(s), yF(s)) of the forced
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system on At , and a solution u0 = (xo{s), yo(s)) of the unforced system on
Mo differ by an amount given by the product on the right-hand side of (9).
This difference, by the definition of our parameterisation of At, is tangent
to the isochronic manifold, and so the condition which we have described
above, that the component of F parallel to the isochronic manifolds should
vanish, is

[ax <T] [** *y] \^x] = 0 . (15)
Since this must hold for all Fx and Fy we conclude that the remaining two
equations for our six unknown functions are

is

— Mis1

The following (or rather, just one solution, correct to terms of order e ' )

Zx=-2s2c(s), (18)

Zy=s(l-2s2), (19)

tjx= -2s(\+2s2)c(s), (20)

r]y = (\-4s4), (21)

ax = l + 2s2, (22)

oy=-s, (23)

where, as before, c(s) = f^2* \ / l - 2S2T e xdx. This gives the centre
manifold M as

x=s-2s2c(s)Fx + s(l-2s2)Fy )

y = s2 - 2s(l + 2s2)c(s)Fx + (1 - 4s4)Fy) '

with the evolution on At given by (8). We see that this particular parame-
terisation of the forced centre manifold gives rise to an evolution equation
which is identical to that derived by Roberts' projection arguments. (These
results are consistent with (5).)

A more straightforward approach than the above to obtain the centre man-
ifold for (1) might be to change the variables so that a fixed point of (1) for
F ^ 0 lies at the new origin, and then to apply standard centre manifold
analysis. However, such changes of basis are tedious to carry out in practice
for systems of any complexity. We wish instead to describe a method which
avoids such changes—algebraic manipulations are performed on the full sys-
tem, as given, to find the displaced centre manifold and evolution thereon.
In particular our approach allows us to treat unsteady forcing easily.
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2.2 Time-dependent forcing
When F is small but unsteady, we would expect that there is (in some

sense) a time-dependent centre manifold to which nearby trajectories are
exponentially attracted, and on which there is a slower evolution. (Note
that currently the theory of centre manifolds does not strictly admit time-
dependent centre manifolds.) It is relatively straightforward to show that
this is indeed the case, and that in this example trajectories are attracted to
the curve

y = x2 - 2xCx(x, t) * FJt) + C(x, t) * Fit) + 0(|F|2), (25)

where Cy(x, t) = (1 - 2x2t)e ' and Cx(x, 0 = \ / l - 2x2t e ', and where
the convolutions indicated by "*" are defined by

/ •1 / (2JC 2 )

C{x, 0 * F(t) = C(x, r)F(t -
Jo

If we choose to parameterise the centre manifold M by x, the evolution is,
from (1),

*(0 = -x3 + 2x2Cx(x, t)*Fx(t) -xCy(x, t)*Fy(t) + Fx{t) + O(\F\2). (26)

Note that the position of M and the evolution of x depend not only on
the present value of the forcing, F(t), but also upon previous values, F(t -
T) . A similar "memory" has been noted in asymptotic descriptions of shear
dispersion. There, the aim is to calculate the effective diffusion coefficient for
a shear flow in a channel which may have varying breadth and where the fluid
may have varying longitudinal dispersion. The local diffusion coefficient has
a memory not only of the upstream conditions [16], but also of the diffusivity
of the fluid at previous times [8].

Figure 2 (a) shows the evolution of a random set of initial points under (1)
when Fx = 0 and Fy = -0.5sinl0f. The points represent a stroboscopic
view of the evolving system, where we plot the position of each point at every
period of the flow, that is, at times 0, 2/r/lO, 4TT/10, ... . Clearly in this
stroboscopic view the points are attracted to a curve, which is the instanta-
neous position of M at the strobe times. (Whenever the forcing is periodic
then the position of M is a period function of time.) The crosses in Figure
2(b) on p. 412 indicate the positions of the points after eleven periods of the
forcing, and the solid line is the curve (25), with the appropriate phase. There
is clearly good agreement between our analysis and the numerical results for
the full system. Note that although the forcing has zero mean and at the
origin is perpendicular to the centre manifold it results in the de-stabilisation
of the origin, and the birth of two finite-amplitude fixed points on M . How-
ever, the fixed point nearest the origin is nonhyperbolic, just as the origin is
when F = 0, and so in order to calculate the two new fixed points, which are
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o

o

FIGURE 2(a). Evolution of a set of points from random initial conditions under (1) when
the forcing is time-dependent. In this example, F T = (0, -0.5 sin 100 • Points are plotted at
every period of the forcing, that is at intervals of 2rc/10 » 0.63 time-units. In this stroboscopic
picture the points are clearly converging to a curve, which is the position of the centre manifold
M(t) at the strobe times.

(x,y) = O(\Fy\) = (±a/\/l +co2, -atu/(l +co2)) + O{a2) when the forcing
is F = (0, a sin cot), we need to consider the quantities of order |F|2 in (25)
and (26). These two comments hold whenever the forcing is solely in the
y-direction, and has zero mean. If we choose instead to force the system
again only in the y-direction, but so that Fy has non-zero mean, Ty ^ 0,
then the fixed point on the y-axis is stable or unstable as ~F is positive or
negative, respectively, and the new fixed points which exist when T < 0
lie a distance of order yJ-Ty from the origin. This extends the example of
steady ^-forcing, which has been remarked upon by Roberts [13]. As there,
the surprising thing is that a small force perpendicular to the centre manifold,
whose averaged component along M is towards the fixed point, may actually
de-stabilise the fixed point.
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FIGURE 2(b). Crosses mark the position after eleven periods of the forcing of the points in
(a). The solid line is the instantaneous position of the centre manifold, which is calculated to
O(|F|), from (25).

Roberts' projection arguments imply that with an appropriate parameter-
isation the evolution on M under time-dependent forcing can be written as

s(t) = -s3 + (l + 2s2) Fx(t) - sFy{t) + <9(|F|2). (27)

Here, in contrast to (26), there is no memory in the evolution equation on
M: the evolution depends only on the instantaneous value of the forcing,
F(/). This apparent contradiction is easily resolved. The memory of previous
forcing can be removed from (26) by a slight re-parameterisation of M : if
we write

s = x + 2x2 | y / l - 2x2t e~' J * Fx{t) -x{{\- 2x2t)e~'} *Fy(t) + O(\F\2),
(28)

then (26) and (27) are equivalent.
When there is time-dependent forcing, just as when F is constant, we can

choose to project along the isochronic manifolds to define a parameterisation
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for M. In this case, we find that the evolution of s is given by (27). The
displacement of M, however, "remembers" previous values of F—in this
case the (<J, ^-matrix of (9) becomes a more general convolution operator
on F(r), so that M is given to order |F| by

{(l-2s2t)e-'}*Fy(t)K). (29)
This description of M reduces to (8) and (24) when F is independent
of time. This is one justification for what seems a complicated definition
of parameters for the forced centre manifold: that by projecting along the
isochronic manifolds we arrive at an evolution equation which depends only
on the present value of the forcing and does not depend on previous values.
If, rather than project along the isochronic manifolds, we choose any other
parameterisation for X then we will in general derive ah evolution equation
with memory.

3. Forcing of differential equations in standard form

Here we describe a general formal method for calculating the effects of
forcing on the centre manifold, and evolution thereon. Consider a dynamical
system written in the so-called "standard form"

x = Ax + f{x,y), x e l m ,

y = By + g(x,y), y e l " ,
where A is an m x m matrix whose m eigenvalues have zero real part, B
is an n x n matrix whose n eigenvalues have negative real parts, and f and
g are at least C 2 , and O(|(x, y)|2) as |(x, y)| —»• 0. This system has a centre
manifold, Mo, given by y = ho(x), which is invariant under (30), and which
nearby trajectories approach exponentially quickly [2]. This centre manifold
satisfies

BhQ(x) + g(x, ho(x)) = dho/0x(.4x + f(x, ho(x))), (31)

and has the m-dimensional dynamics of

x = ^x + f(x,ho(x)). (32)

Often m is small, so that by considering only the evolution (32) of the system
on Mo we greatly simplify the original system.

When forced, (30) becomes

x = Ax + f(x,y) + Fx(t), x6Mm,

y 5 + ( ) + F ( 0 eK"
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where the forcing F(t) = (Fx, Fy)
J is assumed to be "small", and we describe

its effects on the centre manifold Mo of (30), to 0(|F|) .

3.1 Existence of a centre manifold under constant forcing
When F is non-zero and steady, the system (33) has a centre manifold,

M , given by y = ho(x) + h,(x, F), where h,(x, F) = 0( |F|) , at least for
small F . We may demonstrate this by re-writing the forcing of (20) as e2F,
where F is now of order one, and e is a small constant. Then by adjoining
the trivial equation e = 0 to the forced system we effectively consider the
parameter e as an extra component of x, and treat the forcing e2F as a
nonlinear term. This is a standard trick for bifurcation problems [2]. Thus
(33) can be put in the (unforced) standard form (30) as

where x = (e , x) ,

X* € " ' (34)
« i

ro o
o

A
f . = I «„ ^ j . «2« I , g. = g(x, y) + e 'F v .f(x,y)

Lo
(35)

We shall assume in what follows that the forcing is sufficiently small to ensure
the existence of a centre manifold.

Substituting the ansatz y = ho(x) + h1(x, F) into (33), and equating terms
of order |F | , we find that h, satisfies

where the functions are evaluated on y = ho(x).
In general, the equation for h, cannot be solved exactly—in practice it

would be solved either by iteration or by power-series expansions, in fact
the same procedure as is used to find h0 from (31). If h0 is approximated
with error O(|x|p) then h, can at best be known with error Oflxl^'lFI).
For small |x|, the leading-order effects of the forcing are twofold: the forc-
ing of the stable modes acts to displace the centre manifold by an amount
h,(x, F) ~ -B~lFy , from (36); the forcing of the marginal modes, which are
those used to parametrise M, acts to change the evolution x on M by an
amount Fx . This much is trivial: the power of the centre-manifold analysis
is in giving the successive corrections to this leading-order description which
are due to the curvature of M .
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This standard-form analysis corresponds to the solution (5) of the exact
system (1). The extra sophistication of projecting along the isochronic mani-
folds does not arise when the dynamical system is in standard form, since the
parameters used to describe both the forced and unforced centre manifolds
are, by definition, the same, namely x . The solution (5) was found from
(31) and (36), which in the case of the previous section become simply

xho^+x2-2h2
o-ho = O, (37)

and

x*d-£±-{\ + 2x2)hx = 2xFx-Fy. (38)

These are readily solved, up to terms of order e~xl(2x ) to give (5).

3.2 Time-dependent forcing
When F is small, but time-dependent, we still expect to be able to reduce

the original system (33) to a simpler m-dimensional system which describes
accurately its long-time behaviour. However, this long-time behaviour now
takes place on an m-dimensional time-dependent manifold, -M, given by
y = ho(x) + h,(x, F(f)). There is no rigorous theory for "time-dependent
centre manifolds", but nonetheless we expect to be able to derive expressions
for h0 and h, which capture the long-time behaviour of the original system.
That this is a reasonable expectation was demonstrated in Section 2. As when
F is constant, h0 satisfies (31), but now h, satisfies

This can be written as

where dhjdt means dh,/c?FF. More compactly, this is

and a typical solution is a convolution of the form

h,= r C{x,x)Y{t-x)dx. (42)
Jo

From this it follows that

^ = C(x, 0)F(«) + J" CT(x, t)F(t - T) dx, (43)
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and so, substituting into (41), we find

(x,T)}F(r-T)rfT=[-^ /JF(O- (44)

This equation can be satisfied for arbitrary forcing if

C(x,0)=[-^> / J , (45)
and

• 1FF = 3C- W
In general we cannot solve exactly for C, but we find approximate solutions
of (46) in the form of a power series in the amplitudes, x .

Note that the evolution equation for x is

x = Ax + f(x, ho(x)) + !^h , (x , F) + FX + <9(|F|2), (47)

and this involves not only the present value of Fx(t), but also earlier values
of Fx and Fy , through h j : there is a memory of the history of the forcing
which arises from the convolution (42).

When |(x, y)| is small, (46) reduces to

(48)

so that
C(x,T)*eBz[Om - / „ ] . (49)

Then ^

h j « - / eBr¥y(t-r)dr. (50)

Corrections to this expression for h, may be found through iteration of
(36) or by a power series expansion in x, but already this leading-order
expression for h, tells us that the memory of the previous history of the
forcing has time-scales which are the reciprocals of the eigenvalues of B, as
is reasonable, and that the simplest approximation (which ignores the linearly
damped y modes) gets the long-time evolution of the system (33) wrong by
an amount which is of the same order as the forcing.

4. Application to a five-mode atmospheric model

In this section we examine a system which is in the standard form of the
previous section, and which is of interest for numerical weather prediction.

It is well known that the bulk of the atmosphere is in approximate
geostrophic equilibrium. For any atmospheric model which is not quasi-
geostrophic, though, an arbitrary initial state generally gives rise to rapid

https://doi.org/10.1017/S0334270000008511 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000008511


[17] Forced dynamical systems 417

large-amplitude gravity-wave oscillations which are not a realistic feature of
the earth's atmosphere itself. A problem for numerical weather prediction
is to filter out the rapidly-oscillating gravity waves from initial wind and
pressure data by some initialisation process, or "balancing". If there is an
invariant manifold on which no gravity waves develop (a "slow manifold")
then balancing is achieved by projecting the initial data onto this manifold—
this process would remove the gravity waves from the numerical solutions
completely. It is of interest to know how this manifold, if it exists, is de-
formed when the system is forced, and what the evolution on the manifold
is like.

We consider a variant of the system proposed by Lorenz & Krishnamtfrthy
[7] as a very simple model for interacting atmospheric Rossby waves and
gravity waves, with constant forcing,

v = uw - buz + F
u = -vw + bvz + F

w = -uv + F.
u

w
x = - z-ax + F

x
z = x - az + buv + Fz d

(51)

The parameter a represents a damping of the fast gravity waves, (x, z), and
b represents the coupling between the gravity waves and the slower Rossby
waves, (v, u, w). Unlike Lorenz & Krishnamurthy, we have not directly
damped the Rossby waves—without the interaction with the gravity waves,
through the terms in b, the Rossby waves would be perpetual.

To relate this system with the notation of the previous section, let x =
(v,u, w)T , y=(x, z)T ,

ro o oi r_ _ n
0 ° ° ' H i " -a\' (52)

0 0 0 L J

A =

f = {uw - buz, -vw + bvz, -uv) , g = (0,buv)T. (53)

Note that A indeed has three zero eigenvalues and the eigenvalues of B
are -a±i, whose real parts are negative whenever there is damping, that is
whenever a > 0 . Roberts [13] has calculated the first few terms in a power-
series expansion of the sub-centre manifold which the system possesses when
a = 0 (that is when B has pure imaginary eigenvalues) and when there is
no forcing.
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The analysis of the previous section leads us to the following equations to
be solved for the forced centre manifold, y = ho(x) + h,(x, F),

uw — buz
(54)—a

1

- 1
-vw + bvz

-uv

[T :J]MO+[2
0 -bu
0 bv
0 0

uw - buz
-vw + bvz

-uv
• (55)

Substituting a power-series for h0 and h, into their governing equations,
and using the computer algebra package REDUCE, we find that

buv - 1
a

bw(u2 -v2) 2a
I-a2

+
buv (3a2 - 2a2b2 - \)(u2 - v2) + 4(3a2 - l)w2

O(\xf), (56)

which reduces to Roberts' result [ 13] for the sub-centre manifold when a = 0,
and

1 aFx - Fz

aFz + Fx

lab

2?a2

-(u2 - v2)(2ab(aFz

b(l-a')
Fx) + (3a2-l)FJ

-\)(Fx + aFz) + a(a2-3)FJ}
+2(vFv-uFu)(3a2-l)w
-2abw(vFv - uFu)(a

2 - 3)
0(|F||x| (57)

Here we can see the leading-order (that is (9(|F| |x| )) displacement of the
centre manifold due to the forcing to be just that determined by the geostrophic
approximation (x, z) « (0, 0).

Typical initial conditions for the full dynamical system (51) produce both
Rossby waves and large-amplitude gravity waves, as shown by the solid line in
Figure 3. The initial conditions for the integrations on Mo and M are found
by appropriately projecting the initial conditions of the full system (51) [13].
The aim of the projection in this example is to balance the initial data of the
full system and remove any gravity waves (these are the oscillations in Figure
3 with period of roughly six time-units). The projection onto Mo leads to
a solution, the dotted line in Figure 3, with small-amplitude gravity waves
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Time

FIGURE 3. Time-series of x (one component of the gravity-wave complex (x, z)). The
solid line represents evolution of x under (51) from the initial condition (v, u, w, x, z) =
(0.01, 0.01, 0.01, 0.1, 0), with forcing F = (0 .01 ,0 ,0 , 0.01, 0) . Here a = 0.1 and b=\.
If the initial condition is projected according to [13] onto the unforced centre manifold Mo , the
the dotted line indicates the subsequent evolution of x ; this projection is ineffective in balancing
the initial condition. If the initial condition is projected onto the forced centre manifold M
then the subsequent evolution of x follows the dashed line, which has no gravity waves (at least
initially). (The gravity waves are the oscillations with a period of roughly six time-units, and
the Rossby waves have a period of roughly fifty time-units.)

which decay at first, then new gravity-wave activity sets in after t « 30. The
projection of initial conditions onto M , leading to the dashed line in Figure
3, is much more successful in balancing the data: initially there is no gravity-
wave activity. That small-amplitude gravity waves develop after t « 30 was
used by Lorenz & Krishnamurthy [7] to argue against the global existence,
for this particular 5-component system, of a slow manifold containing no
gravity waves.
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The projection onto the unforced centre manifold, Mo , is included in the
figure for comparison with the projection onto the forced centre manifold,
M . It is the former projection which is implicit in [13], where it is assumed
that "the forcing of the full system is never so big that it pushes the system far
from the invariant manifold M [our Mo]" [13, p. 72]. The figure indicates
clearly, as we argue in the present paper, that it is the forced centre manifold
which is the appropriate summary of the long-term behaviour of (51).

Lorenz [6] proposed a scheme which successively improves an approxi-
mation to the centre manifold, and when modified slightly his scheme is
equivalent to an iteration scheme for solving (54) and (55). The time deriva-
tives of x and z are first ignored, that is they are assumed to be zero, and a
first approximation to an invariant manifold, (x, , z , ) , is calculated in terms
of the parameters (v,u,w) from the x and z evolution equations. Then
new approximations to x and z are given by x{ and z{. This allows a
second approximation to the invariant manifold, {x2, z2), to be calculated.
This iterative procedure can be continued indefinitely to give approximations
(xn, zn) to h0 + hj accurate to arbitrarily high order. We have followed this
iteration scheme as far as (x3, z3) , and the results are consistent with (56)
and (57) to the appropriate orders in x .

5. Forcing of differential equations in general form

A dynamical system with a centre manifold generally will not be in the
convenient standard form considered in Section 3. In principle, a change
of variables can always remedy this; in practice such a change is frequently
clumsy, and adds complexity to the process of finding M . Besides, the orig-
inal variables of the problem may have a physical significance which the
transformed variables do not.

For the general dynamical system, which is not in standard form,

u = i3u + N(u), (58)

where £. is a linear operator with m eigenvalues with zero real part, and
N is strictly nonlinear in the unknowns u, the centre manifold Mo can be
parameterised by an m-vector s = (sx, ... , sm) of "amplitudes". Then u
is given on Mo by n(t) = V(s), where the evolution on Mo is given by
s = G(s). To find V and G, we need to solve the equation

^ ( s ) , (59)

together with the definitions of the amplitudes s [3, 12].
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The important practical advantage of this method for calculating Mo over
first having to set the system in standard form is that there is no messy al-
gebra associated with a change of basis. Accordingly, for a physical problem
the gain is that we deal throughout the analysis in physically-meaningful vari-
ables, u, and parameters, s .

5.1 Constant forcing

5.1.1 The equation for the forced centre manifold. Suppose that the system
is subject to a small steady forcing, so that (58) becomes

u = £u + N(u) + F. (60)

The centre manifold is effectively displaced, and the evolution on it is modi-
fied by the forcing. We pose in general that the centre manifold is displaced
so that

u(O = V(s) + WF + 0(|F|2), (61)

where the evolution is modified to be

s = G(s) + )/F + O(|F|2). (62)

Here W and M are linear operators which depend on s and act on F . The
effective displacement of M due to a forcing F is TfF, and the correspond-
ing modification to the evolution of the amplitudes s is HF. When the
system is finite-dimensional, that is u e RN for some N, then W and H
can be written as N x N and m x N matrices, respectively, but our anal-
ysis allows them to be general linear operators whose form arises naturally
from the problem at hand. By substituting (61) and (62) into (60), and then
considering the terms of order |F|, we find the equation to be satisfied by W
and M is

^M + GVW, (63)
as

where J is the Jacobian §^|u = v , I is the identity operator, and we use G V
to denote T,j

5.1.2 Solving the equation for the forced centre manifold. In general, equa-
tion (59) for the unforced centre manifold Mo cannot be solved exactly, but
is instead solved asymptotically. We substitute the asymptotic series

(64)

I, (65)
k=i
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into (59), where V(A:)(s) and G(fc)(s) represent terms of order k in the am-
plitudes s. Then by considering successively higher orders in s, we may
obtain V(fe)(s) and G(fc)(s) for k = 1, 2, . . . ; see [12]. To calculate the
operators ~W and )i, we make similar expansions,

W{k), (66)
k=0
oo

H , (67)

and substitute these into (63). Then we may solve at successive orders to find
W{k) and Xlk) for k = 0, 1, 2, . . . in sequence.

At the k-th stage (if G(1) = 0, as occurs frequently) we solve an equation
of the form

£W{k) = ^—U{k) + (products of known terms of orders 1, . . . , k - 1).
as

(68)
We can solve this first for #' ' by ensuring that the right-hand side of (68)
lies in the range of C . Then we are left with an equation for 11^* of the
form

£W{k) = (known terms), (69)
which cannot be solved uniquely because the operator £ is singular—it has
m zero eigenvalues. A similar non-uniqueness arises at each order in cal-
culating the unforced centre manifold, v ' *; there we avoid the difficulty
by using the definitions of the amplitudes s. So now we have to choose a
particular parameterisation for the forced centre manifold At.

The amplitudes s are given by a definite expression s = S(u). The missing
m equations for W(fc) arise from considering the behaviour of S a distance
of order |F| away from At0. We see that

s = S(V(s) + W(s)F + 0(|F|2)) (70)

= S(V(s)) + S W(s)F + 0(|F|2), (71)

where S = ff | u = v . Since (71) must hold for all F , and since s = S(V(s)),
we deduce that

SW=0. (72)

The fc-th order terms of this constraint, namely

U)v»{k-J), (73)

supply the missing m equations for W{k).
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In many cases the right-hand side of (73) will vanish, often because we
define Sj = (Zj, u), where {z;} is a basis for the left zero-eigenspace of C,
and where (•, •) denotes an appropriate inner product. This is the case, for
example, whenever (58) is in standard form, for then (73) takes the simple
form

(zj,W{k)) = 0 foTJ=l,...,m. (74)

Of course, the right-hand side of (73) need not vanish if the amplitudes have
a more complicated definition. For example, in Section 2.3 we could have
chosen to parameterise the centre manifold by distance from the origin or by
arc-length.

5.1.3 Parameterisation of the forced centre manifold by projection along the
isochronic manifolds. Now consider how our procedure for calculating W
and U by asymptotic series compares with the method which Roberts [13]
has described for calculating M, which involves approximating the forcing
F by a sequence of discrete impulses. The idea there is that the only signif-
icant effect of an impulse, in the long-term, is to move each point a small
distance off its isochronic manifold, Il(s_), onto a different isochronic man-
ifold, II(s+). The result of the impulse on each point is in effect to change
its value of s slightly. In the limit of a continuous forcing, this results in a
change in the evolution of s, which is #(s)F. It turns out that we can calcu-
late U provided we know the m-dimensional space which is normal to the
isochronic manifolds. Since m is small in general then this method requires
relatively little work. Although a knowledge of X gives us the dynamics on
the forced centre manifold M , it does not tell us the location of M , or how
to parameterise M: the value of X found by Roberts' "isochronic projec-
tion" argument only gives the correct evolution equation on M provided the
parameterisation of M is chosen appropriately. We can readily provide a
condition on the parameterisation for this to be the case.

Consider the parameterisation of M which we saw in the example of Sec-
tion 2, and which in the impulse model corresponds to our specifying that a
forcing (impulse) along II(s) does not affect the values of s, that is, s+ = s_ .
This parameterisation assigns to each point u off the centre manifold a value
of the amplitudes s which corresponds to the point of intersection between
Mo and the isochronic manifold on which u lies. In effect this redefines
the amplitudes s = S(u) for u off the centre manifold. Near Mo, then, S
approximately projects along II to find s, that is, we find that S(u) satisfies

(i?(S(u)),u-V(S(u))) = 0, (75)

where we consider the finite-dimensional case, and we define R(s) to be an
mx N matrix whose rows are a basis for the space normal to the projection
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manifolds. When u is on the forced centre manifold, u ~ V(s) + WF and
so (75) becomes

(R(S(u)),W(S(u))) = 0. (76)

A comparison of this result with (72) shows that S is the operation of taking
the inner product with R.

Now consider (63); from this equation we can show readily that Roberts'
result for U follows naturally from the ansatz (61) and (62), without the need
to approximate F by impulses. We can also readily derive a condition for the
appropriate parameterisation of M so that the evolution equation involves
Roberts' expression for )i. For simplicity, consider the finite-dimensional
case, so that W and H are matrices. Then, from [13],

and we may choose for definiteness the initial condition

(78)
s=0

It follows then that

0 = [R(s){C + J} + G • VR{s)]W{s)

= R(s)[{£ + J - G • V}W(s)) + G • V{R(s)W(s)}

= R(s) \-IN + ^ > / ( s ) l + G • V{JR(s)W(s)}, (79)

where IN is the N x N identity matrix. Therefore, provided the choice of
~W is such that

G-V{R{s)1V(s)} = 0, (80)

then

R(S), (81)

where we know that, for small |s| at least, R($)dY/ds is invertible. (Com-
pare this with [13], equation (7.7), where our #F is Roberts' ¥M .)

Now we see that the parameterisation of M defined by projection along
the isochronic manifolds—which in (72) has 5 denoting the inner product
with R—results in 'H'(s) such that -R(s)W(s) = 0, that is, such that (80) is
trivially satisfied. Therefore this parameterisation of M is the appropriate
one for Roberts' evolution equation. From (81) we see that M annihilates
any component of the forcing tangent to the projection manifold; as we would
expect, such a forcing makes no contribution to the evolution of s for this
particular parameterisation. Also when i?(s)'H'(s) = 0, the matrix [-IN +
d\/dsX(s)] is seen from (79) to be of the form ^(s)L(s), where K(s) is
an N x(N — m) matrix whose columns span the projection space, and L(s)
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is some (N - m) x N matrix. To see what L(s) is like, we note that (79)
and (81) imply that

so K(s)L(s)d\/ds = 0, and see that the rows of L(s) must span the space
orthogonal to the centre manifold. Our results for the exact system of Section
2 illustrate this—we find

2s2 -s
.25(1 + 2s2) -(l + 2s2)ds

s
- 1 ] . (83)

Here the first matrix in the product gives the direction of the projection
manifold (compare with [13, p. 56]) and the second matrix gives the normal
to the unforced centre manifold, (x, y) = (s, s2).

We can see on "physical" grounds that (81) is reasonable. Consider a
forcing which is instantaneously along the direction of increasing s. on M .
Then F = FdV/dSj say, and so from (81), XF = Fitj, where {e,} is the
standard basis for Km . this just says that due to this particular forcing Sj
is increased by an amount F, which is what we would expect for such a
forcing.

Let us return now to the power-series calculation of "W and # . When the
parameterisation of M is by projection along the isochronic manifolds, the
condition (72) implies

(R(s),W) = 0, (84)

so that, as we have anticipated above, (80) is satisfied, and so X is given by
(81). From this result, it is apparent that

0 = 0. (85)

Thus the appropriate set of m equations to adjoin to (69) to specify W( '
uniquely is the k-th order part of (85), that is

^^ fU)-W(k-J). (86)

In general, in projecting along the isochronic manifolds the right-hand side
of (86) is nonzero.

5.1.4 Relation between various choices for IV. We have seen that (81) is
satisfied provided G- V{R"W} = 0, and we have considered above the special
case that RW = 0 , but the question arises—what if i?(s)W(.s) is constant, but
nonzero? Without going into details, this corresponds to a degeneracy which
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allows us to re-parameterise the unforced centre manifold Mo by altering the
definition of the parameters s by an amount of order |F | .

There are two "natural" choices for W which we have seen in our exam-
ples: firstly, that which keeps the same parameters for the forced problem as
for the unforced (this is the case, for example, with any system in standard
form); and secondly, that which projects along the isochronic manifolds. If
we wish to carry out this second re-parameterisation then even if we only
want to know the effect of a particular forcing, Ft say, we must still calcu-
late the operator M , and not just the quantity XFt. This corresponds to the
necessity of knowing the tangent space of the isochronic manifolds in order
to project F , .

Equation (85), in effect, specifies that the column space of ~W be the
isochronic tangent plane. Here lies a point of potential confusion, when we
talk about the isochronic manifolds "of the problem", since the tangent space,
IT0, of the isochronic manifolds of the unforced problem and this tangent
space, I 1 F , of the forced problem have slopes which differ by 0( |F|) . Since
Mo and M are a distance of the order |F| apart, the projection between MQ

and M along n o differs from the projection along IIF by an amount of the
order |F|2 . Our scheme only includes corrections to the unforced results up
to <9(|F|) and so these differences can consistently be neglected. In fact, our
scheme for U and "W finds n o rather than IIF as the column space of Vi),
since the calculations are "based" on Mo.

The isochronic manifolds were originally introduced to find which initial
point s0 on M corresponds to an arbitrary initial condition UQ of the full
system, in the sense that their evolutions are exponentially close as / - t o o .
Consider now an unforced system. The projection of initial conditions along
the isochronic manifolds, by the definition of these manifolds, is exact. This
(nonlinear) projection, however, is as complicated to accomplish as the full
problem is to solve, and so an approximation is made whereby the projec-
tion is made along the tangent space, II0 , to the isochronic manifolds at M .
Thus if u0 is a distance of order / from M , then the error in locating s0 in-
troduced by projecting along the tangent space II0 rather than exactly along
the curved isochronic manifold itself is of the order I2, due to the neglected
curvature of the isochronic manifold. In the forced system, when (nonlinear)
projection is along the isochronic manifolds, again, the projection is exact,
by definition. If the projection is instead made along the tangent space IIF

there are introduced errors of the order I2 . Finally, if the projection is made
along n o then the errors in locating s0 are of order (I2, / |F | , |F|2) . This
last reduction in accuracy, over projection along IIF ,may be considered a
worthwhile compromise (to project nonlinearly along the isochronic mani-
folds exactly is assumed out of the question as the full problem is assumed
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to be intractable) since the calculation of II0 is considerably easier than that
of IIF. This is because we need an "initial condition" for calculating either
II, that is, its direction at some point on the centre manifold. Then we can
integrate along the centre manifold to find II everywhere on M . The initial
condition for II0 comes naturally from a linear stability analysis of the ori-
gin u = 0, whereas there is no simple initial condition for IIF. For example,
from (68) when k = 0 we find

|^V>_j. (87)

If Z is a matrix composed of the left zero-eigenvectors of £ then

(0) / dV(I) (oA

from which it follows that

#(0) = ( z , ^ — \ Z . (89)

Now from (86) it follows that

(Z,W(0)) = 0. (90)

Thus, as a linear stability analysis predicts, the isochronic manifold at the
origin has no component in the tangent space of M—it lies tangent to the
stable manifold of the origin.

5.2 Time-dependent forcing
For definiteness, consider a finite-dimensional system, so that £, I, W

and X are matrices. The equation to be solved for ~W and U is, to O(|F|),

d „.
j j ^ - (91)

This can be written as

( J H w = / - ^ (92)

where the operator T is defined by

T = CW + J W - G - V . (93)

We try a solution of the form

WF = C(s, /) * F(0 = / C(s, t)F(f - T) dx. (94)
h
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Then, in a similar way to the standard-form results, we can satisfy the gov-
erning equation for C by choosing

K, (95)

and
dC/dx = TC. (96)

Here it is implicit in the initial condition (95) for C that the operator U
involves only the current value of the forcing, and not previous values. That
is, we have chosen the parameterisation of M to be such that the evolution
of s depends only on the instantaneous value of the forcing. In general an
exact solution for C cannot be found; instead an approximate solution is
constructed by power series in the amplitudes, s.

Formally, the solution for W is

WF= /°VT (l-^-M\¥{t-T)dx. (97)

The terms which act on F inside the integral in (97) have the following
interpretation. Firstly, the term I — j^M acts to eliminate the component of
the forcing along M (see (82)). Such a component does not alter the position
of M , although it does alter the evolution on M . Secondly, the term exT

weights the integrand so that the most recent values of F contribute most to
the instantaneous position of M . The memory of the earlier forcing decays
exponentially.

When |s| is small, we can easily obtain a first approximation to the ex-
pansion (97) for Vi)Y, valid near the origin in s-space. The simplest case,
and a typical one, is when G ^ = 0. Then

(98)

so that
C(s, T) « eCz(I - VX{0)) = eL\l - V{VTV}~1 VT), (99)

where V is the Jacobian matrix ^ - . Then

\l-V{VTV}~lVT)F(t-T)dT. (100)s:10

The terms which act on F inside the integral here have the following straight-
forward interpretation. Firstly, the term I — "\){VTV}~1Vr eliminates the
component of the forcing along the tangent plane to M at the origin. (Such a
component may be written as Vq for some vector q, but then
(J - V{VTV}~iVT)Vq = IVq - Vq = 0.) Secondly, the term etx indi-
cates that the memory of the present position of M on the previous values
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of the forcing decays exponentially, to a first approximation, with the decay
rates of the damped modes (that is, the eigenvalues of £,).

What effect does the assumption that the evolution of s depends only
on the instantaneous value of the forcing have on the re-parameterisation?
Firstly, we note that

= 0, (101)

from (81). Secondly, if we premultiply (96) by R(s), and use the definition
of T we obtain

^ (102)

The term in parentheses vanishes (see (77)) and so

( J R C ) = 0 -
 ( 1 0 3 )

But from (81) and (101) it follows that

*(s)C(s,0) = 0, (104)

and so,

R(s)C(s,r) = 0 for all T. (105)

Using (81) again, it follows that

K C ( S , T ) = 0 for all T, (106)

and therefore
HW = 0. (107)

The result is then that an evolution equation for s which depends only on
the instantaneous value of the forcing can be derived by choosing the param-
eterisation which involves projection along the isochronic manifolds. This
justifies such a parameterisation of the forced centre manifold, which at first
sight may seem unnecessarily complicated.

It turns out that we can_write the solution for C for the example of
Section 2 in the form C = ~Cy where both C and y are 2 x 2 matrices,
with C = C{s) and y = y(s, T) . We find that

V • <108)
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and that y is in fact some function of <f> = T - l/(2s2). Imposing the initial
condition (95) on C fixes the functional dependence of y on its argument,
and gives

[f l\ (109)
Therefore

Hence (29). If (80) is not satisfied then the evolution of the parameters s
which define M will depend not only on the present value of the forcing, but
also on previous values.

6. Application to the Kuramoto-Sivashinsky equation

Here we consider the forced Kuramoto-Sivashinsky equation,
ut + uxx + aUxxxx + uux = f(x> 0 for x e (0, re), (HI)

with boundary conditions that u = 0 at x = 0 and at x = n ; see [1, 4, 5, 11],
This equation is used to model laminar flame fronts, the solidification fronts
of dendrites in dilute binary alloys, the instabilities between viscous fluids,
and the evolution of the concentrations of reacting chemical species. We use
the results described in the previous section to find the centre manifold of
the forced system (111) near the first pitchfork bifurcation (of the unforced
system) at a = 1.

6.1 The unforced centre manifold
Consider the evolution equation (111) when f(x, t) = 0, that is, when

there is no forcing. The equation is of the form (58), with

d2 d* i r / , du dAu

where
Q = 1 - e .

Note that formally we adjoin the equation e = 0 to (111) and then consider
that the parameter e is really a variable on the same footing as the true
variable u, so that the product ed^u/dx* is indeed nonlinear in the variable
(e , u). This is the same standard trick used to analyse bifurcations [2] that
we used in Section 3.1. The linear operator £ has a single zero eigenvalue,
corresponding to the eigenmode u = sinx, and therefore there is a single
amplitude, s(t). For convenience we define s to be the component of sinx
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in the Fourier series for u. We find that for small e the centre manifold is
given by

u ~ ssinx - (^ + j^e\ s2sin2x + y ^ ^ s i n 3 x + 0( |(e, s)|4), (113)

on which the system evolves according to

±3 ,s)\4). (114)

The pitchfork bifurcation when e = 0 can be clearly seen in this Landau
equation.

6.2 Constant forcing
Applying the analysis of the previous section we find that the first few

modifications to the centre manifold due to the forcing f(x) are

Vi0\f)= (sinx,f), (115)

V{1\f) = (s/2)(sin2x,W{0)(f)), (116)

{0\ (117)

e-f1¥°\f) (118)

- (s/2) sinx (sin 2.x, W(0)(/)) - (s/12) sin 2x(sinx, f),

where (a(x), b(x)) denotes the inner product

a(x)b(x)dx. (119)

To find "W we need to invert the operator t . In choosing an inverse we
select a parameterisation for the centre manifold, At. For example we choose
the parameter, 5, to remain as the component of sin* in the solution, u,
and so we choose £~l such that

C{C~l(a(x))) = a{x)-(sinx,a(x))smx and (sinx, C~\a(x))) = 0.
(120)

To leading order (as in general) the component of the forcing f{x) in
the range of the linear operator C acts to shift the position of the centre
manifold of the system (111), while the component of f{x) in the kernel of
t modifies the evolution on M . The power of our analysis, however, is that
it gives higher-order corrections to the model forcing of the low-dimensional
approximation (114). For example, the evolution of s is governed by

s = es-53/48+(sinx, f)+(s/2)(sin2x, Wm(f))+O(\(e , s)\4, \(e , s)\2\f\),

(121)
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FIGURE 4(a). The solid line is the position of the equilibria of (123) for a0 > 0 and a, = 0
and shows how the pitchfork bifurcation which occurs in the unforced Kuramoto-Sivashinsky
equation, dashed line, is broken by the forcing.

which can be written as

i = a0 + (e + ajl) s - s3/48 + O(\(e , s)\4, |(e , s)\2|/l), (122)

where aQ = (sinx,f) and a, = (sin2x, 1^(0)(/)). If a0 ^ 0 then the
pitchfork bifurcation is broken as shown in Figure 4(a). This is easily seen
by inspection of (111): if we ignore the nonlinear term and balance ut with
/ , then the evolution of the sin* component of u is subject to a constant
forcing which is due to the sinx component of / . Suppose instead that
aQ = 0, that is, the forcing has no component like sin*, then we cannot
easily determine the effect of the forcing on solutions of (111) by simple
inspection. However, the evolution equation (122) for 5 derived from the
centre-manifold analysis tells us that the pitchfork bifurcation remains, but
occurs when e = - a , / 2 as shown in Figure 4(b).

6.3 Time-dependent forcing
When / is time-dependent, we pose that

W(f(x,t))= l C{s,x)f{x,t-x)dx,
Jo

(123)

and since W{0) = O(s°), then

W{0\f(x,t))= [°° Cm{x)f{x,t-x)dx. (124)
Jo
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FIGURE 4(b). The solid line is the position of the equilibria of (123) for a0 = 0 and a, > 0
and shows that the pitchfork bifurcation which occurs in the unforced Kuramoto-Sivashinsky
equation, dashed line, may occur at a different value of the critical parameter under forcing.

, W{2), ...) the choice of pa-Note that in determining W{0) (but not
rameterisation for M is irrelevant.

The operator C^ satisfies the initial condition

C{O)(O)f(x ,t-x) = f{x,t-x)- sin x( sin x, f(x, t -

and the governing equation

dC(0)

(125)

(126)

Formally then, the solution for W(0) is

CzeCz{f(x,t-x)-(sinx,f(x,t-T))sinx}dx, (127)

which is equivalent to the expression

( :,t-x)dx\ . (128)

This expression illustrates more concretely the comments made generally af-
ter (100). Firstly, to leading order there is no contribution to the position
of M from the sin* component of / . Secondly, the memory of previous
values of the forcing decays exponentially on time-scales which are precisely
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those of the decay of the damped modes (and which are different for the
different components of f). The leading contribution to the evolution of
s due to the time-dependent forcing f{x, t) is, as when there is constant
forcing #(0)(/) = (sin*, f). The subsequent corrections #(1), #(2), ... will
depend on the choice of inverse for L , that is, on the choice of parameter-
isation for M . In particular, if we choose s to be the sin* component of
u, then M{f) involves not only the present value of / , but also previous
values.

7. Conclusion

We have extended the centre-manifold formalism to dynamical systems
which are subject to some forcing, and we have described a way to calculate
both the position of the forced centre manifold, M , and the evolution thereon
for such systems. In this way we can capture all the interesting long-term be-
haviour of a (suitable) forced high-dimensional system in a low-dimensional
model.

The need to incorporate correctly the forcing of the full system into the
centre-manifold model is well illustrated by (our modification of) Lorenz' 5-
mode atmospheric model. The balancing of the initial data which is necessary
in numerical weather prediction to remove unphysical gravity waves can only
be done correctly in this model if proper account is taken of the effects of the
forcing on the centre manifold (Figure 3). A second issue is that the initial
conditions of the full system (which do not in general lie in M) must be
projected appropriately onto the centre manifold [13]. This projection must
be along the isochronic manifolds.

We have only considered systems for which G(1) = 0, since this is often
true. If not, then the algebra becomes more complicated, but the same general
strategy for finding the forced centre manifold applies. In fact, our analysis
could be extended to calculate more general invariant manifolds [14] under
forcing, not just centre manifolds.

When a dynamical system in standard form is analysed as in Section 3,
the same parameters (namely the amplitudes of the marginal modes) are
necessarily used to describe both the unforced and forced centre manifolds
(Mo and M respectively). Clearly, this is desirable if these amplitudes have
some physical significance, for then the centre-manifold model describes the
evolution of physical quantities, and the position of M gives the stable modes
as functions of the same physical quantities. For systems in general form, as
in Section 5, we may similarly choose the parameters, s, to be the amplitudes
of the marginal modes. In this case, however, we can instead choose the
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parameters for M to be different from those for Mo. A useful alternative
choice for s is that which identifies points on Mo and M which lie on the
same isochronic manifolds (Section 5.1.3 and [13]). Although this second
choice for s is more complicated than the first, it has the nice property that
the evolution of such s under time-dependent forcing depends only on the
current value of the forcing, and not on previous values. Of course, if the
original parameters have some physical significance then we lose much in
dealing with this less physically-meaningful second choice of parameters.

When the forcing is time-dependent, the long-term evolution of solutions
takes place on some time-dependent manifold. In principle this manifold
can be found, and we have written down the equations to be solved for it.
The practicalities of finding M(t) are rather difficult (Sections 3.2 and 5.2),
although approximate solutions may be found as power series in the ampli-
tudes, as for the case of steady forcing. Indeed, we have found and inter-
preted the leading-order term in this power series for M(t) for the example
of the forced Kuramoto-Sivashinsky equation in Section 6. This example
illustrates how the position of M(t) "remembers" the previous history of the
forcing, ¥(t - r), with a weight which decays in time like the most slowly
decaying transient mode.
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