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Abstract

Both energy performance certificates (EPCs) and thermal infrared (TIR) images play key roles in mapping the energy
performance of the urban building stock. In this paper, we developed parametric building archetypes using an EPC
database and conducted temperature clustering onTIR images acquired fromdrones and satellite datasets.We evaluated
1,725 EPCs of existing building stock in Cambridge, UK, to generate energy consumption profiles. Drone-based TIR
images of individual buildings in two Cambridge University colleges were processed using amachine learning pipeline
for thermal anomaly detection and investigated the influence of two specific factors that affect the reliability of TIR for
energy management applications: ground sample distance (GSD) and angle of view (AOV). The EPC results suggest
that the construction year of the buildings influences their energy consumption. For example, modern buildings were
over 30% more energy-efficient than older ones. In parallel, older buildings were found to show almost double the
energy savings potential through retrofitting compared to newly constructed buildings. TIR imaging results showed that
thermal anomalies can only be properly identified in images with a GSD of 1 m/pixel or less. A GSD of 1-6 m/pixel can
detect hot areas of building surfaces.We found that a GSD> 6m/pixel cannot characterize individual buildings but does
help identify urban heat island effects. Additional sensitivity analysis showed that building thermal anomaly detection is
more sensitive to AOV than to GSD. Our study informs newer approaches to building energy diagnostics using
thermography and supports decision-making for large-scale retrofitting.

Impact Statement

Urban building stock energy performance mapping is essential for designing strategies to reduce energy
consumption and emissions. However, the sheer scale of urban areas makes estimating the energy performance
of every building extremely resource-intensive. New types of ensemble datasets, such as EPCs and thermal
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infrared imaging via drones and satellite data, can aid in rapid performance evaluation. Here, we integrate these
datasets to generate parametric building archetypes for a historical city and assess its energy consumption
profiles. Meanwhile, we present a novel method for detecting thermal anomalies using drone-based infrared
imaging, which can aid in identifying urban heat island effects. This study informs new approaches to building
energy diagnostics utilizing thermography and supports large-scale retrofitting decisions.

1. Introduction

The built environment is responsible for 25% of the UK’s total greenhouse gas emissions (UK Green
Building Council, 2021). In 2020, the residential sector emitted 66.3MtCO2, accounting for around 16%
of all UK carbon dioxide emissions, with emissions from the public sector contributing a further
7.4MtCO2 (2%) (BEIS, 2022). Decarbonizing the built environment is therefore a crucial component
of the UK’s journey toward achieving net-zero emissions by 2050. Given that the majority of these
emissions arise from the use of gas for heating and the UK has an aging housing stock, it is crucial to
transform the existing inefficient buildings intomore efficient and sustainable forms (i.e., building energy
retrofit). Energy retrofit has the capacity to increase system integration and improve resource use at an
urban level, and therefore, addresses poor thermal efficiency (linked to climate impacts and fuel poverty),
as well as overheating, poor indoor air quality, and moisture.

Energy retrofit analyses at an urban scale require building archetypes. With 29 million existing UK
homes that need to be retrofitted (Holmes et al., 2019), it is critical to analyze the energy performance of
buildings utilizing the scant data available from the existing building stock. This analysis can be
performed on the basis of certain types of building energy modeling, the outcomes of which can be used
to determine the best energy retrofitting strategies (Reinhart and Davila, 2016). Energy modeling at an
urban scale usually needs building stock data such as geometry parameters and building physical
properties. However, due to a paucity of data and concerns about user privacy, collecting building stock
data is challenging (Reinhart and Davila, 2016). To close this gap, it is usual practice to categorize the
building stock using a number of building types that represent the related technical, operational, and
geometrical attributes of a large collection of buildings (Mata et al., 2014). Building archetypes, in
particular, classify the building stock using geometric and non-geometric attributes. All buildings with
similar parameters are grouped together and called archetypes (Galante and Torri, 2012; Famuyibo et al.,
2012). These archetypes have been created using data from national surveys, which give a good picture of
the nation’s building stock (Ali et al., 2019).

In addition to building archetypes, which can facilitate energy modeling and identify priorities for
building energy retrofits, reliable approaches for thermal efficiency monitoring and thermal defects
detection are important for verifying the retrofit design scenarios and for underpinning the progress toward
climate commitments. In building diagnostics, thermal infrared (TIR) imaging has been widely used to
detect thermal anomalies (Baldinelli et al., 2018). This is a non-destructive testing approach that measures
the infrared radiation emitted from the surface of an object to quantify and visualize the distribution of the
surface temperature (Al-Habaibeh et al., 2021). The IR camera produces a sequence of two-dimensional and
readable IR images (thermographs), where specific colors and tones identify different temperatures (Balaras
and Argiriou, 2002). Through the TIR temperature patterns, we can visually identify abnormal temperature
distributions, that is, thermal anomalies that are related to structural features, buildingmaterials, and energy
problems (Moropoulou et al., 2013; Maldague, 2001). Building thermal anomalies, e.g., thermal bridge,
infiltration, and moisture damage within building envelopes, lead to increased heat loss and lower thermal
efficiency (Kylili et al., 2014). For example, thermal bridges that occur at the junction of the envelopes are
considered to cause up to 30% of the heating energy demand (Erhorn-Kluttig and Erhorn, 2009). Therefore,
TIR imaging can help identify potential thermal anomalies and monitor the thermal efficiency of building
envelopes (Park et al., 2021).

There are various TIR approaches to conduct building thermal diagnostics and map the energy
performance of buildings. The hand-held (or walk-through) TIR survey is the most common method,
in which a thermographer walks around a building and visually checks the temperature pattern on the
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envelopewith an infrared camera (Fox et al., 2016). Aerial-derived TIR survey utilizes an IR camera fixed
to a drone, an airplane, or a helicopter. It allows users to detect building thermal anomalies at a community
scale, especially moisture or energy loss problems on roof surfaces (Lucchi, 2018). Space-derived TIR
survey uses earth observation data collected via IR satellite. It has been used to identify the thermal
efficiency of the envelopes of large buildings (Smargiassi et al., 2008). The Landsat images at 30x30m
resolution have been applied to derive the land surface temperature and predict the energy performance
level (Sun and Bardhan, 2023). Furthermore, recent advances in high-resolution IR space telescopes have
introduced the capacity to identify the thermal efficiency of individual households and other buildings
globally (Ben et al., 2021). With the application of a TIR survey from a drone, the potential of applying
space-derived large-scale high-resolution thermal imagery in detecting building energy performance
could be explored.

The goals of this paper are two-fold. Firstly, it aims to develop and analyze building archetypes
focusing on the Energy Performance Certificate (EPC) and then convey valuable insights into the
energy performance of the existing building stock in Cambridge. Secondly, it attempts to explore the
potential of high-resolution thermal infrared (TIR) space telescopes in detecting thermal anomalies of
individual buildings, using drone-emulated TIR images with different resolutions andmachine learning
(ML) image analysis techniques. The approach presented in this paper can have several applications in
future data-driven and digital building diagnostics. For example, the development of such a TIR image-
based analytical pipeline can provide a low-cost non-destructive solution to understand the building
characteristics, thermal efficiency, and energy performance for existing building stocks, thus identify-
ing the corresponding retrofitting strategies and maximize the energy-saving potential to achieve net-
zero targets.

The paper is structured as follows: Section 2 gives an overview of the literature on building archetypes
development and TIR imaging approaches for thermal diagnostics of buildings. Section 3 describes the
methodology, including data acquisition, the procedure for building archetypes development, and
temperature clustering to detect thermal anomalies. Section 4 presents and discusses the results, followed
by Section 5 which concludes this study.

2. Literature review

2.1. Building archetypes development for energy assessment

The concept of building archetypes is most frequently applied to energymodeling at the urban scale. For
the development of archetypes, there are three different widely accepted methods: synthetical average,
real example, and real average (Sousa Monteiro et al., 2015). In the synthetical average building
approach, the archetypes are chosen using information about the most commonly used materials and
systems. Several projects are being established at the European and global levels to describe the
national-scale building stocks, for example, TABULA (Loga et al., 2012), BPIE (European Union,
2018), and DOE (US Department of Energy, 2018). In the real example building approach, the building
type is selected based on experience, namely, it is chosen according to the expertise of panel experts and
other information sources within a real-world climatic situation. The other information sources
typically take into account the most widely used materials, construction period, and specific sizes. In
the real average building approach, the choice of building type is made through the statistical analysis of
data from a large building sample (Famuyibo et al., 2012). Also, image-based approaches, such as
street-view images and satellite images of buildings, are increasingly applied in energy assessment and
prediction as parts of model training information (Sun et al., 2022; Sun and Bardhan, 2023, Zhang et al.,
2023, Zheng et al., 2020).

2.2. Thermal Infrared (TIR) imaging for buildings

In the literature, depending on the data acquisition techniques, TIR imaging approaches to monitor
building thermal and energy efficiency can be generally classified into three categories: hand-held, aerial-
derived, and space-derived.
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1) Hand-held TIR survey
In the hand-held (or walk-through) TIR survey, a thermographer walks around a building and conducts
systematic scans of the building surfaces (Thumann and Younger, 2008). To identify thermal anomalies, a
series of requirements are specified in standard procedures including (Lucchi, 2018; RESNET, 2012; IOS,
1983; Pearson, 2011): (i) air temperature difference of at least 10 °C between the internal and external
spaces; (ii) wind speeds less than 5m/s; (iii) surfaces not exposed to direct sunlight both during the testing
phase and in the 8 or 12 hours prior to the survey; and (iv) overcast situations to prevent the reflection of a
clear sky. In addition, practical instructions suggest including the heat flux meter (HFM) measurements
for assessing the thermal efficiency of buildings (Hart, 1991). The time-lapse survey uses recordedmovies
or time-lapse images to inspect changes in surface temperature patterns over time (Fox et al., 2016; Fox
et al., 2015).

2) Aerial-derived TIR Survey
Unmanned Aerial Vehicles (UAVs) such as drones enable professionals to perform building thermog-
raphy rapidly and accurately while reducing operational costs and minimizing safety risks (Rakha and
Gorodetsky, 2018). For example, previous studies useUAVswith IR cameras to analyze solar radiation on
roofs in order to determine the optimal placement of solar panels (López-Fernández et al., 2015; Schuffert
et al., 2015). The window thermal heat losses in buildings have been examined and analyzed using data
collected through UAVs (Martinez-De Dios and Ollero, 2006). A novel workflow for accurate building
envelope defect characterization has been proposed using drone aerial time-lapse IR data (Rakha et al.,
2022). In addition, aerial thermography has been demonstrated to be well-placed for detecting moisture
over flat roof surfaces (Stockton, 2013).

3) Space-derived TIR survey
TIR earth observation satellites in low earth orbit can monitor building energy output, making
them an effective tool for ensuring that governments, businesses, and even individuals are on
track to reach internationally agreed carbon emission reduction targets (Mo et al., 2018). In the
literature, IR satellite images across the city have been used together with individual building
characteristics to predict indoor temperature (Smargiassi et al., 2008) and energy performance
(Sun and Bardhan, 2023). A statistical approach is proposed to exploit both spatially explicit satellite
TIR data and time-varying meteorological data for estimating surface temperature, which can be used
to further assess indoor exposure to heat by taking into account building characteristics (Kestens
et al., 2011). Moreover, recent advances in high-resolution TIR space telescopes can provide a ground
sample distance (GSD) of less than 7 m/pixel with a daily revisit rate, introducing the capacity to
identify the thermal efficiency and anomalies of individual buildings, even for residential ones (Ben
et al., 2021).

3. Methodologies

3.1. Data acquisition

1) Building Geometry and Non-geometry Data
Several data inputs, including building geometry and non-geometry information, are required for the
building archetypes (Ali et al., 2018; Wate and Coors, 2015).

Geometry input data consists of shapes, heights, building envelopes, the number of floors, walls, and
so forth Typically, geometric building data is collected from building stock data. The building footprint
is gathered through the GIS data model. The most widely accepted standard format model is the
geospatial vector data format (i.e., shapefile), which includes geometry data like polygons, lines, and
points.

Non-geometric building properties are also necessary for creating building archetypes, including EPC,
property type, built form, usage pattern, HVAC systems, and so forth The accessibility of the above
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information is the major challenge. Non-geometric building data is usually collected via national census
databases or statistical surveys.

Table 1 gives the sources and attributes of the different building datasets, which are employed in the
development of the building archetype in this work.

Table 1. Data sources for building archetype development

Provider—source Main attributes

Geometric Data
1 Verisk—UKBuildings1 • Property area (m2)

• Building area (m2)
• Height (m)
• Age (e.g., historic)
• Use (e.g., residential)
• etc.

2 Digimap—Boundary-Line2 • District (i.e., ward)
3 UK Ministry of Housing, Communities and

Local Government—Lower Super Output
Area (LSOA) IMD2019 (WGS84)3

• LSOA code
• LSOA name
• Shape area (m2)
• Shape length (m)
• etc.

4 Office for National Statistics—National
Statistics Postcode Lookup (NSPL)4

• Postcode
• Longitudinal
• Lateral
• etc.

5 USGS/NASA—Landsat 85 • Land surface temperature (LST, °C)
• Normalized difference vegetation index (NDVI)
• etc.

Non-geometric data
6 Consumer Data Research Center (CDRC)—

Dwelling Age Group Counts (LSOA)6
• LSOA code
• Age group counts

7 Department for Leveling Up, Housing &
Communities—energy performance of
buildings data7

• Postcode
• Property type (e.g., flat)
• Built form (e.g., detached)
• EPC, current/potential)
• Energy efficiency rating (current/potential)
• CO2 emissions (current/potential)
• Solar water heating flag
• Floor height
• Glazed area/type
• Lightning/heating/hot water costs (current/potential)
• Transaction type (e.g., rental)
• Number of habitable/heated rooms
• etc.

Notes:
1https://www.verisk.com/en-gb/3d-visual-sintelligence/products/ukbuildings/
2https://digimap.edina.ac.uk/help/our-maps-and-data/os_products/#boundary-and-location-data
3https://data-communities.opendata.arcgis.com/datasets/lower-super-output-area-lsoa-imd2019-wgs84
4https://geoportal.statistics.gov.uk/datasets/ons::national-statistics-postcode-lookup-february-2022
5https://developers.google.com/earth-engine/datasets/catalog/landsat-8
6https://data.cdrc.ac.uk/dataset/dwelling-ages-and-prices/resource/dwelling-age-group-counts-lsoa
7https://epc.opendatacommunities.org/
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2) Drone Thermal Mapping of Building Rooftops
Images are captured from the drone flying at 120m elevation. The sensor properties include a field of view
of 69°x56° and a format of 640x512 pixels, resulting in a resolution of 0.26mwhich refers to the diameter
of each individual pixel in the TIR image. Imageswere at nighttime to avoid the effects of shadows and the
sun’s heat on reflective surfaces. The valid temperature range for the camera is�25 °C to 135 °C at 20 °C
ambient temperature. Future satellite imagery, due to the altitude of orbit, will be of significantly lower
resolution but cover a larger area with each image. To emulate this, first, we stitch together a large number
of drone images to obtain a larger area than a single image, and second, we downsample the resulting
image to various potential satellite resolutions.

Stitching drone images presents several challenges including image distortion from the fisheye lens
and uneven scaling across images. Pre-processing across all images uses the equations defined in the
literature (Tattersall, 2019) to convert Forward Looking InfraRed (FLIR) measurements to surface
temperature values with scaling adjusted to align adjacent image distributions. Discarding image contours
to avoid the fisheye effects (López et al., 2021), the images are then individually input to the Random
Sample Consensus (RANSAC) algorithm (Derpanis, 2010), as shown in Figure 1.

3) Regional Land Surface Temperature (LST) from Landsat Satellite Images
Figure 2 illustrates the diagram for deriving land surface temperature (LST) from four satellite databases
including Landsat 8 Surface Reflectance (SR), ASTER Global Emissivity Dataset (GED), Landsat 8 Top

Figure 1. Key point matches between images identified by the RANSAC algorithm: (left) raw images and
(right) the resulting stitched image.

Figure 2. Diagram for estimating land surface temperature (LST) from Landsat satellite imagery
datasets.
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of Atmosphere (TOA) Reflectance, and NCEP Total Column Water Vapor (TCWV), which have spatial
resolutions of 30 m, 100 m, 30 m, and 278,300 m, respectively.

In this diagram, as indicated by the left-most block, we first provide the aforementioned satellite
databases, the date range, and the region of interest (ROI) for subsequent processes. Covering the
user-selected dates and regions, the program then loads images from Landsat 8 SR and TOA
databases. A cloud mask is applied to both SR and TOA images using their quality information
bands. For each TOA image, the two closest TCWV NCEP analysis times are selected and inter-
polated to the Landsat observation time. The SR data are utilized to estimate NDVI, which quantifies
the health and density of vegetation using near-infrared (“NIR,” reflected by vegetation) and red light
(“Red,” absorbed by vegetation). NDVI is then converted to Fractional Vegetation Cover (FVC)
values (Carlson and Ripley, 1997). These FVC values are then used together with previously
computed ASTER emissivity values for the bare ground to obtain the corresponding Landsat
emissivity (Ermida et al., 2020). Finally, the Statistical Mono-Window (SMW) algorithm is applied
to the TIR bands of the TOA images (Freitas et al., 2013). The coefficients of the SMWalgorithm are
mapped onto the Landsat image based on the NCEP TWVC data (Malakar et al., 2018). Figure 3
shows a resulting LST image of Cambridge city.

Figure 3. Satellite-derived land surface temperature (LST) of Cambridge.
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3.2. Building archetypes development

As illustrated in Figure 4, which is adapted from (Ali et al., 2018), the sequential phases of data
prepossessing, feature selection, outlier detection, and aggregation are included in the building archetypes
development process. Data preprocessing is a data mining method that entails converting raw or real-
world data into a usable format. Data cleaning, data integration, data transformation, data reduction, and
data discretization are themost commonly adopted steps in preprocessing. Feature selection is the practice
of choosing a portion of themost important variables or properties. To achieve accurate results, the feature
selection method eliminates irrelevant and redundant attributes. Outlier detection refers to the process of
identifying observations in data that deviate significantly from a given set of data. The most popular
outlier detection methods include distance-based, density-based, and local outlier factor (LOF). The
aggregation procedure aims to group the data and then perform arithmetic or geometric mathematical
operations on it. The resulting aggregated value represents the properties of a single building archetype.

For each EPC instance in the developed building archetype, the variables collected are summarized in
Table 2.

3.3. Temperature clustering to detect thermal anomalies

Thermal anomalies on building envelopes often show considerably different temperature distributions
than those surrounding normal areas (Park et al., 2021). Therefore, TIR images from infrared

Figure 4. Diagram for building archetypes development.

Table 2. Variables in the developed building archetype for EPC analysis

Variable Symbol Unit Comment

Energy rating Expressed as a letter ranging fromA to G, A being the
most energy-efficient, G the least efficient

Current energy consumption Ec kWh/m2 Current annual energy consumption for the property
Potential energy consumption Ep kWh/m2 Potential annual energy consumption for the property

after specific improvements have been carried out
Energy saving potential δEp % Derived from the current and the potential energy

consumption, namely, δEp = Ec�Ep

� �
=Ec × 100%

Use type Including residential (92.9%) and non-residential
(7.1%)

Property type Including flats (30.2%) and houses (69.8%)
Construction year Including <1918 (historic, 21.7%), 1918–1939

(interwar, 14.5%), 1939–1960 (postwar, 26.4%),
1960–1980 (sixties & seventies, 16.1%), >1980
(modern, 21.3%)

Lighting cost GBP Annual energy costs for lighting the property
Hot water cost GBP Annual energy costs for hot water
Heating cost GBP Annual energy costs for heating the property
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thermography can be used to identify thermal anomalies of buildings (Lucchi, 2018). Previous studies
in the literature have demonstrated that, if the target domain (e.g., a wall or a roof with the same
material) contains both normal and abnormal (i.e., with thermal anomalies) areas, its temperature
distribution follows a multi-modal Gaussian (or normal) distribution (Garrido et al., 2018). The
Gaussian Mixture Model (GMM) is an unsupervised ML approach to representing a dataset with a
weighted average of all individual normal (or Gaussian) distributions called mixture components
(Debnath et al., 2022; Garg et al., 2013). It is said that a d-dimensional random variable x follows a
k-component GMM if its probability density function can be written as:

p xð Þ=
Xk

i = 1
ωi �Ni xjμi,Σ ið Þ,

ωi ≥ 0 and
Xk

i= 1
ωi = 1for i∈ 1,…,k½ �,

(1)

whereNi �ð Þ is the i-th mixture component that is a Gaussian distribution; andωi, μi, and Σ i are its weight,
mean, and variance, respectively. The Expectation—Maximization (EM) algorithm is commonly utilized
to fit GMM, namely, to estimate the values ofωi, μi, and Σ i for ensuring that the GMM has the maximum
likelihood.

Temperature clustering based on GMM is performed as follows. First, clustering is performed by
applying GMM to the temperature data of all pixels constituting the input TIR image. As an example,
Figure 5 (left bottom) illustrates a histogram of the temperature data, along with the best-fit model for a
mixture with six components, the probability density functions (PDFs) of which are represented by
dashed lines. Figure 5 (left top) shows the temperature distribution in color-coded box plots for six
mixture components. Figure 5 (right) indicates the spatial (pixel) locations of each distribution (or cluster)
in the thermal image. Figure 5 (left top) and (right) share the same color code. As shown in the figure,
temperatures belonging to the same mixture component are regarded as clusters with the same tempera-
ture characteristics. TheAkaike information criterion (AIC) is applied to optimize the hyperparameter (k),
which is the number of mixture components. As the most widely used method to determine the optimal k
ofGMM,AIC indicates the relative distance between the unknown true likelihood function of the data and
the fitted likelihood function of the model (Li et al., 2018). A lower AIC means the model is closer to
reality. In this work, we used a range from 2 to 8 for the hyperparameter k, following previous studies
(Kim et al., 2021), and the k value with the lowest AIC value is selected for the GMM clustering.

Figure 5. Temperature clustering to detect thermal anomalies: (left) GMM clustering and (right)
segmentation result.
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4. Results and discussion

4.1. EPCs of buildings in Cambridge

EPC databases are a vital resource for mapping the urban building stock and promoting higher overall
energy efficiency. This section provides an overview of the energy performance of existing buildings
in Cambridge, through an analysis of 1,725 EPCs collected by the UK Department for Leveling Up,
Housing&Communities. All information that could identify the building, the building unit, the owner, or
the technician was removed due to confidentiality concerns.

Figure 6 shows the spatial distribution of these 1,725 individual buildings across 14 wards in
Cambridge. From this map, we can find that these buildings are approximately evenly distributed in
the whole city, making the EPCs sample data representative and leading to reliable conclusions.

In Figure 7, the bar plot at the bottom shows the number of buildings in each ward, in which
Trumpington ward has the greatest number of buildings (160); while the Castle ward has the least
(75). The data suggest that each ward has enough samples to generate statistically significant findings.
The two line plots at the top represent the average current energy consumption (Ec, kWh/m2, blue) and the
average energy-saving potential (δEp, %, red) grouped by ward. What stands out in these data is that
Trumpingtonward hits the minimum values of both line plots, where itsEc and δEp are 159.2kWh/m2 and
24.5%, respectively. A possible explanation for this might be that, in the database, almost 50% of

Figure 6. Spatial distribution of 1,725 individuals in the building archetype for EPCs analysis.
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buildings in this ward were built after 1980. Thermal regulations have changed over time, and as a result,
the energy performance requirements in recent building code updates have become stricter.

According to the current energy consumption data, we found that buildings in four wards, specifically
Market (268.8kWh/m2), Newnham (263.1kWh/m2), Romsey (261.9kWh/m2), and West Chesterton
(271.7kWh/m2), exhibit higher average energy consumption compared to buildings in other wards,
which have an average energy consumption of 228.84kWh/m2. This discrepancy can be attributed to the
construction year of the buildings in these wards, as they generally have a higher proportion of samples
built before 1939, namely 71.4%, 58.5%, 65.0%, and 63.2%, respectively, in contrast to the average of
26.2% for other wards.

With regard to energy-saving potential, Cherry Hinton Ward exhibits the maximum value (47.8%). It
may be explained that 85.2% of sample buildings in this ward are houses, which is significantly higher
than the average level (69.8%). Houses generally possess more energy-saving potential than flats, which
will be further elaborated through subsequent data in Table 3.

The average energy use, separated into use types and construction periods, is presented in Figure 8. In
this box-and-whisker diagram, the box indicates the interquartile range (IQR) between the 1st quartile
(Q1, 25%) and the 3rd quartile (Q3, 75%), that is, IQR = Q3—Q1, which are derived from n building
samples in the database and n is the number of buildings as illustrated by the marked blue curve. The band
and the square inside the box are the median (Q2, 50%) and the mean (with a data label next to the box),
respectively. While diamonds beyond the whiskers denote outliers. The data of non-residential buildings
lack a clear overall trend due to the limited sample size, but the ones built after 1980 (modern) generally
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(c) grouped by ward.
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consume less energy than those built before 1918 (historic), saving about 23.7% energy on average. In
contrast, the residential building category has a much greater number of samples, and there is a clear
tendency toward reduced energy consumption levels. Specifically, buildings erected after 1980 are about
42.2%, 37.4%, and 31.8% more energy-efficient than those built before 1918, between 1918 and 1939,
and between 1939–1960, respectively.

Figure 9 gives the energy consumption grouped by property types and construction periods. The results
suggest that flats are generallymore energy-intensive than houses, for example, regarding those built after
1980, flats and houses average consume the energy of 174.9 and 163.8kWh/m2, respectively. In addition,
both flat and house samples demonstrate that there is a clear relationship between the amount of energy
consumed and the year of construction. More specifically, the older the building is, the more energy it
consumes.

Figure 10 Provides a closer inspection of energy end-uses in both flats and houses built in different
periods. The results reveal that, in flats, most of the energy is used for heating (59.1–73.0%). As expected,
in houses, energy consumption associated with heating is even higher (72.8–81.8%). Moreover, the
heating system in newer buildings uses less energy since thermal regulations have changed regularly over
time. About 20% and 15% of the total energy consumed by flats and houses, respectively, are attributed to
the hot water system. Lighting accounts for about 10% of both flats and houses.

Figure 11 illustrates the distribution of energy ratings categorized by property type and construction
year. In older buildings (erected before 1980), most of the houses show a poor energy performance profile.
Particularly, D class is themost predominant energy label within house units (47.7–52.3%), followed byC

Table 3. Energy saving potential (mean ± std, %) of buildings

<1918 1918–1939 1939–1960 1960–1980 >1980

Grouped by use type
Non-residential 28.1 ± 25.9 42.4 ± 28.0 25.7 ± 24.8 – 18.7 ± 23.5
Residential 43.2 ± 26.2 45.9 ± 24.8 38.9 ± 24.4 39.3 ± 23.9 19.5 ± 22.9
Grouped by property type
Flat 22.3 ± 20.8 21.2 ± 21.2 15.9 ± 14.3 21.5 ± 16.6 7.0 ± 11.3
House 46.6 ± 25.8 50.1 ± 22.8 45.2 ± 23.0 49.5 ± 21.3 31.6 ± 24.9

3
1

3
.2

2
2

9
.4

2
3

4
.1

2
3

9
.0 2
8

3
.1

2
6

1
.2

2
3

9
.9

2
4

3
.0

1
6

3
.6

0

200

400

600

C
u

rr
en

t 
en

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
k

W
h

/m
2
)

 Q1-Q3  1.5 IQR  Median

 Mean (Labelled) Outliers

0

100

200

300

400

500

N
u

m
b

er
 o

f 
b

u
il

d
in

g
s

<1918 1918-1939 1939-1960 >1980 <1918 1918-1939 1939-1960 1960-1980 >1980

Non-Residential Residential

Figure 8. Energy consumption is grouped by use type and construction year.

e44-12 Yinglong He et al.

https://doi.org/10.1017/eds.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.26


class (11.6–41.5%) and E class (7.4–29.1%). While flat units have better energy performance in general,
where the predominant label is C class (29.7–56.8%), followed by D class (26.1–47.8%). When it comes
tomodern buildings (built after 1980), the energy labels of both flats and houses are dominated byC andB
classes (about 80% in total). On thewhole, the percentages of different energy labels largely depend on the
construction year and the property type.

Table 3 summarizes the energy saving potential (mean ± std) of buildings grouped by construction year
and use/property type. It is worth noting that the data of non-residential buildings in this table are not
statistically significant due to the limited sample size as mentioned above. Despite relatively broad
uncertainty ranges, some distinct trends are apparent. The results suggest that, compared with modern
buildings (>1980), the older ones have a much greater potential to cut energy use by implementing
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efficiencymeasures. For example, in residential buildings, the energy-saving potential of older ones (built
before 1980) is about 40%,which is double the value ofmodern ones. In addition, the house units aremore
likely to have an outsized benefit from energy retrofit interventions. Specifically, through energy
improvement measures, the older houses (built before 1980) can save almost half of the energy use,
while the older flats can only reduce energy consumption by about 20% on average. Even for the modern
houses erected after 1980, the amount of energy consumed may fall by 31.6%.

4.2. Effects of resolution (GSD) on TIR data of buildings

This section investigates the effects of image resolution on the thermal mapping of buildings. Figure 12
(A) shows the drone TIR image of Wolfson College, with a GSD of 0.26 m/pixel. The black-colored
polygons (i.e., WC-1—16) encapsulate the built-up area of the footprint of 16 different buildings. It is
worth noting that, in this imagery, some buildings’ data are partially affected by vegetation covers, e.g.,
WC-2 and WC-5. These affected areas are therefore excluded when drawing the buildings’ polygons.

Figure 12 (B) compares the temperature and the footprint of 16 Wolfson College buildings. In
particular, four solid lines with error bars (in different colors) show these buildings’ temperature values
(mean ± std) that are derived from the drone TIR imageries at four different resolutions (i.e., GSD = 0.26,
1, 3, and 6 m/pixel). Meanwhile, the dashed line with the circle marker gives the land surface temperature
(LST) values of the buildings. LST data is calculated based on the Landsat-8 database, and therefore, has a
much lower resolution (GSD = 30 m/pixel). In addition, at the bottom of this chart, the buildings’
footprints are provided, ranging from 70 to 1300m2, to reveal the impact of the building footprint on the
analysis of buildings’ thermal characteristics at different resolutions. The results suggest that down-
sampling is more likely to distort smaller buildings’ results (e.g., ID = 9 with a footprint of 72m2), which
implies that the space telescopewith aGSD of 6m/pixel is probably not reliable formonitoring residential
buildings’ temperature.

In addition, Table 4 calculates the Pearson correlation values between theLSTdata (GSD=30m/pixel) and
drone-emulated data (GSD = 0.26, 1, 3, and 6 m/pixel). Although the temperature values of these two data
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sources lie in different ranges, see Figure 12 (B), possible reasons include different sensing times, distances,
and devices, they show sensible correlations, in which their Pearson values range from 0.770 to 0.778.

Figure 13 (A) shows the TIR mapping data of Peterhouse, with a GSD of 0.26 m/pixel. The black-
colored polygons (i.e., PH-1–15) encapsulate the built-up area of the footprint of 15 different buildings.
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Figure 12. Drone thermal mapping of Wolfson College (A) and corresponding temperature results at
different resolutions (B).
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Table 4. Pearson correlation (⍴) of mean temperature values of Wolfson College buildings

Resolutions 0.26 m/pixel 1 m/pixel 3 m/pixel 6 m/pixel

30 m/pixel 0.774 0.774 0.770 0.778
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resolutions (b).
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Figure 13 (B) compares the building rooftop temperature values, including drone-derived TIR data and
satellite-derived LST data. The footprints of these 15 buildings are given at the bottom. The drone TIR
results at four different resolutions (GSD = 0.26, 1, 3, and 6 m/pixel) further support the findings in
Figure 12 (B), namely, downsampling is more likely to distort smaller buildings’ results (e.g., ID = 2).

Table 5 calculates the Pearson correlation values between the LST data (GSD = 30 m/pixel) and drone
TIR data (GSD = 0.26, 1, 3, and 6 m/pixel). However, the temperature values from these two data sources
generally show trivial correlations, lying between 0.17 and 0.24, which may be caused by different
sensing times, distances, and devices.

4.3. Effects of angle of view (AOV) on TIR data of buildings

In order to disclose the impacts of the AOVand the resolution (i.e., GSD) on thermal imagery of building
facades, Table 6 compares THE regional temperature results of the north facade of St. Peter’s Terrace of
Peterhouse. In this table, from top to bottom, different graphs’ AOVs decrease (i.e., extra-large, large,
medium, and small); while from left to right their GSDs increase (0.26, 1, 3, and 6 m/pixel). In addition,
the zonal statistics results are provided below each graph, giving statistics (e.g., mean value, count, and
standard deviation [std]) on pixels of the thermal image that are within the selected polygons/zones. The
results suggest that AOV has significant impacts. In particular, temperature statistical results are more
sensitive to AOV than to GSD. Moreover, the use of fractions of pixels for the lowest resolution
(GSD = 6 m/pixel) leads to significant variations in std.

4.4. Temperature clustering of building rooftops

Table 7 gives the pixel-based temperature clustering results of Wolfson College (WC) and Peterhouse
(PH) at four different resolutions (GSD = 0.26, 1, 3, and 6m/pixel), based on the drone-emulated data and
the GMM clustering method. In addition, more detailed temperature clustering results regarding indi-
vidual building rooftops are given in Table A1 (in Appendix A). Clusters are displayed in different colors,
and the pixels of the same color are in the same cluster. It is obvious that thermal anomalies can only be
properly identified through images with GSD < = 1 m/pixel. On the other hand, images with 1 m/pixel <
GSD < = 6 m/pixel can be used to detect hot areas of building surfaces, instead of more detailed thermal
features (e.g., thermal anomalies or bridges). For example, in Table A1, case WC-8 highlights a thermal
anomaly (in red) in the region corresponding to the rooftop of the kitchen of the Clubroom in Wolfson
College. When GSD = 3 or 6 m/pixel, this region is represented by only several or even one pixel(s),
making it statistically non-significant for detecting thermal anomalies in practice.

5. Conclusions

Making existing inefficient buildings more efficient and sustainable is crucial to maximizing the building
sector’s potential for energy savings because buildings typically have long lifespans and there is currently
low turnover in the sector. To plan and materialize energy retrofit interventions in the existing building
stock, we must first understand the energy consumption and the energy saving potential of this stock
according to property type, construction period, and specific end-uses, and then have reliable approaches
to monitor energy outputs and identify thermal defects of buildings. In this context, EPC-based building
archetypes and thermal infrared (TIR)-based building diagnostic techniques are key policy and technol-
ogy tools to enhance the total energy efficiency of the built environment.

Table 5. Pearson correlation (⍴) of mean temperature values of Peterhouse buildings

Resolutions 0.26 m/pixel 1 m/pixel 3 m/pixel 6 m/pixel

30 m/pixel 0.173 0.181 0.181 0.232
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In this study, we first developed the EPC-based building archetypes that aggregated different
geometric or non-geometric data sources. Secondly, the TIR images of building rooftops were collected
by drones or retrieved from satellite imagery. Finally, we presented an insight into the energy performance
of buildings in Cambridge, through the analysis of the 1,725 EPCs of existing buildings sampled across
the whole city. In addition, we explored ML-assisted thermal anomaly detection based on TIR images of

Table 6. Thermal imagery at different AOVs

AOV Zonal statistics

Resolutions (GSD, m/pixel)

0.26 1 3 6

Extra large (XL)

count 1167 77 7 2.16
mean ± std 9.05 ± 0.48 °C 9.07 ± 0.52 °C 9.17 ± 0.21 °C 8.96 ± 1.45 °C

Large (L)

count 1029 56 5 1.58
mean ± std 8.69 ± 0.47 °C 8.71 ± 0.49 °C 8.91 ± 0.22 °C 8.75 ± 1.31 °C

Medium (M)

count 870 42 4 1.13
mean ± std 8.35 ± 0.51 °C 8.22 ± 0.59 °C 8.15 ± 0.48 °C 8.49 ± 2.36 °C

Small (S)

count 677 29 2 0.77
mean ± std 7.88 ± 0.54 °C 7.78 ± 0.82 °C 8.16 ± 0.06 °C 7.40 ± 1.74 °C

e44-18 Yinglong He et al.

https://doi.org/10.1017/eds.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.26


Table 7. GMM clustering of rooftops TIR data of WC and Peterhouse

Wolfson College (WC) Peterhouse (PH)

GSD GMM clustering GMM components GMM clustering GMM components

0.26 m/pixel

1 m/pixel

3 m/pixel

Continued
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building rooftops inWolfson College and Peterhouse at the University of Cambridge and investigated the
influencing factors in imaging such as resolution (i.e., GSD) and AOV.

The EPC results suggest that building energy consumption (kWh/m2) is largely affected by the
year of construction because modern buildings have to meet higher energy performance requirements
stated in the updated thermal building regulations. Moreover, in modern buildings (built after 1980),
flats (174.9kWh/m2) are on average more energy-intensive than houses (163.8kWh/m2). Regarding
energy end-uses, the energy consumption attributed to heating (over 60%) is much higher than that
of hot water (about 20%) and lighting (about 10%). On the other hand, energy-saving potential
(after specific energy retrofit interventions have been carried out) largely depends on both the
construction year and the property type. More specifically, older buildings show greater energy-
saving potential. Houses are more likely to have an outsized benefit (almost double) than flats from
energy retrofits.

For TIR results, we found that thermal anomalies can only be properly identified in thermal images
with a GSD of 1m/pixel or less. Images with a GSD of between 1 and 6m/pixel can be used to detect hot
areas of building surfaces, instead of more detailed thermal features such as anomalies. TIR images with
GSD of more than 6 m/pixel (e.g., Landsat), although not accurate enough for characterizing individual
buildings, can still be used to disclose heat island effects in urbanized areas. Moreover, the AOV has
significant impacts on the data. In particular, building temperature results are more sensitive to AOV
than to GSD.

In summary, this research provides a full picture of the energy consumption of existing buildings in
Cambridge and explores thermography techniques for thermal anomaly detection in building enve-
lopes. The results can help to set priorities for energy retrofitting initiatives and enhance building
diagnostic techniques. They could also support construction professionals in modernizing their
business plans and technological tools, as well as public authorities in developing future energy
policies and regulations.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/eds.2024.26.

Table 7. Continued

Wolfson College (WC) Peterhouse (PH)

GSD GMM clustering GMM components GMM clustering GMM components

6 m/pixel

*More detailed temperature clustering results regarding individual building rooftops are given in Table A1 in Appendix A.ss
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