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ABSTRACT

We construct analogues of Rankin—Selberg integrals for Speh representations of the
general linear group over a p-adic field. The integrals are in terms of the (extended)
Shalika model and are expected to be the local counterparts of (suitably regularized)
global integrals involving square-integrable automorphic forms and Eisenstein series on
the general linear group over a global field. We relate the local integrals to the classical
ones studied by Jacquet, Piatetski-Shapiro and Shalika. We also introduce a unitary
structure for Speh representation on the Shalika model, as well as various other models
including Zelevinsky’s degenerate Whittaker model.
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1. Introduction

The theory of Rankin—Selberg integrals for GL,, x GL,, studied by Jacquet, Piatetski-Shapiro
and Shalika in a series of papers starting in the late 1970s (notably [JPSS83]), is a basic tool
in the theory of automorphic forms with an abundance of applications. The theory is based on
global zeta integrals (which involve Eisenstein series in the case n’ = n) that unfold to adelic
integrals of Whittaker—Fourier coefficients of cuspidal representations. By local multiplicity one,
these integrals factorize into a product of local zeta integrals pertaining to generic representations
and their Whittaker models.

The purpose of this paper is to study a modification of the local Rankin—Selberg integrals
in the equal-rank case for a class of representations Sp(m, m) where 7 is an irreducible generic
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representation of GL,, over a p-adic field and m > 1 is an integer. If 7 is unitarizable (and generic),
Sp(m,m) is the Langlands quotient of the parabolic induction of 7|det|(™~1/2 @ r|det|(™—3)/2 @
= -®7T|det](1*m)/2. In particular, if 7 is discrete series, Sp(m, m) is the usual ‘Speh representation’.
These representations (of GL,,) are not generic if m > 1 (i.e. they do not admit a Whittaker
model). Instead, the integrals involve a different model which for simplicity we will call a
Shalika model. (We caution, however, that it does not exactly coincide with the standard notion
of the Shalika model in the literature.) It is known that any Sp(w,m) admits a unique Shalika
model, a fact that reflects the ‘smallness’ of Sp(m, m). Structurally, the new integrals look very
much like the classical ones and in fact they can be explicitly related. In particular, the unramified
computation reduces to that of the classical Rankin—Selberg integrals [JS81] (which in turn uses
Cauchy’s identity and Shintani’s formula for the unramified Whittaker function of GL,, [Shi76]).

Just as the Whittaker model gives rise to the so-called Kirillov model [GK75] (by restriction
to the mirabolic subgroup, namely, the stabilizer of a vector in GL,, in its standard n-dimensional
representation) the Shalika model gives rise to a closely related object which we call the
Kirillov—Shalika model. The role of the mirabolic subgroup is now played by the joint stabilizer
of m linearly independent vectors in GL;,,. The argument of Gelfand and Kazhdan shows
that the Kirillov—Shalika model contains all functions that are compactly supported modulo
the equivariance subgroup.

There are, however, some differences between the classical theory and its suggested analogue.
First, in the unramified case, we are unaware of a simple closed formula for the spherical function
in the Shalika model, except if n < 2 or if n = 3 and m = 2. A related, equally difficult, problem
is the asymptotic behavior of a function in the Shalika model. Apart from the above-mentioned
cases, both problems go beyond the ‘comfort zone’ of spherical varieties, for which the works of
Sakellaridis [Sak13] and Sakellaridis and Venkatesh [SV17] provide a conceptual framework and
satisfactory answers to the questions above. Moreover, at this stage it is not clear whether there
is an analogue of the Bernstein—Zelevinsky theory of derivatives [BZ76, BZ77] in the case at
hand. In particular, we do not know whether the restriction of Sp(m, m) to a parabolic subgroup
of type ((n — 1)m,m) is of finite length.

Another aspect of the paper is to provide an explicit, manifestly positive, unitary structure
for the Speh representation in its Shalika model. (By this we mean that the positive-definiteness
is ‘clear and obvious’ from the definition.) Once again, this is modeled on the case of generic
unitarizable representations, in which Bernstein gives a unitary structure for their Whittaker
models by taking the L2-inner product of Whittaker functions restricted to the mirabolic
subgroup [Ber84]. For m > 1 we use instead the joint stabilizer of m vectors, as before.

Along with the above-mentioned Shalika model, the representations Sp(w, m) admit various
other models, for instance the degenerate Whittaker model considered by Zelevinsky (for any
irreducible representation) in [Zel80]. We can think of this as a sequence of models starting from
the Zelevinsky model and ending with the Shalika model. They all involve a character on a
unipotent subgroup and are covered by the general construction of Maeglin and Waldspurger
[MW8T7]. The unipotent subgroups in the sequence are decreasing. One can write down explicit
isomorphisms (transition maps) between these models. This idea has been used by many authors,
most recently and systematically by Gomez, Gourevitch and Sahi [GGS16, GGS17]. It also
played a role in the recent work of Cai, Friedberg and Kaplan on new doubling constructions of
L-functions [CFGK19, CFK18]. We write an inner product for each of these models and show
that the transition maps are unitary.

As far as we know, this is the first time a purely local, manifestly positive hermitian form
for a general Speh representation is explicitly given. Of course, the intertwining operator on
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the standard module whose image is the Speh representation induces its unitary structure — a
fact that is true in general for any unitarizable representation on a reductive group (cf. [KZ77,
§4]). (In the case at hand we will explicitly relate this unitary structure to that on the Shalika
model.) However, the semidefiniteness of the intertwining operator is far from obvious — in fact it
is equivalent to unitarizability, which is known to be a difficult problem in general, as is evident
from the work of Vogan and many others. Another realization of the inner product is obtained
by using global theory to embed Speh representations as local constituents of automorphic forms
in the discrete spectrum of GL,,, over the adeles [Spe83]. Finally, in the m = 2 case one can also
realize a Speh representation in the discrete spectrum of L?(H\GLs,) where H is the symplectic
group of rank n [Smil8, LO19]. However, there is no such analogue for m > 2.

In principle, the new local integrals are the local counterpart of certain global integrals, just
as in the classical case. However, in addition to Eisenstein series, these global integrals involve
automorphic forms in the discrete spectrum, rather than cusp forms, and they unfortunately do
not converge (for any value of s). It should be possible (for instance by using the recent work
of Zydor [Zyd19]) to carry out a regularization procedure to make sense of these integrals and
to justify the unfolding procedure. However, we will not discuss this aspect in the paper. Nor
we will discuss the archimedean case, for which we expect many of our results to hold without
change.

The main new results of this paper are in §§4 and 5. The unitary structure for Speh
representations (and more generally, Sp(m, m) for unitarizable generic ), on their various models,
is given in Theorem 4.3. The new zeta integrals are defined in §5. The convergence, unramified
computation and local functional equations are stated in Theorem 5.1.

We now give some more details about the contents of the paper. In §2 we first introduce
some notation and recall Zelevinsky’s classification of irreducible representations of the general
linear group over a local non-archimedean field F. We then introduce the class of m-
homogeneous representations, which includes the usual Speh representations and which is the
main focus of the paper. In terms of Zelevinsky’s classification, they simply correspond to
multisegments consisting of segments of length m, where m > 1 is a fixed integer parameter.
The case m = 1 exactly corresponds to generic representations (i.e. the classical theory). In
§3 we introduce the models pertaining to m-homogeneous representations, following Moeeglin—
Waldspurger. (In order to use their results, we assume from § 3 onward that F is of characteristic
0. As was pointed out to us by Dmitry Gourevitch, this assumption can be lifted. Details
will appear elsewhere.) We also introduce the transition maps between the models. They are
given by integrals which entail no convergence issues. Finally, we introduce the Kirillov—Shalika
model which is the analogue of the classical Kirillov model for generic representations. In §4
we introduce a family of bilinear forms on a pair of models of m-homogeneous representations.
In the case where the two representations are in duality, these bilinear forms specialize to an
invariant pairing, at least under some restrictions. In the unitarizable case this gives rise to
a manifestly positive invariant unitary structure. The invariance is proved by induction on m
using Bernstein’s theorem on invariant distributions with respect to the mirabolic subgroup.
In §5 we define the local Rankin—Selberg integrals for m-homogeneous representations using
their Shalika models. Applying the transition maps, we can express these integrals in terms
of the Zelevinsky model. Hence, we get their rationality in ¢°, the unramified computation and
functional equations. In § 6 we obtain more information about the poles of the zeta functions and
relate them to the above-mentioned bilinear forms and, in particular, to the invariant pairing. In
§ 7 we go back to the Kirillov—Shalika model and analyze in detail the case of Speh representations
of GL4 pertaining to supercuspidal representations of GLs. We study the asymptotic behavior
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of a function in the Kirillov—Shalika model. At this stage, it is hard to tell whether the result
is representative of the general case or merely a low-rank fluke. In §8 we write an informal
global expression, modeled after the classical Rankin—Selberg integrals, whose regularization is
expected to unfold to the local integrals studied in the paper. The regularization is necessary
as the integral does not converge. (It would also eliminate extraneous terms in the unfolding
procedure.) However, we do not discuss the regularization procedure and only give a purely
heuristic argument. Finally, in Appendix A we relate the pairing of §4 to that induced by the
intertwining operator on the standard module.

2. Preliminaries

2.1 Notation
Throughout the paper, fix a non-archimedean local field F' with ring of integers O and absolute
value |-|. In principle it should be possible to deal with the archimedean case as well with proper
adjustments, but we do not consider this case here.

From § 3 onward, F' is assumed to be of characteristic 0.

If H is an algebraic group over F', we often also use H to denote H(F).

We will consider complex, smooth representations of finite length of the groups GL, (F),
n > 0. We denote the set of irreducible representations of GL,,(F") (up to equivalence) by Irr GL,
and set Irr = J,, Irr GL,,. We write Irr GLg = {1}. (In contrast, the one-dimensional trivial
character of GL; will be denoted by 1p«.) The subset of supercuspidal (respectively, square-
integrable, essentially square-integrable, tempered, generic) representations will be denoted by
Irreusp (respectively, Irrsgr, IrTesqr, ItTemp, IrTgen ). Thus,

Irreysp C Irrggr C InTegqr and Irregqr, IrTgmp C IrTgen.

By convention 1 € Irryymp but 1 ¢ Irregq:-

Let 7 be a representation of GL, (F'). We denote by 7" the contragredient of 7w and by soc(7)
the socle of 7 (the maximal semisimple subrepresentation of 7). If 7 is non-zero, then we write
degm = n, the degree of 7. For any character w of F** (i.e. w € Irr GL1) we denote by mw the
representation obtained from 7 by twisting by the character wodet. For instance, || is the twist
of m by |det|. We also write Jp(7) for the (normalized) Jacquet module of 7 with respect to a
parabolic subgroup P of GL,, defined over F. If 7 € Irr GL,,, then we write 7 < 7 if 7 occurs
as a subquotient of 7, that is, if 7 occurs in the Jordan—H&lder sequence of 7. If 7 occurs with
multiplicity one in the Jordan-Hélder sequence of 7, then we write 7 <unq7.

If my,...,m; are representations of GLy, (F'),...,GLy, (F') respectively, then we denote the
representation parabolically induced from 71 ® - -+ ® 7, (normalized induction), with respect to
the standard parabolic subgroup of block upper triangular matrices, by 7 X - -+ X m; and refer
to it as the product representation. We also use the notation Ind% and ind% to denote induction
and induction with compact support (both normalized) from a subgroup H of G.

For any 7 € Irtegqr, let €(7) be the unique real number s such that the twisted representation
7|-|7% is unitarizable (i.e. has a unitary central character). Note that e(7Y) = —e(7). Any 7 €
Irrgen can be written uniquely (up to permutation) as @ = 71 X --- X 7, where 7; are essentially
square-integrable. Let e(m) = min e(7;). (For consistency we write (1) = 0.) Then e(m)+e(r") <
0 with equality if and only if 7 is essentially tempered. Moreover, 7 is tempered if and only if
e(m) = e(n") = 0. More generally, we will say that 7 is ‘approximately tempered’ (AT) if e(r) +
e(rY) + 1 > 0. Equivalently, e(r;) — e(7;) < 1 for all 4,j. It is known that every unitarizable
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7 € Irrgen is (AT). (This follows from the classification of the unitary dual of GL, (F') by Tadi¢
[Tad86].) We denote by Irr(47) the set of (AT) representations.

For any set A we denote by M(A) the free commutative monoid generated by A, considered
as an ordered monoid. Thus, an element of M(A) (a multiset of A) is a finite (possibly empty)
formal sum of element of A.

2.2 Zelevinsky classification
We recall the well-known results and terminology of [Zel80].

A segment A (of length [ > 0 and center p € Irre,sp) is a non-empty finite subset of Irreygp
of the form

Ag) = {p|"(1_l)/27p|'|(3_l)/2a s ap||(

We define deg A = [ deg p and write e(A) = p||!~1/2 € Trreys, (the endpoint of A),

l—l)/Q}.

o(A) = pH(l—l)/2 + p‘.‘(S—l)/Q I pH(l—l)/2 € M(ItTeusp)

and AV = Agv). For compatibility we also write AE,O) = (). Denote by SEG the set of all segments.
We extend deg additively to a function M(SEG) — Zy. Similarly, we extend e and ¢ additively
to functions M(SEG) — M(Irreusp)-

For any A = A,(Dl) € SEG, let
Z(A) — SOC(p|'|(1_l)/2 X p|.|(3_l)/2 X +o0 X p|.|(l_1)/2) c IHGLdegA .

(For compatibility we also set Z(#) = 1.) Then Z(A)V = Z(AVY). Given Ay, Ay € SEG, we
write Ag < Ay if A; = Agf) with pol-|(1712)/24+ = 51| 0=1)/2 for some o € Zwq such that
lo — 11 < a <. If either Ay < Ay or A1 < Ay, then we say that Ay and As are linked. The
induced representation Z(A;) x Z(Az) is reducible if and only if A; and Ay are linked.

The well-known classification result of Zelevinsky [Zel80, Theorem 6.5] extends the map
A — Z(A) to a degree-preserving bijection

m+— Z(m)

between M(SEG) and Irr. If m = Ay +--- + Ay and A; A A; for any i < j (which can always
be arranged), then Z(m) = soc(Z(A1) x -+ x Z(Ag)). An element of M(SEQG) is called a
multisegment. We have Z(m)Y = Z(m"), where we extend ¥ from SEG to M(SEQG) additively.
For any my, my € M(SEG) we have Z(my +my) <yngZ(my) X Z(my) [LM16, Proposition 3.5]. In
particular, if Z(m;) x Z(mg) is irreducible, then it is equal to Z(m; + my).

We note the following fact.

If every segment that occurs in m; is unlinked with every segment that occurs in mo,
then Z(my) x Z(my) is irreducible.

(1)

By identifying an irreducible supercuspidal representation with a singleton segment we view
M(Irreysp) as a submonoid of M(SEG). The map Z restricts to a bijection

M(Irteysp) — Irrgen. (2)

An element of M(Irreusp) is called a cuspidal datum. We write ¢(Z(m)) = ¢(m). The resulting
map
¢ : Irr > M(Irreygp)
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is the supercuspidal support (which of course can be defined without reference to the Zelevinsky
classification). The restriction of ¢ to Irrge, is the inverse of (2).

For any segment A = Ag) let A= = A/(Jl|_|})1 /» denote either the segment obtained by removing
the endpoint e(A) of A if [ > 1 or the empty set otherwise.

Now let 0 = Z(m), where m = Ay + -+ + Ag. Let
m- =A] +---+ A, (disregarding empty sets).

Define recursively m® = m and m®) = (m®*=Y)= k > 0, with m") = 0, | minimal. Let n; =
dege(m* 1) k=1,...,1,s0 that ny +---+n; = dego and let wy, = Z(e(m*~1)) € Irrgen GLj, .
Let P = P, = M, x U, = M x U be the standard parabolic subgroup of type (n,...,n1).
By [Zel80, §8.3] the Jordan-Hélder sequence of Jp(o) admits a unique generic irreducible
representation w of M and, moreover, w <ynqJ/p(c). Equivalently (by the uniqueness of the
Whittaker model), this means that

Homy,, (Jp(0),p) = Homy (o,vp) = Homg (o, Ind§; 1p) is one-dimensional, (3)

where N is the maximal nilpotent group of upper unitriangular matrices and ¥ p is a character
of N which is trivial on U and non-degenerate on Ny; = N N M. (This property determines P
uniquely up to association.) Moreover, w = w;® - - - ®wy (see, for example, [MS14, Lemma 9.17]).
(For an arbitrary P, Homy (o, 1p) is finite-dimensional.) We will call the image of o in Ind% ¥ p
the Zelevinsky model of o. In general, 0 € w; X - - - xwy. For example, if 0 = Z({1p~, ||} +{1r+}),
then | =2, wy = 1p«, w1 = Z({||} + {1p+}) and wo x wy is irreducible (and generic).

2.3 Ladder representations

A multisegment m is called a (strict) ladder if it can be written as m = Ay + - -+ + Ay where
Ajr1 < A;foralli=1,...,k— 1. The corresponding irreducible representation Z(m) is called a
ladder representation.

LEMMA 2.1 [LM16]. The following two statements hold.

(i) [LM16, Lemma 6.17] Let 7y, . .., be ladder representations. Then my x - - - Xy, is irreducible
if and only if m; x m; is irreducible for all i,j.!

(ii) [LM16, Lemma 6.21] Suppose that Z(m;) and Z(mgy) are two ladder representations and
that each segment of my also occurs in my. Then Z(my) x Z(my) is irreducible.

The Jacquet module of ladder representations was described in [KL12]. The following lemma
is an immediate consequence.

LEMMA 2.2 [KL12]. Let m = Z(m) be a ladder representation and P a maximal parabolic
subgroup. The following statements hold.

(i) Jp(m) is a direct sum of irreducible representations of the form T ® w where both T and w
are products of ladder representations.

(ii) fT®w < Jp(m) and w ¢ Irrgen, then there exists p € Irreysp such that p < ¢(w), p|-| < e(m)
but p £ e(m).

! Tn fact, this holds for any m1,..., 7 € Irr by using a result of Hernandez [Her10] and the quantum Schur-Weyl
duality [CP96].
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(ili) If T ® w < Jp(m) with w € Irrgen, then ¢(w) < e(m). Moreover, if p € Irreysp is such that
p < e(m) and p|-| < ¢(w), then p < ¢(w).

(iv) If T @ w < Jp(m) and p € Irreysp is such that p|-| € ¢(w), then p occurs in ¢(w) with
multiplicity at most one.

Strictly speaking, the results of [KL12] are stated in terms of the Langlands classification.
However, they are also valid in the form above (for the Zelevinsky classification) by either
repeating the arguments, or using the Zelevinsky involution.

2.4 m-homogeneous representations?

From now on let m,n > 1 be integers and G = GL,,,,. We say that o € Irr G is m-homogeneous
if o = Z(A1 4 -+ + Ay) where each A; is of length m. (If m = 1 this simply means that o is
generic.) We denote by Irry, -hmgns G the set of irreducible m-homogeneous representations of G.
For any 7 = Z({p1} + - + {px}) € Irrgen, define

Sp(m,m) = Z(Al™ —|—--~—|—A/(,Z"” ) € Inr.

p1

The following result is clear.

LEMMA 2.3. The map m +— Sp(m,m) defines a bijection between Irrgen, GL, and Irry, hmgns G-
We have Sp(m,m)¥ = Sp(r¥, m) for any 7 € IrTgep.

Remark 2.4. The notion of m-homogeneous representations is very close to the concept of
‘representations of type (n,m)’ introduced in [CFGK19] and studied further in [CFK18]. The
difference is that we only consider irreducible representations and emphasize the roles of the
Moeglin-Waldspurger models.

Remark 2.5. If m € Irrgqy GLy, then Sp(w,m) is known as a ‘Speh representation’. (Strictly
speaking, these representations were introduced by Speh in the archimedean case.)

Remark 2.6. In general, if 7 is unramified (and generic), then Sp(w,m) is not necessarily
unramified if m > 1. More precisely, if 7 = Z({p1} + --- + {px}) is unramified (so that p;
are unramified characters of F* and p; # p;|-| for all ¢,j), then Sp(w,m) is unramified if and

only if Agln), ce AE,T,:L) are mutually unlinked. For instance, this is the case if 7 is (AT).

Suppose that ¢ = Sp(m, m) with 7 € Irrgen GL,,. Then, in the notation of (2), P, = Py, n =
m

M x U is the standard parabolic subgroup of G of type (7, ...,n), consisting of the block upper

m

triangular matrices with blocks of size n x n. Thus, M ~ GL,, X --- x GL,,.
Just as in the case m = 1, there are simple building blocks for m-homogeneous representations.

PROPOSITION 2.7. Let 0 = Sp(m,m) € Irr G be m-homogeneous. Then there exist 71, ..., €
Irrgen such that the following statements hold.

(i) o := Sp(mi,m) is a ladder representation for all i.

(ii) Sp(m, 1) =Sp(mi,1) x --- x Sp(m, 1) for alll = 1,...,m. In particular, m = 71 X --- X m and
o =01 X - X0y

2 This notion should not be confused with Zelevinsky’s notion of homogenous representations [Zel80].
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Moreover, let Q be the maximal standard parabolic subgroup of type ((m — 1)n,n) and denote
by Jg(o). the direct summand of Jg(o) pertaining to the supercuspidal data d € M(Irreygp) in
the second (GL,,) factor. Then

JQ(0) emym-1/2 = Sp(m,m — || 72 @ 7|-|m=1/2,

Remark 2.8. For m = 1, m; is essentially a discrete series. This is not the case for m > 1 in
general.

Proof. Write m = Z(}_,c;{pi}) with p; € Irreysp and let [ > 1. We say that a subset J of I is an
[-chain if it can be written, necessarily uniquely, as J = {i1,...,4,} where forall j =1,...,r—1
we have p;; = p;; ., |-|* with a; € {1,...,1}. (For example, for a 1-chain, p;,, ..., p;, is a segment.)

Clearly, J is an I-chain if and only if Z(}_,, AE,ZJ)) is a ladder representation.
We say that two partitions of I are equivalent if one can be obtained from the other by
applying a permutation 7 of I such that p,;) = p; for all . It is easy to see that for any [ > 1

there exists a partition P! (I) of I consisting of I-chains, such that for any .J,.J’ € PW(I) at
least one of the following conditions holds:

(i) {pj:jedtcipj:jet}

(i) {pj i€t {pj:jeI}
(iii) for every j € J and j’ € J' the segments A,(Dlj) and Af,lj), are unlinked.
Moreover, P® (I) is unique up to equivalence. Indeed, P(l)(I ) can be defined inductively by
taking a maximal I-chain J of I (with respect to inclusion) together with the partition P4 (I\.J).
It follows from this description that if [ < m, then up to equivalence, P4 (J) = {J" € PUO(I) :
J' c J} for any J € PU™)(I) and, in particular, P (I) is a refinement of P (I).

For any J C I, let mj = Z(3_,c;{pj}) € Irtgen and o5 = Sp(m;,m). Then o is an (m-
homogeneous) ladder representation for any J € P(m)(I ). It follows from the defining property
of P™(I), (1) and Lemma 2.1 that X Jeptm (10 s irreducible, hence equals 0. Likewise,
for any [ < m, we have Sp(w,1) = X prepi ) Sp(my,1). Since we may assume that Sp(wy,[)
= X jiepy(nyrc g SP(T,1) for all J € PUM(T), we infer that

Sp(m, 1) = X Sp(my,l).
JeP(m)(I)

In particular, 7 = X jepm) ()T J-
By [KL12], we have

Sp(my,m — D72 @ 7y "2 g I m—tyny ) (0)

for all J € P(m)(I ) where ny = degm;. Therefore, by the geometric lemma of Bernstein and
Zelevinsky [BZ77],

< Jg(o).

On the other hand, suppose that 77, w; € Irr with 7y @ wy < Jp(oy), J € P(m)(I) and

Yo clws) =cm)][ VR (4)

JeP(m)(T)
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We claim that this is possible only if 7; = Sp(m;,m — 1)|-|7%/? and wy = m;|-|"=Y/2 for all .J.
We prove it by induction on degm using the geometric lemma. The base of the induction is
trivial. For the induction step, it is enough to prove that if J is a maximal m-chain, then
wy = my|-|m=1/2. We use Lemma 2.2. By part (ii), if J is a maximal m-chain, then w; is generic.
For otherwise, since ¢(wy) < ¢(m)|-|"™ /2, there would exist i € I such that p; & {p; : j € J} but
pi|-| € {pj : j € J} in contradiction to the maximality of J. On the other hand, by part (iv), if
pl-| & ¢(m)|-|t=1/2 then p can occur in ¢(wy) at most once for any J € P (I). It follows from
(4) that if p|-| € ¢(m)]-|™~V/2, then p < ¢(wy) if and only if p = p;|-|(™~1/2 for some j € J. By
part (iii), it now follows that if J is a maximal m-chain, then ¢(wy) = ZjeJ{Pj|‘|(m_1)/2} and
hence wy = my||™~1D/2 (since wy is generic) as required.

This concludes the proof of the proposition. O

Remark 2.9. It can be shown that up to permutation, oi,...,0: are the unique ladder
representations such that o = o1 X --- X 0y. We will not need to use this fact.

By Frobenius reciprocity and [LM16, Corollary 4.10], we have the following corollary.
COROLLARY 2.10. For any m € Irrgen GLj,,

Sp(m,m) = soc(Sp(m,m — 1)|-|[ 712 x x|-|m=D/2) oy Sp(mr,m — 1)]-| 712 x ] |(m= D72,

By induction on m, we get the following result.

COROLLARY 2.11. For any 7 € Irtgen GLy,, Sp(m,m) is a subrepresentation of

II:= 7TH(l—m)/? % 7T,.‘(?»—m)/Q N, 7T,.,(m—l)/?

Equivalently (by passing to the contragredient), Sp(m, m) is a quotient of

Il = || D72 ¢ || (73)/2 o ]| (B2/2,

Remark 2.12. If 7 is (AT), then Sp(m,m) is the Langlands quotient of II, In particular, in
this case Sp(m,m) is the image of the standard intertwining operator from I to II and
Sp(m,m) = soc(Il) <ynq IT. However, in general for m > 2 and 7 € Irrge, GL,, it is not true
that Sp(m,m) <unqIl. For instance, if 7 = |-| X |:|7! € Irrgen GLo, then Sp(m,3) occurs with
multiplicity two in the Jordan-Holder sequence of 7|-|~! x 7 x 7|-|. Note that in this case we
still have Sp(m, m) = soc(II) but we do not know whether this holds in general, that is, whether
soc(Il) is always irreducible.

3. The models

3.1 Definition of models
Throughout this section, fix 7 € Irrgen GLy, let 0 = Sp(r,m) € Irr G and let P = P, = Py, ,, =

m

e N _
M x U be the standard parabolic subgroup of G of type (n,...,n). Let U = 'U be the opposite
of U. Fix a non-trivial character ¢ of F. Let ¥ be the function on G given by

‘P(g)zl/}( > gz‘,i—&-l)‘

1<i<nm:nti
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We denote the restriction of ¥ to a subset A of G by W 4. Let N = N,,,, (respectively, N = ‘N) be
the group of upper (respectively, lower) unitriangular matrices in G. Then Wy is a (degenerate)
character on N that is trivial on U and non-degenerate on Njy; := N N M. Recall that by (3),
Homg(o, Ind$; ¥ y) is one-dimensional.

Denote by WY¥N (o) the image of o in Ind§ Wy, that is, the Zelevinsky model of o. By
Corollaries 2.10 and 2.11, for any Wz, € WY~ (o), we have

(\det|(1_")/2 ® |det‘(m_l)(n_l)/Q)WZe|GL(m_1)n QL. € W\IINH(GL“nfl)n X Gln) (Sp (1, m — 1) @ 7),

(ha)
—1/2¢ N @m
6P 5WZe‘M ew M(7T ), (5b)
where 7™ =7 ® --- ®@ 7, dp is the modulus character of P and §' = (5}3/% is the character of M

given by
&' (diag(g1, - -, gm)) = |det g1 V/2|det go| /2 - - |det g, | /2,

The model W¥N () is a particular case of more general models considered in [MW87] (for
any reductive group). Let us recall the setup. Let g = Mat,;,, nm be the Lie algebra of G over F.
For any cocharacter ¢ of the diagonal torus T, let g = @ jezg}o be the corresponding grading

g7 = {X €g:Ad(p(s))X = &/ X}

and let ggj = @k>jgf, J € Z, be the corresponding filtration. Let P, be the semistandard
parabolic subgroup such that Lie P, = ggo. Then P, = M, x U, where M, is the centralizer
of ¢, Lie M, = g§ and LieU, = g%,. Concretely, if p(s) = diag(sM ..., s¥n) where (\Y,...,
Ainn) € Z™" | then

PL’D:{QEGZQZ‘7]‘:0if}\Z‘<)\j},
M¢2{96G59i7]’:01f)\i#)\j},
Uap = {g eG: Gij = 6i,j if \; < )\]}
Consider the nilpotent nm x nm matrix Jp, , consisting of m lower triangular Jordan blocks of
size n x n each. We say that ¢ is of type (m,n) if Ad(¢(s))Jmn = 8 Jmn, or equivalently, if

N — )\fH = 1 for all 4 not dividing n. If ¢ is of type (m,n), then Wy, is a character of U,. By
[MWS87] (in particular, §I1.2) we obtain the following theorem.?

THEOREM 3.1 [MWR&T7]. Suppose that ¢ is of type (m,n). Then the space
Homy, (o, ‘IjUg,) = Homg (o, Indgw ‘I’Uw)
is one-dimensional.

In the setting of [MW87] the data pertaining to Theorem 3.1 is the pair (¢?, Jmn). (The
more general context of [MW87] applies to cocharacters which are not necessarily even. However,
we will not discuss them here.)

3 This is the only place in the paper where we use that F is of characteristic 0, but as mentioned in the introduction,
this assumption can be removed. (Note that the assumption on the residual characteristic in [MW87] was removed
in [Varl4].)
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We denote by W0 (o) the image of o in Indgp Uy, It consists of functions that are left
equivariant (with respect to some character) under the centralizer of ¥y, in P,.

Clearly, any ¢ of type (m,n) is determined by the m-tuple (A7, S, .. f ,Afln). We consider
(m — 1)n+ 1 cocharacters @, ..., P(m—_1), of T of type (m,n) such that A7, — )\izkﬂ) = max(0,

2
(m—1)n

corresponds to the SLo-triple pertaining to Jy,,.) For simplicity we write P; = P,,, M; = M,,,
Ui = Uy,. If i = nd + r where d = [i/n] and 0 < r < n, then U; consists of the matrices whose
n x n blocks A; . satisfy:

nk —1i), k=1,...,m — 1. (Up to a cocharacter of the center of G, the cocharacter ¢

(i) Aj; is upper unitriangular for all j =1,...,m;
(i) Aj is strictly upper triangular if j # k and j,k < d + 1;
(iii) for any k < d+2, (Agy2k)ap =0ifb—a<n—1rand (Argi2)ap =0ifa—b>=n—r;
(iv) Ajp,=0if j>Fkand j > d+2.
(There is no constraint on A, if j <k and d+2 < k.)
In particular, Uy = N while U,,_1), consists of the matrices whose difference from the

identity matrix is strictly upper triangular in each n x n block. Also, Uiy1 NN C U; N N and
UsNN C Uy NN for all 4.

n

For brevity we write P’ = P, _1y,, M' = M(y,_1yn, = GLp X -+ X GLy, U' = Ufyy_1y,,- In
analogy with the case m = 2 we will refer to W¥v' (o) as the Shalika model of o. We caution,
however, that in the literature, this terminology usually refers to the image of 7 € Irr GLo,
(possibly generic) in Indg’LQ" g under a non-trivial intertwining operator, if it exists (in which
case it is unique up to a scalar [JR96)), where S is the Shalika group

S=1{(*,) (" ¥) g € L, X € Maty,,}

and 1)g is the character on S given by v (tr X). In the case at hand, any Wg, € WY¥v'(0)
automatically satisfies an equivariance property under the centralizer of Wy in P’ (which is
conjugate to S in the case m = 2), which justifies our terminology. In general, even for m = 2,
Homyy (1, Uyr) is infinite-dimensional for 7 € Irr G.

Letting G act on right on the vector space F™" of row vectors with standard basis ey, . .., €mn,
P’ is the stabilizer of the flag

(Span{enjfk : .7 = 17 cee, M, k= 07 v 7i - 1})i:0,...,n-
n

We denote by k : GL,, X - -+ X GL,, — M’ the isomorphism such that the ith copy of GL,,

acts on span{enj; 1 j =0,...,m — 1}.
If X is a matrix over F, then we write || X|| for the maximum of the absolute value of its
entries.

LEMMA 3.2. Suppose that W, € WYv’ (o). Then there exists C > 0 with the following property.
Suppose that g € G with Wgy(g) # 0. Write g = v/l'k where ' € U', ' = k(g1,...,9n) € M’ and
k € G(O). Then Hg;llgiH < C for alli < n.

Proof. Tt is enough to consider the case g = k(g1,...,9,) € M'. Assume that Wgy(g) # 0.
Fix 1 < ¢ < n. For any X € Maty, m(F), let Y € U’ be the matrix such that Yy nktiv1 =
Xjt1,k+1 for all 0 < j, k < m and all other non-diagonal entries of Y are zero. Then Wgy(gY) =
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Y(tr g; X gij_ll)WSh(g). It follows that there exists C7 > 0 depending only on Wgy, such that if
Wsn(g) # 0, then ¢(tr g; Xg;.'}) = ¥(trg;;,g:X) = 1 for all X € Maty,,(F) with || X| < Ci.
The lemma follows. O

3.2 Model transition part I

We denote by MY (respectively, P¥Y = M} x U;) the stabilizer of Uy, in M; (respectively, P;).
(Note that M; determines 4 so this notation is unambiguous.) We also write M"Y = M (‘fn 1) and
pY =p? = M"Y x U’. Note that P’V is unimodular. Explicitly, M’ is the image under x

(m—1)n N

of GL,, diagonally embedded in GL,, X - -- X GL,,. It consists of the matrices in G whose n x n
blocks are all scalar matrices. Let ¢ : GL,, — M'Y be the resulting identification.

In general, write ¢ = nd +r, 0 < r < n. Then the reductive part of Mi‘l’ is the image under ¢
of the subgroup

{diag(lutd-‘rQu s 7tm) e GLd+17td+27 ooy lm € F*}

The unipotent radical of Mi‘l’ consists of the matrices whose n xn blocks A; ;, satisfy the following
requirements.

(i) Aj; =1, for all j.
(i) If j # k, then A, = 0 unless k = d + 2 and j < k, in which case (Aj)qp = 0 unless
a — b =mn —r. Moreover, all the entries of A;; on the diagonal a — b = n — r coincide.

This group is trivial if ¢ is divisible by n, and is of dimension d + 1 otherwise.

LEMMA 3.3. Let 0 < i < (m — 1)n. Then the following statements hold.

(i) The commutator [U;, U;11] is contained in U;NU;41. Thus, U;-U, 41 is a subgroup of G which
contains U; and U,y as normal subgroups and the quotients U;U;11/U; ~ U;11/U; N U1
and U;U;11 /U1 ~ U; /U; N U4 are abelian. Moreover,

Uiy1 = (Mz N Ui+1) X (Ul N Ui+1) and U; = (Mi+1 N Ul) X (Ul N Ui+1). (6)

(ii) We have a short exact sequence

04)Mi\il NU; HUZ/Uz NUj+1 c4Z>PD(UH_1/U1 N Uz’+1) —0

M NU; —— PD(M; N Uiy 1)

where ¢; denotes the map u +— V([-,u]) and PD denotes the Pontryagin dual. Dually,

0——=Uit1/U; N Uis1 N PD(U;/)U;NUj1) — PD(MEIH NnU;)) —=0

M; NUj1 PD(Miy1 N U;)

where ¢ is defined by the same formula as ¢;.
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Proof. For any j, k, we have A\¥" — A" — (\F7* — A7) € {~1,0,1}. It follows that

gl cgfy c gl forall g (7)
Therefore, U; C P;11 and U;+1 C P;. Hence, U; and U;41 normalize each other, so that U; - U;41
is a subgroup of G that contains U; and U;y; as normal subgroups. The equalities (6) are now
clear since T' C M;, M;11. By (7), we have Lie M; 11 NU; = g% N gyt C gf". It follows that

M;+1 NU; is abelian since [g7*, g7*] C g%". Similarly, M; N U,44 is abelian. The rest of the lemma
follows easily from the fact that U;41 N M;I’ = 1. O

Remark 3.4. If i =nd+r, 0 < r <n, then U; ﬂMf’H consists of the upper unitriangular matrices
whose n x n blocks A; . satisfy the following requirements.

(i) Aj; =1y for all j.
(i) If j <k, then Ajj = 0 unless k = d + 2, in which case (A x)qp =0 unlessa—b=n—r—1
and all entries of A} along the diagonal a —b =n —r — 1 are identical.

This group is of dimension d + 1. (It coincides with the unipotent radical of ME’H unless ¢ + 1 is
divisible by n.)

In the rest of the section we endow various unipotent subgroups of G with Haar measures.
Thanks to the choice of basis ey, ..., e, the Lie algebra of any of these unipotent groups has a
natural basis as a vector space over F'. Our convention will be to take the measure corresponding
to the product measure where the Haar measure on F' is the one which is self-dual with respect
to .

The following is a special case of [GGS16] (see also [GGS17]). For future reference and in
order to be self-contained we provide the (elementary) proof. We refer the reader to [GGS16,
GGS17] for a more thorough discussion about interplay between models.

PROPOSITION 3.5. For any i =0,...,(m — 1)n — 1, the map
W, Wi )W, (o) du = / Wi )W, (o) du!
UiﬂUiJrl\UiJrl UiﬂU/\Ui+1ﬂU’
:/ Wi (u'-) du’ (8)
UiﬂN\UiHﬂ]\_f
defines an isomorphism T; = 7? : WY0i (0) - WPVt (¢). Its inverse is given by
Wi+1 —> Wi_;_l(U')\I/Ui (u)_l du. (9)
UimPL"I;,l\Ui

In both cases the integrands are compactly supported.

Proof. For any W; € Indgi Uy, u € U; and v € Ujy1, we have W;(v'u) = ¢;(u) (v ) Uy, (u) Wi (u).
It follows from Lemma 3.3 and the smoothness of W; that W;|y, ., is compactly supported modulo
U; NU;31 and that, for any u € U;,

Uy, (u) ;Wi (u) is the Fourier transform of the function Wi\Il(}il+1 U1 /U0 at ¢;(u). (10)

Uit1

Recall that any W;41 € Wit (o) is left-Mi‘il—equivariant under a character and, in
particular, is left-invariant under any unipotent subgroup of M;Iil. Also, U; N P;Kl = (U; N
Mi‘lil) X (Ui N Uj+1). By similar reasoning as before, W;1|y, is compactly supported modulo
U; N P ,. By Lemma 3.3 and Fourier inversion, the map (9) defines a G-equivariant left inverse
to 7;. Since the spaces are irreducible, it is also a right inverse. |
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Remark 3.6. Suppose that o is unramified, ¢ has conductor @ and W; € W¥0i(o) is the
unramified vector such that W;(e) = 1. Then T;W;(e) = 1. This follows immediately from
the proof of Proposition 3.5.

We write
T=T"=Tmam10--0To: W¥(0) > W (o).
This operator was considered in [CFK18, §2.4].
3.3 Model transition part II
We now introduce a subgroup of G that will play an important role in what follows. Let D = D,;, ,,
be the joint stabilizer of the vectors ej,, j = 1,...,m, in G and let Np = NN D D Ny. Note

that U’ C D. (In the case m = 1, D is the standard mirabolic subgroup.)
The following lemma is straightforward.

LEmMMA 3.7. We have M;11 NU; = (M;11 NU; N D) x (U; N ME’H). Hence, the restriction of ¢;
to DNU;/DNU; NUjy1 ~ DN M1 NU; is an isomorphism. Dually, ¢, defines an isomorphism
between U;+1/U; N Uiy ~ M; N U;y1 and the Pontryagin dual of D N U;/D NU; N Ujq =~
DN M NU; = U; N My JU; N M2

Hence, we can rewrite (9) as

Wip1 — Wi_s_l(u-)\IfUi(u)*l du = / Wi+1(u-)\I/Ui (u)*l du.
DﬁUiﬂUhLl\DﬂUi NDﬁUHl\NDﬂUi

LEMMA 3.8. Any Wy, € Ind]C{} Uy is compactly supported on D N N. Hence,
TWe = / Wae(d YOy d = [ Wyl )du' = | Wie(u) dud
U'NN\U’ U'NN U'nu

where the integrand is compactly supported.

Proof. Let g = ank € G with a = diag(ai,...,anm), n € N and k € G(O). It is well known and

nm

easy to prove that if g € N, then ||g|| < max;—1__mn IT;Z; a;]. On the other hand, it is also easy
to see that if g € D, then |aj,| < 1for j =1,...,m. Thus, if g € D and Wz.(g) # 0, then by the
support condition for Whittaker functions we get |a;| < C; for all i where C depends only on
Wze. By the above, if moreover g € N, then ||g|| is bounded in terms of Wy, as required. a

Recall that any W; € WY0i () is MY -equivariant with respect to some character x; of M;¥
(depending only on o). As in [CFGK19, CFK18] we can easily explicate this character.

LEMMA 3.9 (Cf. [CFGK19, Proposition 24], [CFK18, §2.6]). For any i = nd +r, 0 < r < n,
l € GLgy1 and tgys, ...ty € F*, we have

xi(e(diag(l,tgia, .- tm)))

= wrltara .. tmdet)|det 1|~V E)=d=D g, | G)E@D T | -Dilm+1)/2-3)
j=d+2

where w, is the central character of 7. In particular, for any Ws, € W¥v (o),

Wsn(t(l)g) = wr(det)Wsn(g) VI e GL,,, g € G.
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Proof. 1t is enough to evaluate x; on an element ¢(t) where ¢t = diag(t1,...,y) is in the diagonal
torus of GL,,. Note that +(¢) lies in the center Zy; of M. Writing W; = meU— Wze(u-) du with

Wze € WYN () (the integrand is compactly supported by Lemma 3.8), the required relation
follows from the equality

5;/25/—1“(”) _ H |tj‘n(n71)((m+1)/27j)

j=1
d+1 ] m . ]
B <H |tj’(2)+(2)(md1)>( 11 ’tj|n(n_1>((m+l)/2_])>‘td+2|(2)(d“)5zMx(UmN)(L(t))_l-
j=1 j=d+2
O
(=ym-t
Remark 3.10. Let wy,, = | . € SL,, (alternating signs on the non-principal diagonal)
1
and Wy, , = t(Wy,). By Lemma 3.9, we have
Wen(@m,ng) = Wsn(g)
for any Wgy, € WY’ (o).
LEMMA 3.11. The inverse of T is given by
Wsp — WSh(u-)\I’N(u)_l du (11)

NAU\Np

where the integrand is compactly supported.

Proof. From Proposition 3.5 we only need to check that the integrand is compactly supported.
Assume that Wgy, = TWgz.. By Remark 3.10, the integral equals

/ W (W )V n (u) ™t du = / < Woe(Vibm nu-) W (v) 10 (u) 7t dv> du
NNU'\Np UnU\Up Unu

where Up = U N D. The latter double integral is

/ ( Wie(Vihmn )Wy (v) " 0 N (0, @ ) ™ dv) di.
Unu\Up \JU'nT ’

By Lemma 3.8 the integrand is compactly supported in v, . Thus, the integrand on the right-
hand side of (11) is compactly supported. O

3.4 Kirillov—Shalika model
The following lemma is an analogue of [GK75, Proposition 2].

LEMMA 3.12. Any non-zero D-invariant subspace of Ind(l} Wy contains indg, Wy, In particular,
indf} Wy is irreducible.

The proof of [GKT75, pp. 110-111] (for the case m = 1) applies verbatim. One only needs to
observe that the unipotent radical V of D is abelian, the stabilizer of the character ¥y under
the action of D modulo V is isomorphic to D,y ,—1 and the map p = ¥y (p~!-p) defines an open
map from D to the Pontryagin dual of V.

Let @ be the stabilizer of span{e,; : i = 1,...,m} in G — a maximal parabolic subgroup of
G of type ((n — 1)m,m). Thus, Q@ = D x M"Y and gy = 1.
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COROLLARY 3.13. For any m-homogeneous o € Irr GG, the image of the restriction map
Wen — WSh’Da W\PU' (O‘) — IndlU)/ Wy (12)

contains indg, Uy, Equivalently, by Lemmas 2.3 and 3.9, if o = Sp(w, m), then the image K¥ (o)
of the restriction map
Wsn = Wenlg, WYV (0) — Indfiw wy

contains indg,q, wY where wY is the character of P’V such that wY |;» = Wy and wY ot = wy odet.
We will call £¥ (o) the Kirillov-Shalika model of o.

LEMMA 3.14. For any i =0,...,(m — 1)n — 1, the map

Ti - Wi — Wi(d )Wy, () du' =

/ Wi(u'-) du'
U;NU'\U;41NU’ UiﬂN\Ui+1ﬂN

is an isomorphism between IndBmUi Wy, and IndgmUi +1 YUy, whose inverse is given by

+17

Wip1 — WZ‘_:,_l(u-)\I/Ui(u)fl du = / Wi-{—l(u‘)\l/Ui (u)*l du.
DﬁUiﬂU¢+1\DﬂUi NDﬁUiJrl\NDﬂUZ‘

Moreover,
(i 1D _ . D
%(mdDﬂUi Vy,) = mdDmUM Vi,

Finally, the D-module indPy; Wy, is irreducible.
Proof. Let W; € IndBmUi Uy,. As in the proof of Proposition 3.5, by Lemma 3.7 the function
ueDNU; N Ui_:,_l\D NU; — \IlUl- (u)_l’EWZ(u)

is the Fourier transform of the function WZ\IIELI lU,nuN\ Ui nor at ci(u). The first claim follows
by Fourier inversion.

Suppose that W; € indBmUi Wy,. From the definition (and since U’ C D), T;W; is supported
on (DNU;-U;11)Q2, where © is a compact subset of D. Fix g € . It follows from the above that
the function 7~;Wl(g) is compactly supported modulo D N U; N U;41. Hence, 7~;WZ is compactly
supported modulo D NU;41.

The last part now follows from the fact that indg, Wy is irreducible. O

From Lemma 3.14, Proposition 3.5 and Corollary 3.13 we obtain the following result.

COROLLARY 3.15. For any m-homogeneous o € Irr G and for any i = 0,...,(m — 1)n, the image
of the restriction map

Wi = Wilp, W¥i(o) — Indg,p Yo, (13)
contains indgm p ¥Yu,.

Once again, in analogy with the case m = 1 (conjectured in [GK75], proved in [BZ76, BZ77])
it is natural to make the following conjecture.
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CONJECTURE 3.16. For any m-homogeneous o € Irr G, the restriction map (12) (or equivalently,
(13)) is injective.

We will prove a special case in Corollary 4.4 below.

We do not know whether, in general, the restriction of o to @ is of finite length. (See
Proposition 7.1 for a very special case.) Recall that in the case m = 1 this is known (for any
7w € Irr, not necessarily generic) using the theory of derivatives of Bernstein and Zelevinsky
[BZ76, BZ77]. It would be very interesting to have an analogous theory for m > 1.

4. Unitary structure

We take the unnormalized Tamagawa measure on GL, with respect to 1, that is, the Haar
measure associated to the standard gauge form (A, ;_; . dgi;)/(det g") on GL, and the self-dual
Haar measure on F' with respect to 1. Following our convention on Haar measures for unipotent
groups (see §3.2), we obtain a (right) Haar measure on the F-points of any algebraic group
whose reductive part is a product of general linear groups. This will cover all algebraic groups
considered here.

Throughout this section let 7,7’ € Irrge, GLy, and let o = Sp(w,m) and ¢’ = Sp(n’,m). We
will work with the models considered in the previous section.

1
For any 0 < i < (m — 1)n and s € C, we define a bilinear form on W¥0i (5) x wYui (') by

Bi(Wi, W, s) = / Wi(g)W!(g)ldet g|* dg
DNU;\D

(assuming convergence). In particular, for Wz, € W¥N (a), W), € W' (o),

Bo(Wie, Whe ) = / Woe(9)Whe(g)\det g|* dy, (14)
ND\D

and for Wg, € WY0' (0), W, € W0 ('),
Bsu(Wsnh, W, 8) := Bn—1)n(Wsn, Wy, s) = /U,\D Wsn(9) Wi (g)|det g|* dg.

It follows from Lemma 3.2 that |det| is bounded above on the support of Wgy|p. Hence,
if Bsp(Wsn, Wy, s) converges absolutely at sg € R, (15)
then it converges absolutely for any s with Re s > sg.

A similar statement holds for any B;, although we will not use it.

We also write B;(W;, W/!) = B(W;, W/,0) assuming the latter is well defined (either as a
convergent integral, or by analytic continuation), in which case it is D-invariant.

In general, we do not know whether B;(-,-) is always defined. (See §6 and in particular
Example 6.5 for further discussion.)

PROPOSITION 4.1. The integral defining B;(W;, W/, s) converges for Re s+ e(m) +e(n’) +1 > 0.
1
Moreover, for all 0 < i < (m — 1)n, W; € WY0i(0), W/ € w'; (¢'), we have

B (TXWi, TY W, s) = Bi(Wi, W/, s). (16)

1
Finally, there exist W; € WY¥Ui (o) and W] € w'u; (0') such that B;(W;, W/, s) =1 for all s € C.
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Remark 4.2. In Proposition 6.2 below we prove that B;(W;, W/,s) admits meromorphic
continuation in s to a rational function in ¢°.

Proof. First note that the last statement follows from Corollary 3.15.

Next, we show the convergence of the integral defining By. Upon twisting m and 7’ by
|| (ste(m)—e(m)/2 and |.|(ste(m)—e(™))/2 regpectively and using the inequality |zy| < (|z[2+|y?])/2,
we may assume without loss of generality that 7’ =7, Wy, = Wze and s = 0. Thus, we need to

show the convergence of
LR
Np\D

provided that e(m) > —%. In fact, we show a slightly stronger assertion, namely the convergence
of

/ / Wae(lg)2di® (ng)|det g|™ dg (17)
D\G JNp\D

for any 0 < ® € S(Maty, nm (F)) where n € Maty, ppm(F) is the matrix whose ith row is ey,
i =1,...,m. Note that the stabilizer of  under the right G-action on Mat,, ym(F) is D. Since
the modulus character of D is |det|™, (17) is formally well defined and can be rewritten as

| Watg)Petrg)ldet g™ dg
Np\G
:/ / yWZe(zg)P/ ®(nulg) du |det1|™5p (1)~  dl |det g|™ dg
P\G JN\P Np\N
:/ / Woe(lg) [ B(nulg) du |det1™5p(1) " di [det g™ dg.  (18)
P\G JNy\M Up\U

We may identify the vector space Maty, pm(F) with Mat,, ., (F™). Observe that, for any | =
diag(g1,...,9m) € M, g € G, we have

det |72 [ lgulg) du = By(engn.-.. g3 1) (19)
Up\U

where &, € S((F™)™) is the function

S (v1,...,vm) = | ®(Xg)dX, wvi,...,vm € F", 20
g

where the integral is taken over the n(”;)—dimensional affine space of upper triangular F™-valued
m X m-matrices whose diagonal entries are vy, ..., v,,. Thus, (18) is equal to

m
/ / |5;1/25’(Z)WZe(lg)|2<i>g(engl, s enlm) H |det gi|i dgy - - - dgp, |det g|™ dg
P\G J(N,\GL,)™ paley

where | = diag(g1,...,9m) € M. Thus, by (5b) the inner integral is a finite linear combination of
products of Rankin—Selberg integrals for 7 x 7 at 4, i = 1,..., m. The assumption that e(7) > —%
guarantees that these Rankin—Selberg integrals converge. Since the outer integral is a finite sum,
we obtain the convergence of (17).

—1
Now let 0 < i < (m—1)n, W; € W¥0i(0), W! € wru, (o). Recall that W;|y,,, (respectively,
7;¢I/Vi|UimD) is compactly supported modulo U; N U; 41 (respectively, U; N U;+1 N D).
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Moreover, by the unitarity of the Fourier transform and the argument of Proposition 3.5
(cf. (10)) we have

TEWi ()T W) du = / TEWi()TY W(u) du

(]
NDﬂUiJrl\NDﬁUi

- / W)W () du
Ui\U;Ui 41

\/;mUiJrl\DmUiUiJrl

Wi (uw)W/ (u) du (21)

/DﬂUi \DNU;U;+1

where the integrals are absolutely convergent. (We can also write the integrals as

Wi () W (1) dut = /U ey W) )

/UiﬂU'\UH_lﬂU’

It follows that if at least one of integrals
[ WP Wil o [ TP+ T dg
DNU;\D DNU;+1\D
converges, then so does the other and

Bz‘+1(7;¢Wz’, 7?¢71W{ ﬁwWi(Ug)ﬁAWi/(UQ) dudg

) / / U U
D UiUi+] \D D i+]\D iUi+]

- /DﬂUiUi+1\D /DﬂUi\DﬂUiUi_H
We can now conclude the convergence for all 7 and the identity (16) since they clearly reduce
to the case i = 0. |

THEOREM 4.3. Suppose that ©' = wV (or equivalently, ' = ¢") and 7 is (AT) (see § 2.1). Then
-1
Bi(W;, W!) is a well-defined G-invariant pairing on W¥0i (o) x w'ui (¢V). In particular, if ™ €

1
Irrgen GL,, is unitarizable, then B; gives a unitary structure on wYu; (o).

Proof. By Proposition 4.1 B;(-,-) is well defined and not identically zero. To show invariance
it suffices to consider i = 0. We use induction on m. The case m = 1 (in which D is the
standard mirabolic subgroup) is well known and follows from Bernstein’s theorem [Ber84]. For
the induction step, let m > 1 and let @’ be the subgroup of the standard maximal parabolic
subgroup of G of type ((m — 1)n,n) consisting of the matrices whose lower right n x n corner is
upper unitriangular. Write

Bo(We, Wi, — / / Wie(q9) Whe (ag)|det |~ dq dg
DNQ\D JNp\DNQ’

= / / Wze(q9)Wie(qg)|det g|' ™ dg dg.
DNQ\D J D1 nNN\Dpn—1.n

Here we consider GL(,_1), (and hence, Dp,—1,) as a subgroup of G. (Note that op = [det|™
while 6pngr = |det|"t™ 1) By (5a) and the induction hypothesis, the inner integral is left-(Q’,
|det|"~!)-equivariant in g. Hence, we can replace the domain of outer integration by Q'\ D1 mn
where D1y, is the standard mirabolic subgroup of G (the stabilizer of €,,,). (Note that ép, ,,, =
|det| and d¢y = |det|™.) It follows that By(:,-) is D1 mp-invariant. By Bernstein’s theorem, it is
G-invariant as required. O

We immediately deduce a special case of Conjecture 3.16.
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COROLLARY 4.4. Conjecture 3.16 holds for any m € Irr o7y GLy,. In particular, it holds for any
unitarizable m € Irrgen GLy,.

Remark 4.5. By analytic continuation it is easy to prove Conjecture 3.16 for m of the form
7 =Ti||M x -+ x 75| | where 7; € Irrgqe are fixed and (¢, ..., ¢*) is in general position.

In view of Theorem 4.3 and Bernstein’s theorem, it is natural to make following related
conjecture.

CONJECTURE 4.6. For any m-homogeneous o € Irr G, every D-invariant bilinear form on o x ¢
is G-invariant.

Perhaps even more is true.

CONJECTURE 4.7. For any m-homogeneous o,0’ € Irr G, there is a unique up to scalar D-
invariant bilinear form on o x o’.

(We do not know whether this is known even in the case m = 1.)

5. Local zeta integrals

Throughout this section let m, 7’ € Irrgen GLy, and o = Sp(w,m),0’ = Sp(n’,m) € Irr G. Let
L(s,m x ©') and (s, x 7’,4) be the local factors defined by Jacquet, Piatetski-Shapiro and
Shalika [JPSS83]. (See §5.2 below.)

5.1 Statement of the result
We write an analogue of the Rankin—Selberg integral for o x ¢’ on the Shalika model as follows.
Recall that n € Maty, nm (F') is the matrix whose ith row is ep;, i = 1,...,m, so that D is the

stabilizer of 1 in G. For any Wg, € WYt (o), WY, € w¥or ('), ® € S(Maty, nm (F)), consider

Z(Wen, Wgy,, @, 5) = e Wsn(9)Wén(9)®(ng)|det g|° dg.

This expression was already considered in some form in the proof of Proposition 4.1.
Note that in the case n = 1 (where U’ = 1) Z reduces to the generalized Tate integral for (a
character of) GL,, considered by Godement and Jacquet [GJ72].

For any k, let
1
wk:< ._1>€GLk.
L

THEOREM 5.1. The integral Z(Wsn, W¢,, ®, s) has the following properties.
(i) The integral defining Z(Wgn, W¢,,, ®, s) is absolutely convergent for

Res +e(m) +e(n’) +1 > m.

(ii) The function
m—1 —1
( I Z(s =i 7 x w’)> Z(Wsn, Wi, @, s)
i=0

is a Laurent polynomial in ¢°; hence entire.
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(iii) If 0,0’ are unramified, Wg, € WYV’ (), W, € W¥ur (o) are the unramified vectors such
that Wgn(e) = Wan(e) = 1, ® is the characteristic function of Maty, n,(O) and 1 has

conductor O, then
m—1

Z(Wsn, W, @, 8) = ¢ H L(s—i,mx )
i=0
where c is a measure-theoretic constant (depending only on F', m and n).
(iv) We have a local functional equation

m—1
Z(Wep, W, ®,m — 5) = w(—1)(7=1m ( [[(s—imxa, ¢)> Z(Wen, W, ®,5) (22)
=0

where Wgy, € Wi (oV) is given by @(g) = Wean(wl,,g71) and ® is the Fourier transform
d(X) = / (Y )(trt Yw, X) dY.
Matm,nm(F)

We will prove the theorem below by relating Z(Wgp, Wg,, @, s) to the usual Rankin-Selberg
integrals.

5.2 A result of Jacquet, Piatetski-Shapiro and Shalika
Recall the GL, x GL, local Rankin—Selberg integrals studied by Jacquet, Piatetski-Shapiro and
Shalika [JPSS83]. They are given by

TMWWW@ﬁz/ W (g)W (9)®(eng)|det gI* dg
Np\GLyp

where W € W¥Na (1), W' € W\Ilﬁvlt(ﬂ’), ® € S(F™) and s € C. The integral converges for
Re s+e(m) +e(n’) > 0 and admits a meromorphic continuation in s to a rational function in ¢°.
The quotient
ZCGln (W, W' ®, 5)
L(s,m x 7)

is a Laurent polynomial in ¢° which can be made non-zero at any given s € C by an appropriate
choice of W, W/, ®. Moreover, we have a functional equation

ZGn (W, W, 8,1 — 5) = we(—1)" Yy (s, x 7', ) 20 (W, W', @, 5)
where W € W¥% (zV), W' € WY (7'V) are given by
W(g)=W(wn'g™"), Wiig)=W(wn'g™")
and @ is the Fourier transform of ® given by

by) = [ e@i(y)do

where ((z1,...,2n), (Y1,---,Yn)) = >, iy denotes the standard pairing on F".
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—1 ~
Slightly more generally, for W € WYNu (z®™) W' ¢ WY Nur (7™, & € S((F™)™) and
($1,.--,8m) € C™, we write

m
ZM W B, (51, 5m)) :/ WOW ()& (engas . engn) ] Idet g:l* di
Ny \M i=1

where | = diag(g1,...,9m) € M. This is a linear combination of products
m
H ZGLn (W27 Wi/: (I)ia Si)
i=1

where W; € W¥Na (1), W/ € W% (') and ®; € S(F™). Thus,

the integral defining ZM (W, W’, P, (S1,...,8m)) is absolutely convergent

23
provided that Res; + e(w) + e(n’) > 0 for all 3. (23)
Moreover, we have a functional equation
o~y oM
ZMWM WM & (1—s1,...,1—5p))
= wer (=)D (i, x 7, ) ZM (W, W, @, (51, -, 5m) (24)
i=1
where WM(Z) = W (diag(wn, - .., wy) 1) and
~M
d (X1,...,Xm) :/ @(m,...,ym)¢(z (XZ-,YZ)) dYi--- dY,.
(Fmym

(2

5.3 Proof of the theorem
The fulcrum for Theorem 5.1 is the following proposition.

PROPOSITION 5.2. For any Wz, € WYN(5), W), € WYN' () and & € S(Matyy i (F)), we have

Z(T¢WZG,T¢_1W£Q,¢,3):/ ZM(Wae) gy Wie)gs @y, (s —m41,...,5))|det g|*dg  (25)
P\G

-1
where (Wge)g = 6526 Wye(-g) € W¥Nu (™), (W})g = 6526 W) (-g) € W¥Nu (/™) and
i)g is given by (20). The integral on the right-hand side is absolutely convergent for Re s+e(m)+
e(r’) +1>m.

Proof. Write Z(T¢WZQ,T¢_IW£C,®,S) as
/ T Wae(lg) TV W,(lg)|det [[*~™ dI B(yg)|det g|* dg.
D\G JUn\D

By Proposition 4.1 we get

/ / Wie(19) Wi (Ig)|det 1"~ dl. (ng)|det g|* dg
D\G JNp\D

_ / Wae(9)Whe(9)®(ng) dgldet g|* dg.
Np\G
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We write this as
/ / Woe(19)Whe (lg) / B(iulg) du |det 1]°5p(1) " di |det g|* dg.
P\G J Ny \M Up\U

The required identity now follows from (19). For convergence, as in the proof of Proposition 4.1,
we may assume that ® > 0, s € R, 7/ = 7 and Wy = Wy, so that all the integrands considered
above are non-negative. Therefore, the manipulations are justified for s + 2e(w) + 1 > m by
(23). O

Proposition 5.2 immediately implies the first part of Theorem 5.1 (absolute convergence).
In view of Remark 3.6, Proposition 5.2 also reduces the second and third parts of Theorem 5.1
(analyticity and unramified computation) to the analogous statements for the usual Rankin—
Selberg integrals.

Remark 5.3. If o and ¢’ are unramified, then

ml m—1 m—1
HL(S—Z‘,WXW’):L(S— 5 ,ﬂXJ')zL(S— 5 ,a><7r'>.

=0

However, in general for 7,7’ € Irrgen GLy,, the equality
—1 —1
L<s—m2 77T><0’>:L<3—m2 7U><7r’>

Finally, we prove the functional equation (last part of Theorem 5.1).
For any Wz, € WYN (o), define Wy, € WYY (V) by Wze(g) = Wae(wnm tg™t). Then TWye =
m

does not always hold.

T(I/I//-z\e) Note that wy,, = diag(wnp, ..., W) Wn,n where wy,, = t(wy,); write ¢’ = Wy, p tg—1,
g € G. Then, for any g € G, we have

— M

(Wze)g(l) = Wae)y (wmplwyly), 1€ M,

and by Fourier inversion

= —~M
(@), (V15 vm) = |det g[ 7" @y (U, ... v1), V1,...,vm € FT

The last part of Theorem 5.1 therefore follows from Proposition 5.2 and the functional
equation (24) using the change of variable g — ¢ in the integral on the right-hand side of (25).
This finishes the proof of Theorem 5.1.

6. More analytic results

In this section we prove some more analytic properties of the zeta integrals defined in the previous
section, as well as the bilinear forms of §4. Some of these properties are well known in the case
m = 1. However, there are also some new phenomena.
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6.1 Relation between zeta integrals and Bgy
Recall that Q = D x M"Y, g|p = 6p = |det|™ and dg|ype = 1. Hence, we can write Z(Wgy,
Wi, ®,5) as

/ / Wen (Ipg) W (Ipg) ® (5lg)|det 1[° di [det pl*~™ dp |det g|* dg.
Q\G ’\D M/\I/

Using Lemma 3.9 and the identification ¢ : GL,, — MY, we get

Z(Wsn, Wy, @, 5) = o B (Wsn(-9), Wan(-9), s = m) fowmw, s(9) dg (26)

where, for any character w of F'™*,

f@,w,s(g):/ @} (Hw(det 1)|det 1™ dl |det g|*
GL,

and @) € S(Maty,;,(F)) is given by ®((X) = ®(u(X)g) where pu(X) € Matyxnm is the
matrix whose ith row is Z;nzl X jen;. Note that ® — fs, s is an intertwining map from

S(Maty, pm(F)) @ |det|® to Indg vs where vg is the character on @ such that v,|p = |det|*~/2
and v 01 = w ™! o det.

LEMMA 6.1. There exist Ws, € W0 (o), WY, € wW¥ur (0') and ® € S(Maty, pm(F')) such that
Z(Wen, Wiy, ®,5) = 1.

Proof. This follows from Corollary 3.13 and (26) by taking W), such that Wgy|p is supported
in U’Q) for a small neighborhood €2 of ¢ and ® supported in a small neighborhood of 7. a

Let ordg(s) = ordp,s . (s) be the maximal order of pole of B;(W;, W/,-) at s for i =0,...,

-1
(m — 1)n as we vary W; € W¥0i(0), W/ € wYui (¢'). (Recall that this does not depend on i by
(16).) By Corollary 3.13, we have ordg(s) > 0 for all s.
Similarly, let ordz(s) = ordz,/(s) = 0 be the maximal order of pole of Z(Wgp, W¢,, ®, ) at
s as we vary W € WYv (o), W' € ijl;’l(a’) and ® € S(Maty, nm(F)). By Lemma 6.1, we have
ordz(s) = 0 for all s. We can sharpen this as follows.

—1
PROPOSITION 6.2. The bilinear form B;(-,-,s) on W¥Vi(5) x w'ui (¢') admits meromorphic
continuation in s to a rational function in q°. Moreover, for every s € C, we have ordg(s — m)

< ordz(s) with equality unless wrwy = |-[7~"% for some j € {0,...,m — 1}, in which case
ordz(s) < ordg(s — m) + 1. In particular, if 7' = 7wV, then By(-,-) is defined if and only if
Z(+,+,-,s) is holomorphic at s = m for all data.

Proof. 1t is enough to prove the meromorphic continuation for i = (m — 1)n, that is, for Bgy.
This case follows from equality (26). Indeed, taking w = wrw,» and ® to be the characteristic
function of a small neighborhood of 7, fs . s is supported in Q€2 for a small neighborhood €2 of
e and hence Z(Wgy,, W§,, @, s) is a non-zero constant multiple of Bgn(Wsh, W§,, s —m). We also
get that ordg(s —m) < ordz(s) for all s.

On the other hand, fs . s(g) is a generalized Tate integral with respect to GL,,, and hence

m—1 m—1 .
L<ns -5 wo det GLm>f<I>,w,s = (11) L(ns — z,w)) fows
1=

is entire. We get from (26) that ordz(s) < ords(s — m) unless w = |-]7~" for some j € {0,...,
m — 1}, in which case ordz(s) < ordg(s — m) + 1. The corollary follows. O
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Remark 6.3. Note that if 7 and 7" are tempered, then it follows from Theorem 5.1 part (ii) that
ordz(s) = 0 unless Res € %Z and Res < m. Thus, in general, many poles of f¢ ., _, s do not
contribute a pole for Z(-,-, -, s).

Remark 6.4. In general, we do not know what precisely is the fractional ideal of Z[¢**] generated
by

Z(Wen, Wi, ®,5)  where Wgy, € WY/ (0), W, € WY (o), ® € S(Matp nm (F)).

If both m and 7/ are unitarizable, then we expect that this ideal is generated by 1—[;7;—01 L(s —1,
7 x 7'), that is, part (ii) of Theorem 5.1 is tight in this case.

Ezample 6.5. Consider n = m = 2 and 7 = |-| x |-|7! € Irrgen GLg. Then m = 7 and L(s,
7 xnV) = L(s,1p+)2L(5+2,1p+)L(s — 2, 1p+). Therefore, L(s,7 x ') L(s — 1,7 x 7’) has a pole
at s = 2. However, we do not know whether Z(-,-, -, s) is holomorphic at s = 2, or equivalently

(by Proposition 6.2) whether By(-, -) is well defined. Recall that Sp(, 2) is not unramified in this
case (cf. Remark 2.6).

6.2 More results in the (AT) case
PROPOSITION 6.6. Suppose that 7 is (AT) and let 7' = ©¥. Then, for any Wg, € W¥v'(0),

W, € Wi (¢'), we have
Z(Wen, Wy, ®,m) = Bsn(Wsn, W§,)®(0)
where both sides are well defined.

Proof. By the first part of Theorem 5.1, the integral defining Z(Wsp, W, ®,m) is absolutely
convergent. Moreover, since the modulus function of D is |det|™, we can write

Z(Wsn, Wy, ®,m) = e Wsn(9)Wn(9)®(ng)|det g™ dg

= / Wsn(pg)Wey (pg) dp ®(ng)|det g|™ dg.
D\G JU\D
For ' = 7V, by Theorem 4.3 we get
B (W W) [ @(a)ldetgl"dg = $(0) B (Wes, W)
as required. O

From the functional equations (22) we deduce the following corollary.

COROLLARY 6.7. Suppose that w is (AT) and let 7’ = 7¥. Then ordz(0) is equal to the order of
the zero of the product of y-factors on the right-hand side of (22) at s = 0.

Ezample 6.8. If m € Irrgqr GL,, corresponds to a segment of length k and 7/ =7V, then ordz(0) =
min(m, k). Indeed, in this case (H§:1 (1 —gf=9) /(1 — g~ T6H=D))y(s, 7 x 7V, ) is entire for
a suitable integer f > 0 depending on 7.
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Under mild assumptions, we can give a lower bound for the real part of the first location of
a pole.

LEMMA 6.9. Suppose that w, is unitary and let ©' = 7. Then, for suitable Wg, € WY’ (o),

W, € W\I]l;’l(av) and ® € S(Maty, nm(F)), Z(Wsn, W§,, @, s) has at least one pole for Res >
m — 1.

Proof. Indeed, taking W§, = Wsn and ® > 0, the right-hand side of (25) is a power series
in ¢—® with non-negative coefficients a; which vanish for k¥ <« 0. Assume to the contrary that
Z(Wgn, WY, ®, s) is holomorphic throughout Re s > m—1. Then the power series would converge
at s = m — 1. However, the integral on the right-hand side of (25) diverges at s = m — 1 since it

contains [5.. @g(Aen, €n, ..., en)|A[* "1 dX as an inner integral. We obtain a contradiction. O

COROLLARY 6.10. Suppose n,m > 1, 7’ =7 and w, is unitary. Then any B; admits a pole in the
right half plane Res > —1. Hence, there exists Ws, € WYv’ (1) such that the integral defining
Bsh(Wsh, Way, s) diverges for all s < —1. In particular, fU’M"I’\G (Wan(g)|? dg diverges.

Proof. Indeed, by Lemma 6.9 we have ordz(s) > 0 for some s with Res > m — 1. Hence, by
Proposition 6.2, ordg(s — m) > 0 for that s (since n,m > 1). Therefore, the integral defining
Bsn(Wsh, Wan, s) diverges for all s < —1 (cf. (15)). In particular,

/ Wan(g)? dg = / / Wn(g)Pldet g| ™ dg
U'MY\G o\a Junp

diverges. O
Our final result in this section is the following lemma.

LEMMA 6.11. Suppose that m is (AT) and let 7' = w¥. Then ordz(0) = ordg(—m) + 1. In
particular, if w is supercuspidal, then B is holomorphic at s = —m (cf. Example 6.8). Moreover,
let

Z*(Wsn, Wi, ®) = lim (¢° — 1)o7z Z (W, Wh,, ®, s)

and
lim (g™ — 1)°rds0m By (W, W, ).

S§—>—m

B&, (Wen, W)

Then there exists a constant ¢ (depending only on F', m and n) such that

Z"(Wsn, Wy, @) = c®(0) oG Bin(Wsn(-9), Wen(-9), —m) dg

for all We, € WY0' (o)), Wh, € WY (0V) and ® € S(Maty, um (F)).

Proof. By the local functional equation and Proposition 6.6, Z*(Wsp, W, ®) = 0 if ®(0) = 0.
Therefore, the argument in the proof of Corollary 6.10 (taking ® supported near n, which localizes
f®,1«,s near Q) shows that ordz(0) = ordg(—m) + 1. Since Ress—q f3,1,. s is proportional to
®(0), we get the required relation from (26). O

933

https://doi.org/10.1112/50010437X2000706X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2000706X

E. M. LAPID AND Z. MAO

We may view

th(WSh('Q)’ Wéh(‘g)v _m) dg
A\G

as a regularization of

/ Wsn(9)Wén(g) dg.
MYUNG

(Recall that the latter diverges for W, = Wgy, if m > 1.)

7. The case n = m = 2

Given o = Sp(m,m), it is natural to ask what is the asymptotic behavior of a function in W¥v’ (o)
or (what is essentially the same thing) in K¥ (o). In the case n =2 orif n =3 and m =2, PV is a
spherical subgroup of G and the problem can in principle be analyzed by the methods of [SV17].
We will only treat here the case where m = n = 2 and 7 is supercuspidal, in a self-contained
way, without appealing to the general results of [SV17]. For n > 2 and m > 1 (excluding the
case n =3 and m = 2), P’ ¥ is no longer a spherical subgroup and the problem seems to be more
difficult than the analogous problem for WY~ (o). We have little to say about it.

We note that in the case where n = 2 and ¢ is unramified, an explicit formula for the
unramified Wg, was given by Sato [Sat05]. This is a special case of a formula of Sakellaridis
[Sak06]. In general, it would be an interesting problem to obtain such an explicit formula in the
unramified case for any m,n. Once again, this goes beyond the scope of [Sak13].

For the rest of this section we consider the very special case where n = m = 2. Fix an
infinite-dimensional 7 € Irr GLg and o = Sp(m, 2). The transition map 7 : W¥~ (o) — WY¥v’ (o)
is

1
Wye —> Wap = / Wye(t(x))de  where u(z) = ( b ) .
F 1

Recall that 7V ~ mw_!. Let my = 7|-|°. Fix a pairing A : T/ @ m_1/2 — C such that
A(my2(g)v1 @ T_1/2(9)v2) = wa(det g)A(vy ® v2) for all g € GLg. For any v € w15 ® 7m_y/9,
let MC, : GLz x GLz — C be the twisted matrix coefficient MC,(g1,g92) = A((71/2(g1) ®
GLQ X GL2
_ (Zx Z)GLy"*8
where Z is the center of GLo, GL;haLg is GLo diagonally embedded in GLg x GLg and x((A1/o,
A2l2)(g,9)) = |M/Ae|lwr(A1Aadetg). If 7 is supercuspidal, then the image is contained in

(;j;)(éi%iag x- If mis (AT), then upon identifying m, ® m_;/o with WY¥Ny (12 @ T_1/2)
2

we may realize A as the convergent integral

7_1/2(92))(v)). Thus, v — MC, defines an equivariant map from 7 /o ® 7_1 5 to Ind

ind

A(W) = . W (diag(1, —t, 1, ))w(t) F d*t, W € W¥Nui (110 @ T_19). (27)

It follows from the Schur orthogonality relations that if 7,7’ € Irreysp GLo with wrw, = 1,
then 7’ is equivalent to 7V if and only if

dg
MC,y(g,1) MCy (g, 1) —2— £ 0 28
/Z\GL2 (3 )MCy (0.1 o 7 (28)

for some v € Ty /o @ T_1/9, V' € 77/1/2 ® 7r’_1/2.
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1
Recall that in the case at hand, Q = P’ = P¥ where w = < = ) , and that wY is the
1

character of P'Y whose restriction to U’ is ¥y and whose composition with ¢ is wy o det. Also,
102 5) 1l = max(|al, [b], [e], |d])-

PROPOSITION 7.1. Suppose that m € Irreusp GLo. Then we have a short exact sequence of Q-

modules
T

0— indg,q, wy = 0lg A T ®@m_1/2 > 0
where () acts on /5 ® T_y /o through M’ (identified with GLg x GLy via k). Upon identifying
ol with K¥ (o), the map A is characterized by the property that, for any L € K¥ (o), there

exists ¢ > 0 such that
L(x(g1,92)) = MCy(g1,92) for all g1, g2 € GLa(F) such that ||gy g1]| < c (29)
where ¢ = A(L). Moreover,
L(k(-,1)) is compactly supported in {g € GLa(F) : ||g|| = c}. (30)

Proof. First note that property (29) determines ¢ uniquely (if it exists). It then also follows that
if (29) is satisfied, then A necessarily intertwines the Q-action. Moreover, if (30) is satisfied, then
¢ = 0 if and only if L is compactly supported modulo P’Y. Also note that in relation (29) it

is enough to consider go = 1 since both sides are (GL;liag ,wr o det)-equivariant. (For simplicity
write g = g1.)

Recall that, by Lemma 3.2, there exists a constant C; > 1 such that L(k(g,1)) = 0 unless
lgll < Ci.

Suppose that L = T(Wgze)|g. Write g = u'(y) diag(t, t2)k where u/(y) = (1Y) with k €
GL2(0). We claim that there exists C5 such that

Wze(u(z)k(g,1)) = ]x\_lww(x)WZe(diag(l, —z 11, x_l) diag(g, I2)w) (31)

for all z € F such that |z| > Cs|ta].
Indeed, write
1

a(z) = u(z™1) diag(1, 1, z, z) diag(1, —z =%, 1, 2" Hwu(z™!) where u(y) = < 131/ > .
1

Then
u(z)k(g, 1) = u(z~") diag(1, 1,2, x) diag(1, —z ", 1,27 wr(g, Du(taz ™)+

where the superscript denotes conjugation. Our claim follows since wk(g, 1)w™! = diag(g, I2).
Next, we show that there exists a compact set C' of GLa(F') such that if ||g]] < C; and g ¢ C,
then both sides of (31) vanish if |z| < Cs|ta].
First, note that the condition ||g|| < C1 means that |t1], |t2], [t2y| < C1. Now

diag(1, —z =1, 1,27 1) diag(g, ) € N diag(t1, —z 'to, 1,27 1) GL4(O).

Therefore, if the right-hand side of (31) is non-zero, then by the supercuspidality of 7, x and
tity 1 are confined to a compact subset of F*. Since |z| < Cs]ta|, we infer that ¢, belongs to a
compact set of F™*, and hence also t1. Finally, |y| is bounded since |toy| < C;. Hence, g belongs
to a compact set.
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On the other hand,
u(x)r(g,1) € N diag(t1, 1,t2, Da(ty z)K

and since |t; 'z| < C3 we infer from the supercuspidality of 7 that if the left-hand side of (31) is
non-zero, then t1, to belong to a compact subset of F*. As before, g belongs to a compact set.
Our claim follows.

In conclusion, (31) holds for all x € F' provided that ||g|| < C; and g ¢ C. Integrating (31)
over x € F, we conclude that if ||g|| < C1 and g ¢ C, then

*

L(k(g, 1)):/ ww(t_l)WZe(diag(l,—t,l,t) diag(g, I2)w) d*t.

By (27), this is equal to MCy (g, 1) where ¢ € WY N (m1/2 ® m_1/2) is the restriction of W (-w)
to M. Thus, (29) and (30) hold. In view of Corollary 3.13, this proves the proposition. (Note
that Wyze — ¢ is Q-equivariant since w conjugates P to Q.) O

Remark 7.2. Tt follows from (the proof of) Proposition 7.1 that there exists a non-zero Wy, €
WYN () that vanishes on M (in which case TWze(-w)|q € K¥(0) is compactly supported modulo
P'Y). This can be also shown directly by realizing ¢ as the image of the intertwining operator

Ty X T_1/2 = T_1/2 X T1/2
and taking the image of a suitable vector in m /5 X m_y /o that is supported in the big cell.

COROLLARY 7.3. Suppose that m € Irreysp GLg and let 7' = 7¥. Then the poles of the bilinear

form B;(Wsp, W, s), as we vary Wg, € WY (o) and WY, € whor (¢”), coincide with those of
L(s+1,mx7").

Proof. We may assume without loss of generality that 7 is unitary. Then

B(Wsh, Wap, s — 1) = / |det g|$_1|WSh(/£(g, 1))|2dg.
GLo

By Proposition 7.1, the analytic properties are governed by those of

/ det gl MC,(g, 1)|2 dg,
GL2:||glI<1

which can be written as

/ ( / A2 d*A)|Mc@<g, 1)/det g*~! dg
Z\GLa \JF*:|X|<||g||~!

1— q_1 _ _
S / 1912 IMC,o(g, 1)[2|det g~ dg.
1—¢q Z\GLs

Thus, the poles are simple and are confined to ¢ = 1. If ¢° = 1, then the residue is clearly
non-zero. If ¢° = —1, then the residue is a constant multiple of

| IMCalg 1) Puldetg)ldet g| " dy

Z\GLg

where w is the non-trivial quadratic unramified character of F™*. Thus, by (28), the residue is
non-zero if and only if 7 ~ 7w. This matches exactly with the poles of L(s,m x 7") [JPSS83,
Proposition 8.1]. O
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8. Global heuristics

Let F' be a number field with ring of adeles A. We consider G = GL,,, as a group over F' and
write G(A)! = {g € G(A) : |det g| = 1}. As before, let Q be the stabilizer of span{e,; : i = 1,
...,m} in G — a maximal non-standard parabolic subgroup of G of type ((n — 1)m,m). For
any ® € S(Mat,, nm(A)) and a Hecke character w of F*\A*, consider the degenerate normalized
Fisenstein series that is given by

Z (2 tyg)|det z| Sw(det 2) "t det g|* dz
YEMm,mn (F):rky=m

= Y fews(19)

YEQFN\G(F)

g@,w(ga 5) = /
GLy (F)\GLm (A)

for Re s > 0 (more precisely, Re s > m if w is unitary) where, as in §6.1,

f@,w,s(g) :/ @'g(l)w(det l)|detl|ns dl |detg|s
GLm (A)

and @}, € S(Mat, m(A)) is given by @} (X) = ®(u(X)g), where p(X) € Mat,y, nn(A) is the matrix
whose ¢th row is Z;”:l X jenj. By the method of Tate’s thesis (which goes back to Riemann),
Ep. admits a meromorphic continuation with finitely many (simple) poles and a functional
equation

Ea(9,8) = Egya(Tg™ M — 5).

m

As before, let P = M x U be the standard maximal parabolic subgroup of G of type (1, ..., n)
and let |-[5r : M(A) - RZ,; be the homomorphism

|diag(l1,...,lm)| = (|detly], ..., |det Ly]).
We extend |-|pr to a left-U(A)- and right-K-invariant function |-|p on G(A) where K is the
standard maximal compact subgroup of G(A). For any x = (x1,...,2,) € RYyand A = (A, ...,
Am) € C™, we write 2 = Zx;\’

Let m = ®m, be an irreducible cuspidal representation of GL,(A). Let ¢ : G(A) — C be a
smooth function such that, for all g € G(A), the function I € M (A) — 6p(1)~/?¢(lg) belongs to

m

the space of 7 ® - -+ ® w. The Eisenstein series

E(g g = >, o(rg)halp

YEP(F)\G(F)
converges if Re(A; — Ajy1) >n for alli =1,...,m — 1 and admits a meromorphic continuation
to C™. The limit
e(g) = lim (A=A =1) - (A1 = Am — 1)E(0, A, 9) (32)

A= ((m—1)/2,...,(1—m)/2)

exists and is a square-integrable automorphic form on G(F)\G(A)! which is non-zero for a
suitable ¢. As we vary ¢, we obtain an irreducible automorphic representation of G(A) whose
local components are Sp(m,, m). (It is well known that as we vary over m and m > 1, these
representations furnish the entire automorphic discrete spectrum of the general linear group
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[MW89].) Similarly, let 7’ be another irreducible cuspidal representation of GL,(A) and let ¢’
and ¢’ be analogous functions with respect to 7’.
Formally, we would have liked to consider the integral

/ (9)¢'(9)E (g, s) dg (33)
GF\G(A)!

where w = wpwy. For m = 1, this is of course the classical Rankin—Selberg integral.
Unfortunately, for m > 1 this integral does not converge as none of the functions that appear
in the integrand is rapidly decreasing. A suitable regularization (in the spirit of [Zag81] or later
accounts) is therefore needed in order to make sense of (33). We will not pursue this matter
here. Instead, we will be content with a purely heuristic argument, anticipating what a possible
regularization of (33) would yield.

As in the case m = 1, we unfold (formally) expression (33). For any ¢ = 1,...,m, let Q; =
L; x V; be the stabilizer of the flag

(Span{enjfk : j - 17 cee, MM, k= 07 e, T = 1})7‘:1,...,2'

in G. Thus, Q1 =QDQ2D D Qn1=0Qy=PFP and L; ~ GLy(—j) x Lj with L ~

7

GL, x - -+ x GLyy,. Let p; : Q; — L be the resulting projection and let @ be the inverse image
of GL,, diagonally embedded in L.. In particular, Q] = Q1 = Q and Q!, = M"Y x U’. Note that,
foralli=1,...,n—1, Q;-H is the stabilizer in @; of the character Uy, and V;/V;_; is abelian
(and can be identified with Mat,, (,—i)m), where for consistency we let Vy = 0.

In the first step we unfold (33) to write it as

/ D)6 (9) Fons(g) dg = / / o(09)¢! (v9) dv fons(g) dg
Q(F)\G(A)! Qi1(F)\G(A)L JVL(F)\V1(A)

and expand

/ o(vg)y (vg) dv = Z (pvl,x(g)golvl,xﬂ ()
Vi (F)\ Vi (A) T TR

where

VX (g) = / p(vg)x(v) ™" dv.
Vi(F)\V1(A)

The Pontryagin dual of the compact abelian group V1 (F)\V1(A) is isomorphic to Mat,, (,—1)m (F).
We consider only the contribution from the non-degenerate y, that is, those corresponding to
matrices of rank m (anticipating that the degenerate ones will not contribute, either by the
cuspidality of m or by the regularization procedure itself). The non-degenerate characters form
a single orbit under @ = @1, namely the orbit of ¥y;, and the stabilizer of Uy, is Q5. We thus
get

1
/ P Y ()" (g) fo s (9) g
Q4FN\G(A)!

which we write as

/ / D (ug)g U (ug) du fo.e(g) dg.
QLFO\G(A)! JVo(F)\Va(A)
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Once again, we expand the inner integral according to characters of the compact abelian group
Va(A)/V1(A)Va(F) and consider only the non-degenerate characters. Continuing in this way, we
get, for k=1,...,n,

Vil 1,05
/ p Wi (g) T Ve (g) fp 0,6 (9) d.
Q4 PN\G(4)!

For k£ = n, we obtain

’ (R b
/ o0 () (g) fow.5(9) dy.
M (F)U(A)\G(A)!

Now V" ¥u is (M"Y (A), wy o det)-equivariant, (taking into account the identification ¢ : GL,, —
M""). Therefore, up to a volume factor, we get

, /g1
/ M0 ()" M (9) fio.0,5(9) dg (34)
M"Y (AU (A\G(A)
This integral (which actually converges for Res > m if w is unitary) is Eulerian. Let S be a
finite set of places of F' containing all the archimedean ones such that, for all v ¢ S, ¢ and ¢’
are G(O,)-invariant (and, in particular, 7, and 7] are unramified), v, has conductor O,, ® is
invariant under translation by Mat,, ymn(O,) and ®(X) = 0 unless X, € Maty, yn(O,). Using
(26) and Theorem 5.1 part (iii), up to a measure-theoretic constant, the integral (34) is equal to

m—1
. "W, UL}
(H L5(s —i,m % 7T')> Zs(@ [ G(re) @V 1 G(Fs)s P IMatyn o (Fs)s S)
1=0

where L (s, mx ') is the partial Rankin-Selberg L-function and, for any Wg, € W¥v’ (Sp(mg, m))
—1
and WY, € W¥v' (Sp(ry, m)),
Z(Wen Wy 0. = | Win(9)W4, (9)(ng)ldet oI g
U'(Fs)\G(Fs)
which is essentially the product over v € S of the integrals considered in §5. (We tacitly assume

that much of the analysis of §§3-5 carries over to the archimedean case.)
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Appendix A. Relation to intertwining operators

For this appendix assume that m € Irr(47) GLy,. Let

I = 7| | =D/ 5 ]| (m=3)/2 .o ]| Amm)/2
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be the standard module which admits ¢ = Sp(w,m) as the Langlands quotient. We realize
IT in the subspace WYN(II) of Ind§ Wy consisting of functions W such that [ € M

(5_1/2( DY DWW (Ig) € W¥Nu (®™) for all g € G. Define an intertwining operator on WY~ (II)
by

W MW (- /W“1 (A1)
where Wy, is as in Remark 3.10. The integral defining MW is absolutely Convergent and its

image is WY~ (o). Similarly, define W‘I’Xfl( 1Y) ~ 11V to be the subspace of Ind§j ¥y consisting

of functions WV such that [ € M 5;1/2(l)6’(l)Wv(lg) ew NM((T[' )®™) for all g € G. Then
the bilinear form

(W) / / DLW (lg) WV (lg)didg, W € WPN(IT), WY e WIN' (ITY),
P\G NM\DM

converges absolutely and defines a G-invariant pairing on WY~ (IT) x WYY (I1V) where Dy =
DN M is the product of m copies of the mirabolic subgroup of GL,,. Since Wy (oV) is the socle
of WY~ (T1V), for any Wy, € WY¥N' (¢V) the linear form W — (W, W) factors through MW
and it is a scalar multiple (independent of W) of Bo(MW, W).). In the rest of the appendix we
prove the following identity.

PROPOSITION A.1. For any W € WY~ (II) and W, € W¥~' (¢V), we have
(W, Wy.) = Bo(MW, Wy,). (A.2)

The identity will follow from a series of identities proved below.
Fori=1,...,m — 1, let U* be the unipotent radical of the standard parabolic subgroup P’
of G of type (in,n,n,...,n). Let U* =' U" be its opposite.

LEMMA A.2. Let T € Irrgen GLy,. Then, for any Wz, € WYN (Sp(7,m)), we have
~ Wae(u) du = Wae(u(i;)) (A.3)
DU
where the integrand on the left-hand side is compactly supported. Here

(-1
i = . = (" o1 ) B € Sy

where the signs on the upper right (m — i) x (m — i)-corner are alternating. Thus,

Wye(uv) du = Wye(u) du
DNU DNU

for all v € U*. In particular, for i = 1,

er(ﬂ> du = WZe(’UNJmm)

Up

where Up = U N D.
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Proof. Let Wi, = Tii—1ynWze € WY V-1n (Sp(r,m)). Recall that U(;_y)y is the subgroup of Pl
consisting of matrices whose n x n blocks Aj; . satisfy:

— A;; is upper unitriangular for all j =1,...,m;
— A; 1, is strictly upper triangular if j # k and j,k < ¢;
-~ Ajr=0if j > k and j > 1.

(There are no conditions on A;, if k> j and k > i.)
The inverse transform in Proposition 3.5 gives

Waalo) = | Wi (ug) du.
NNU—1yn\ND

We may replace the domain of integration by (N N Ug_1y, N GLin)\(Np N GLjy,) where GLj, is
embedded in G by h+— (", . ). Let U/ = U_1), N GLip = U’ N GLy, and D; = D N GLiy,.
Thus, the above integral can be taken over N N U/\N N D;, and by Lemma 3.11 the integrand

is compactly supported.
The expression on the left-hand side of (A.3) is

/ / W, (ut) du di.
DUt J NNU\NND;

The same argument as in Lemma 3.8 shows that the function Wéh(uﬂ) is compactly supported in
« uniformly in u. Thus, the above double integral is absolutely convergent. Changing the order
of integration and making a change of variable in u, we get

/ W, (au) di du.
NNU/\NND; J DNU?

Notice that the partial integration over U’ N U’ C D N U" is the composition of the transforms
7T; defined in Proposition 3.5 for j = (i — 1)n,...,(m — 1)n — 1. Thus, the above expression is

/ / Wen (au) du du
NNU/\NND; JU'NU\DNU*

where Wgy, = TWgze. By Lemma 3.9, Wgy, (¢(0;)g) = Wsn(g). The above expression becomes

/ / Wn (o (i) ir) it dus = / Wn (ue(i)) du.
NNU\NND; JU'NUN\DNU* NNU'\Np

Now Lemma 3.11 gives (A.3). For the second part, we only need to note that, for all © € U?, we
have Wze(1(w;)v) = Wge(i(wy)). O

Write U as a (semidirect) product of abelian groups UyUs - - - Uy, where U; consists of the

elements @ in U such that U = 0 if j <n(i—1) or j > ni. For brevity, for any i = 1,...,m,
we denote the iterated integral

(assuming convergence) by

/_it f(u) du.
TnD;
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LEMMA A.3. Let Wy, be as before and let ¢ € S(U). Then

/[;;/Uqﬁ(ﬁ)er(ﬂﬁ) dﬂdﬁ—WZe(@Dm,n)/qu(a) du

where each integrand in the iterated integral on the left-hand side is compactly supported.

Proof. We show by descending induction on ¢ = 1, ..., m that the left-hand side is equal to

it
1) Wye(vuv') du do dv'. A.
/I7mDi/I7imD/l7¢(u> ze(Vuv") du dv dv (A.4)

Note that the integrand is compactly supported in @ and ©. For ¢ = m this is clear, while for
i = 1 we obtain the statement of the lemma by Lemma A.2.
For the induction step, we assume ¢ > 1 and use Lemma A.2 to rewrite (A.4) as

it
)Wy (vp;(0)0") du do dv’
/UmDi /UZQD/Ud)(u) ze(Upi(u)v") du do dv

where p; : GL;, xU? — GL;, is the projection. Now write v/ = 0102 where 97 € U; N D and
Do € U N D;_1 and note that p;(@) € GL;;, NU normalizes U; N D. Therefore, (A.4) is equal to

it
/ / / / (@) W (001 () T2) dti dv dvy diy
UNnD;—, JU,ND JUND JU
/ / / d(0) Wae(vp;(w)d") du dv dv’
UNnD;_1 JU1nD JU
/ / / (1) Wye(vuv') du do dv’
UODZ 1 Ui—1nD

as required. O

Denote by 5, (1) the character of Dy given by d(lul™t) = 65, (1) du where du is a Haar
measure on Up.
Let WY~ (II); be the linear subspace of WY~ (II) generated by the functions W of the form

W(g) = sp(OYV2' (W' (Dp(a) if g=wla, ueU, le M, ueU,
9= 0 otherwise,

where ¢ € S(U), W' € W¥Nar (7®™) and W'|p,, is compactly supported modulo Ny;.
LEMMA A.4. For any W € WY~ (I1); and Wy, € WYN (6V), we have

it
/ <VV, Wg/e(.f)» dv = / MW(?I)m’nl)Wﬁ/e(?I}mml)(sgl (I)dl. (A.5)
Up Ny \Dn b

Proof. The left-hand side is
/ / / D)W (1a) W (1) di di d — / / / W (@)W (alv) da di do.
J NM\DM Ny\Dar JU
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As M normalizes U; for any i, this equals

it
/ / /W(UZ)WZVe(um)(s;l(Z)dudvdz.
Ny \Dn JOp JO b

Here we can interchange the order of integration as [ is integrated over a fixed compact set, by
the choice of W. The claim now follows from Lemma A.3 and (A.1). O

Let WY (¢V), be the subspace of W‘I’Xfl(av) consisting of the functions Wy, such that
W,.|p is contained in ind]]\),D Uy and W), |p is supported in PU N D.

LEMMA A.5. For any Wy, € WYN (o) and W), € W‘I’Xfl(av)b, we have

Bo(We, WL (-5)) db = / W (i )W (1 )07 (1) dl.
Up Ny \Dns p

Proof. Note that PU N D = UpDy;Up. Thus, the left-hand side is

/ / Wze(p)Wolo(pv) dp dv = / / Woe(ul) W, (alv) du di dv
Up JNp\D Ny \Dn JUp

:/ / Wae(ul) W, (ulv) dv du dl

Ny\Duy JUp JUp

= / / Wae ()W, (0)65 (1) do div dl
Ny\Dy JUp JUp p

where we made a change of variable ¥ — [~'a~19l. By the condition on W,.|p and Lemma 3.8,
the integrand is compactly supported, which justifies the previous steps. Applying Lemma A.2
for both integrals over Up, we get the required statement. O

Since (A.2) holds up to a scalar, in order to conclude Proposition A.1, it suffices, in view

of Lemmas A.4 and A.5, to show the existence of W € WY~ (II); and W), € W‘I'J_Vl(crv)b such
that the right-hand side of (A.5) is non-zero. By Corollary 3.15, given ¢ € S(Up) and W' €

ind][\),% \I'j\,]lw, there exists (a unique) Wy, € W' (0Y), such that
W (ult) = ¢(@)W'(1) Vu e Up, L € Dy, @ € Up.
Thus,

UD UD

I = Wy (mnl) = Wy (vl) dv = og,, (1) W5 (1v) dv

can be taken to be an arbitrary function in ind][\),j‘é \I/ﬁl Thus, we only need to show that
MW (W) is non-zero for some W € WY~ (IT);. However, this is clear since MW (Wy, ) =

J5W(a)da

This finishes the proof of Proposition A.1.

Remark A.6. Let us return to the setup of § 8. It is well known that the Petersson inner product of
cusp forms in 7 factorizes as the product over v of the Bernstein inner product on the Whittaker
model of m,. Now let ¢ be as in (32). The ¥ yth Fourier coefficient of ¢ is the W y,,th Whittaker
coefficient of the constant term of ¢, which is given by the iterated residue M_; of the global
intertwining operator. Proposition A.1 (assumed to work in the archimedean case as well) gives
a factorization of the square of the Petersson norm of ¢ in terms of the local inner product (14)
on the Zelevinsky model of Sp(m,, m). Indeed, by the Maass—Selberg relations, the Petersson
inner product is given by M_; and Proposition A.1 will reduce the statement to the classical
case.

943

https://doi.org/10.1112/50010437X2000706X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X2000706X

E. M. LAPID AND Z. MAO

REFERENCES

Ber84

BZ76

BZ77

CFGK19

CFK18

CP96

GKT75

GJ72

GGS16

GGS17

Her10
JPSS83

JRI6

JS81

KL12

KZr7

LM16

LO19

MS14

MW87

MW89

J. N. Bernstein, P-invariant distributions on GL(N) and the classification of unitary
representations of GL(N) (non-Archimedean case), in Lie group representations, II (College
Park, Md., 1982/1983), Lecture Notes in Mathematics, vol. 1041 (Springer, Berlin, 1984),
50-102; MR 748505 (86b:22028).

I. N. Bernsteni and A. V. Zelevinsky, Induced representations of the group GL(n) over a p-adic
field, Funkcional. Anal. i Prilozen. 10 (1976), 74-75; MR 0425031 (54 #12989).

L. N. Bernshtein and A. V. Zelevinsky, Induced representations of reductive p-adic groups. I,
Ann. Sci. Ec. Norm. Supér (4) 10 (1977), 441-472; MR 0579172 (58 #28310).

Y. Cai, S. Friedberg, D. Ginzburg and E. Kaplan, Doubling constructions and tensor product
L-functions: the linear case, Invent. Math. 217 (2019), 985-1068; MR, 3989257.

Y. Cai, S. Friedberg and E. Kaplan, Doubling constructions: local and global theory, with an
application to global functoriality for non-generic cuspidal representations, Preprint (2018),
arXiv:1802.02637.

V. Chari and A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math.
174 (1996), 295-326; MR 1405590.

I. M. Gel'fand and D. A. Kajdan, Representations of the group GL(n, K) where K is a local
field, in Lie groups and their representations, Proc. Summer School, Bolyai Janos Math. Soc.,
Budapest, 1971 (Halsted, New York, 1975), 95-118; MR, 0404534 (53 #8334).

R. Godement and H. Jacquet, Zeta functions of simple algebras, Lecture Notes in Mathematics,
vol. 260 (Springer, Berlin, 1972); MR 0342495 (49 #7241).

R. Gomez, D. Gourevitch and S. Sahi, Whittaker supports for representations of reductive
groups, Ann. Inst. Fourier (Grenoble), to appear. Preprint (2016), arXiv:1610.00284.

R. Gomez, D. Gourevitch and S. Sahi, Generalized and degenerate Whittaker models, Compos.
Math. 153 (2017), 223-256; MR 3705224.

D. Hernandez, Simple tensor products, Invent. Math. 181 (2010), 649-675; MR 2660455.

H. Jacquet, I. 1. Piatetskii-Shapiro and J. A. Shalika, Rankin—Selberg convolutions, Amer. J.
Math. 105 (1983), 367-464; MR 701565 (85g:11044).

H. Jacquet and S. Rallis, Uniqueness of linear periods, Compos. Math. 102 (1996), 65-123;
MR 1394521 (97k:22025).

H. Jacquet and J. A. Shalika, On Fuler products and the classification of automorphic
representations. I, Amer. J. Math. 103 (1981), 499-558; MR 618323 (82m:10050a).

A. Kret and E. Lapid, Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris
350 (2012), 937-940; MR 2996769.

A. W. Knapp and G. Zuckerman, Classification theorems for representations of semisimple
Lie groups, in Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1976),
Lecture Notes in Mathematics, vol. 587 (Springer, Berlin, 1977), 138-159; MR 0476923
(57 #16474).

E. Lapid and A. Minguez, On parabolic induction on inner forms of the general linear group
over a non-archimedean local field, Selecta Math. (N.S.) 22 (2016), 2347-2400; MR 3573961.

E. Lapid and O. Offen, Explicit Plancherel formula for the space of alternating forms, Preprint
(2019), arXiv:1909.11971.

A. Minguez and V. Sécherre, Représentations lisses modulo £ de GL,,(D), Duke Math. J. 163
(2014), 795-887; MR 3178433.

C. Moeglin and J.-L. Waldspurger, Modéles de Whittaker dégénérés pour des groupes p-adiques,
Math. Z. 196 (1987), 427-452; MR 913667.

C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de GL(n), Ann. Sci. Ec. Norm. Supér.
(4) 22 (1989), 605-674; MR 1026752.

944

https://doi.org/10.1112/50010437X2000706X Published online by Cambridge University Press


http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=748505
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0425031
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=0579172
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.ams.org/mathscinet-getitem?mr=3989257
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.arxiv.org/abs/1802.02637
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=1405590
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0404534
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.ams.org/mathscinet-getitem?mr=0342495
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.arxiv.org/abs/1610.00284
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=3705224
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=2660455
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=701565
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=1394521
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=618323
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=2996769
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=0476923
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.ams.org/mathscinet-getitem?mr=3573961
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.arxiv.org/abs/1909.11971
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=3178433
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=913667
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.ams.org/mathscinet-getitem?mr=1026752
https://doi.org/10.1112/S0010437X2000706X

Sak06
Sak13

Sat05

Shi76

Smil8
Spe83

SV17

Tad86

Varl4
Zag81

Zel80

Zyd19

LocAL RANKIN-SELBERG INTEGRALS FOR SPEH REPRESENTATIONS

Y. Sakellaridis, A Casselman—Shalika formula for the Shalika model of GL,,, Canad. J. Math.
58 (2006), 1095-1120; MR 2260513.

Y. Sakellaridis, Spherical functions on spherical varieties, Amer. J. Math. 135 (2013),
1291-1381; MR 3117308.

F. Sato, Fourier coefficients of Fisenstein series of GL,, local densities of square matrices
and subgroups of finite abelian groups, Comment. Math. Univ. St. Pauli 54 (2005), 33—48;
MR 2153954.

T. Shintani, On an explicit formula for class-1 ‘Whittaker functions’ on GL,, over P-adic fields,
Proc. Japan Acad. 52 (1976), 180-182; MR 0407208 (53 #10991).

J. M. Smith, Speh representations are relatively discrete, Preprint (2018), arXiv:1812.04091.
B. Speh, Unitary representations of Gl(n, R) with nontrivial (g, K)-cohomology, Invent. Math.
71 (1983), 443-465; MR 695900 (84k:22024).

Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties,
Astérisque 396 (2017), MR, 3764130.

M. Tadi¢, Classification of unitary representations in irreducible representations of general
linear group (non-Archimedean case), Ann. Sci. Ec Norm. Supér. (4) 19 (1986), 335-382;
MR 870688.

S. Varma, On a result of Moeglin and Waldspurger in residual characteristic 2, Math. Z. 277
(2014), 1027-1048; MR, 3229979.

D. Zagier, The Rankin—Selberg method for automorphic functions which are not of rapid decay,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 415-437; (1982). MR 656029 (83k:10056).

A. V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible
representations of GL(n), Ann. Sci. Ec. Norm. Supér. (4) 13 (1980), 165-210; MR 584084
(83g:22012).

M. Zydor, Periods of automorphic forms over reductive subgroups, Preprint (2019),
arXiv:1903.01697.

Erez M. Lapid erez.m.lapid@gmail.com

Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel

Zhengyu Mao zmaoQ@rutgers.edu

Department of Mathematics and Computer Science, Rutgers University,
101 Warren Street, Newark, NJ 07102, USA

945

https://doi.org/10.1112/50010437X2000706X Published online by Cambridge University Press


http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=2260513
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=3117308
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=2153954
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.ams.org/mathscinet-getitem?mr=0407208
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.arxiv.org/abs/1812.04091
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=695900
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=3764130
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=870688
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=3229979
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=656029
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.ams.org/mathscinet-getitem?mr=584084
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
http://www.arxiv.org/abs/1903.01697
https://doi.org/10.1112/S0010437X2000706X

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Zelevinsky classification
	2.3 Ladder representations
	2.4 m-homogeneous representations

	3 The models
	3.1 Definition of models
	3.2 Model transition part I
	3.3 Model transition part II
	3.4 Kirillov–Shalika model

	4 Unitary structure
	5 Local zeta integrals
	5.1 Statement of the result
	5.2 A result of Jacquet, Piatetski-Shapiro and Shalika
	5.3 Proof of the theorem

	6 More analytic results
	6.1 Relation between zeta integrals and BSh
	6.2 More results in the (AT) case

	7 The case n=m=2
	8 Global heuristics
	Acknowledgements
	Appendix A  Relation to intertwining operators
	References

