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SUFFICIENT AND NECESSARY CONDITIONS FOR THE IDENTIFIABILITY OF DINA
MODELS WITH POLYTOMOUS RESPONSES

Mengqi Lin and Gongjun Xu
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Cognitive diagnosis models (CDMs) provide a powerful statistical and psychometric tool for
researchers and practitioners to learn fine-grained diagnostic information about respondents’ latent
attributes. There has been a growing interest in the use of CDMs for polytomous response data, as more and
more items with multiple response options become widely used. Similar to many latent variable models,
the identifiability of CDMs is critical for accurate parameter estimation and valid statistical inference.
However, the existing identifiability results are primarily focused on binary response models and have not
adequately addressed the identifiability of CDMs with polytomous responses. This paper addresses this
gap by presenting sufficient and necessary conditions for the identifiability of the widely used DINAmodel
with polytomous responses, with the aim to provide a comprehensive understanding of the identifiability
of CDMs with polytomous responses and to inform future research in this field.
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Cognitive diagnosis models (CDMs), which serve as a powerful tool to infer subjects’ latent
attributes such as skills, knowledge, or psychological disorders based on their responses to some
designed diagnostic items in the cognitive diagnosis assessment, have drawn increasing attention
over the years. As a family of discrete latent variable models, its popularity is not limited to
educational assessments (Junker & Sijtsma, 2001; von Davier, 2008; Henson et al., 2009; Rupp et
al., 2010; de la Torre, 2011;Wang et al., 2018), psychiatric diagnosis of mental disorders (Templin
& Henson, 2006; de la Torre et al., 2018), and epidemiological and medical measurement studies
(Wu et al., 2017; O’Brien et al., 2019).

Various CDMs have been developed with different diagnostic assumptions and modeling
goals, among which the Deterministic Input Noisy output “And” gate model (DINA; Junker and
Sijtsma, 2001), which assumes that subjects are expected to complete an item correctly only
when they possess all required attributes, is one of the most popular ones. Furthermore, the DINA
model also serves as a basis for a larger range of more general CDMs, including the general
diagnostic model (von Davier, 2008), the log linear CDM (LCDM; Henson et al., 2009), and
the generalized DINA model (G-DINA; de la Torre, 2011). As tests with polytomous responses
appear more frequently in practice, the study of CDMswith polytomous responses has also grown
in popularity (Culpepper &Balamuta, 2021). Specifically, several models concerning polytomous
responses were proposed, such as general diagnostic models (GDM; von Davier, 2008), general
polytomous diagnosis models (GPDM; Chen and de la Torre, 2018), and sequential cognitive
diagnosis models (Sequential CDM; Ma and de la Torre, 2016).

As is the case with many statistical methods, ensuring the models applied in the cognitive
diagnosis are statistically identifiable is fundamental to achieve reliable and valid diagnostic
assessment. Additionally, this is also a necessity for consistent estimation of the model parameters
of interest and valid statistical inferences. The study of identifiability issue for CDMs has long
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been considered, such as DiBello et al. (1995), Maris and Bechger (2009), Tatsuoka (2009),
DeCarlo (2011), and von Davier (2014). Considerable identifiability developments have been
added to the CDM literature, such as DINA model and its generalizations in recent years. For
instance, Xu and Zhang (2016) and Gu and Xu (2019b) discussed the sufficient and necessary
condition for DINA model with binary responses. Xu (2017), Gu and Xu (2019a, 2020), Chen
et al. (2020) and Culpepper (2022) discussed identifiability for more generally restricted latent
class models. However, these results are targeted for dichotomous responses specifically, and the
requirements for the identifiability of models with polytomous responses have sparingly been
taken into consideration. For instance, Culpepper (2019) and Fang et al. (2019) discussed the
sufficient condition for the identifiability of general CDMs with polytomous responses, while the
necessity of those conditions remains an open problem.

Our paper fills this gap by providing sufficient and necessary conditions for the identifiability
of CDMs with polytomous responses. In particular, we focus on two commonly used polytomous
responses models under the DINA model setting: the GPDM (Chen & de la Torre, 2018) under
the DINA model, which we refer as GPDINA, and the Sequential CDM (Ma & de la Torre, 2016)
under the DINA model, which we refer as Sequential DINA model. There are several challenges
in developing the identifiability of the polytomous responses models. Firstly, in binary responses
DINA models, the uncertainty of each item is characterized by two item parameters, whereas in
polytomous responsesmodels, each item generally involvesmore than two parameters. Therefore,
polytomous responses models have more parameters to identify, which makes its identifiability
more challenging.What ismore intricate is that the dependency structure between these parameters
is different from that of the binary response models. This is because, in addition to accounting for
dependencies across items, polytomous models must also consider the dependency of parameters
within a single item.Moreover, the technical tool,T-matrix (Liu et al., 2013; Xu, 2017), which has
been widely used in the identifiability literature, is restricted to binary responses models currently,
to our knowledge.

To address these challenges, we generalize the T-matrix framework to the more complex
polytomous model settings. Based on different dependency structures of the parameters of the
two models, the generalizations of theT-matrix for the two considered models (i.e., GPDINA and
sequential settings) are also different. In particular, there is a significant difference in the structure
of the T-matrix for Sequential DINA model, as compared to the T-matrix for binary DINA
models, since the sequential modeling introduces more complex and challenging structure than
the binary DINA case. With this powerful tool, we establish sufficient and necessary conditions
for the identifiability of the GPDINA and the Sequential DINA models. Our proposed conditions
ensure the identifiability and also specify the practical requirements that the two models need
to process to be identifiable. Through the duality of the DINA and DINO models (Chen et al.,
2015), the identifiability finding can be immediately applied to the two models under the DINO
setting. Moreover, our results not only extend many existing results aimed at binary data to the
polytomous case, but also shed light on the study of more general polytomous CDMs, which cover
the considered DINA models as submodels. Practically, the sufficient and necessary condition
solely depend on the Q-matrix structure, and this easily verifiable requirement would serve as a
practical guideline for developing cognitive tests that are both statistically valid and estimable.

The rest of the paper is organized as follows. Section1 introduces the model setup and brings
up the definition of identifiability. Section2 introduces a powerful tool T-matrix, specific to the
polytomous responses models and develops the identifiability results, examples are also provided
for illustration. Section3 gives further discussion, and the supplementary material provides the
proofs for the main results.
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1. Model Setup

Beforewepresent our results,wefirst introduce somenotations.Let e j = (0, . . . , 1, 0, . . . , 0)�
denote the vector where only the j-th entry is 1. Let 1 = (1, . . . , 1)� denote the vector of all ones
and 0 = (0, . . . , 0)� denote the vector of all zeros. Let IK denote the K -dimensional identity
matrix. For a positive integerm, we denote [m] = {1, . . . ,m}. Let ◦ denote the Hadamard product
(element-wise product) of vectors. For instance, for a = (a1, . . . , am)� and b = (b1, . . . , bm)�,
a◦b = (a1b1, . . . , ambm)�. Let⊗ denote the Kronecker product between matrices. For example,
for c = (c1, . . . , cn)� ∈ R

n ,

a ⊗ c =

⎛
⎜⎜⎜⎝

a1c
a2c
...

amc

⎞
⎟⎟⎟⎠ ∈ R

mn×1, a ⊗ IK =

⎛
⎜⎜⎜⎝

a1IK

a2IK
...

amIK

⎞
⎟⎟⎟⎠ ∈ R

mK×K .

Assumewe have J polytomous items to measure K unobserved binary latent attributes, and a
binary latent attribute profile can bewritten asα = (α1, . . . , αK )�, whereαk ∈ {0, 1}. So there are
2K attribute profiles in total. For j ∈ [J ], define positive integer Hj to be the number of nonzero
categories (levels) the j-th polytomous itemhas, therefore, item j has Hj+1categories in total, i.e.,
0, 1, . . . , Hj . Accordingly, we define the observed randomvariable responseR = (R1, . . . , RJ )

�,
with R j ∈ {0, 1, . . . , Hj } and denote the set of all possible responses as S = {r = (r1, . . . rJ ) :
r j ∈ {0, 1, . . . , Hj }}.

In the CDM literature, the relationships between attributes and items are characterized by the
Q-matrix, which was proposed by Tatsuoka (1983). Different from CDMs with binary responses,
for polytomous responses, the interpretations of the entries in the Q-matrix differ according to
different modelings. In the following, we focus on two popular models under the DINA assump-
tion, the general polytomous diagnosis model (GPDINA) by Chen and de la Torre (2018) and the
Sequential DINA model by Ma and de la Torre (2016) separately and introduce different ways of
specifying the Q-matrix for polytomous CDMs.

1.1. The GPDINA Model

In GPDINA (Chen& de la Torre, 2018) (the GPDMunder the DINA assumption), for models
with J items and K attributes, we define a J × K binaryQ-matrix. The entry q jk of theQ-matrix
is interpreted as follows: q jk = 1 means completing (responding) any nonzero category of item
j requires attribute k, and q jk = 0 means completing any nonzero categories does not require
attribute k. So the j-th row of the Q-matrix, q j , denotes the attributes required to complete any
nonzero categories for item j . Therefore, any nonzero category of the same item requires the
same attributes and shares the same q-vector. In other words, nonzero categories of an item are
indistinguishable and can be exchanged.

We consider the DINA assumption under the GPDINA framework. As in the DINAmodel for
binary data, we denote the ideal response ξ j,α = I (α � q j ). To further quantify the uncertainty
of the responses, define the item parameters as:

θ+
j,l := P(R j = l | ξ j,α = 1), l ∈ [Hj ], (1)

θ−
j,l := P(R j = l | ξ j,α = 0), l ∈ [Hj ], (2)

where θ+
j,l means the probability of completing category l of item j given the attribute profile

α is capable of completing it and θ−
j,l means the probability of completing category l of item
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j given the attribute profile α is not able to complete it. Then, 1 − θ+
j,l can be interpreted as

slipping parameter and θ−
j,l interpreted as the guessing parameter (Junker & Sijtsma, 2001), and

we assume that θ+
j,l > θ−

j,l for l ∈ [Hj ] and j ∈ [J ]. Aswe can see, although the attributes required
by different categories of the same item are the same, here we allow the response uncertainty to
be heterogeneous, i.e., θ+

j,l and θ−
j,l can be different across l. So in total we have 2

∑J
j=1 Hj

item parameters, and the multiplicity of the item parameters is one of the aspects that makes
polytomous responses models different from the binary DINAmodels. For notation convenience,
we also let

P(R j = 0 | ξ j,α = 1) = 1 −
Hj∑
l=1

θ+
j,l := θ+

j,0, (3)

P(R j = 0 | ξ j,α = 0) = 1 −
Hj∑
l=1

θ−
j,l := θ−

j,0. (4)

When q j = 0, ξ j,α ≡ 1 for all α, then θ−
j,l is not defined for all l ∈ [Hj ]. In Proposition 1,

we will show that excluding these zero q-vectors does not affect our analysis. Let

θ+
j = (θ+

j,1, θ+
j,2, . . . θ+

j,Hj
)� and θ−

j = (θ−
j,1, θ−

j,2, . . . θ−
j,Hj

)�,

θ+ = (θ+
j )Jj=1 and θ− = (θ−

j )Jj=1, where there are
∑J

j=1 Hj entries in both θ+ and θ−. Denote
pα as the proportion of attribute profile α in the population and p := (pα : α ∈ {0, 1}K )�, which
satisfies

∑
α∈{0,1}K pα = 1, and we assume that pα > 0 for all α. Given the attribute profile α,

assume that a subject’s responses to the J items are independent. For r = (r1, . . . , rJ )� ∈ S, we
have

P(R = r | Q, θ+, θ−, p) =
∑

α∈{0,1}K
pα

J∏
j=1

(θ+
j,r j

)ξ j,α (θ−
j,r j

)(1−ξ j,α). (5)

We use the following example to further the illustration of the model setup.

Example 1. Suppose there are two polytomous items, each with two nonzero categories, so then
J = 2 and H1 = H2 = 2. Suppose only two attributes α1 and α2 are involved, and the Q-matrix
takes the following formula:

Q =
⎛
⎝i tem 1

{
q1 = [1 0]

i tem 2
{

q2 = [0 1]

⎞
⎠ .

The dashline “- - -” is used to separate different items. Therefore, the first and the second categories
of the first item both require solely α1, and the first and the second categories of the second item
both require solely α2. In particular, attribute profile α = (1, 0) has ξ1,α = 1 and ξ2,α = 0. Thus,

P(R1 = 1 | α) = θ+
1,1; P(R1 = 2 | α) = θ+

1,2; P(R2 = 1 | α) = θ−
2,1; P(R2 = 2 | α) = θ−

2,2,

whereas for attribute profile α = (0, 1), ξ1,α = 0, ξ2,α = 1, and

P(R1 = 1 | α) = θ−
1,1; P(R1 = 2 | α) = θ−

1,2; P(R2 = 1 | α) = θ+
2,1; P(R2 = 2 | α) = θ+

2,2.
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Therefore, attribute profile α = (1, 0) has higher probability of completing the two nonzero
categories of the first item but lower probability of completing the two nonzero categories of the
second item. Distributions for profiles with α = (1, 1) and α = (0, 0) can be similarly obtained
as well.

Under the above GPDINA model setup, the model parameters include (θ−, θ+, p). To study the
identifiability of these parameters, we formally introduce the definition in the following, and we
defer the identifiability result in Sect. 2.
Identifiability. We say that the GPDINA parameters are identifiable if there is no (θ̄

+
, θ̄

−
, p̄)

�= (θ+, θ−, p) such that

P(R = r | Q, θ+, θ−, p) = P(R = r | Q, θ̄
+
, θ̄

−
, p̄) for all r ∈ S. (6)

To simplify our discussion of the identifiability issue, we assume that q j �= 0 for all j ∈ [J ]
without compromising the validity of the analysis, thanks to the following proposition.

Proposition 1. Let� = { j ∈ [J ] : q j = 0} denote the set of items whose q-vectors are zero, then
the GPDINA model parameters with Q-matrix are identifiable if and only if the GPDINA model
parameters with Q−�-matrix are identifiable, where Q−� is obtained by removing the q-vectors
in Q corresponding to the items in �.

1.2. The Sequential DINA Model

Another popularmodeling approach for polytomous responses is the Sequential DINAmodel,
proposed by Ma and de la Torre (2016). In the Sequential DINA model with J items and K
attributes, we assume that the subject’s response to item j ∈ [J ], with R j = 0, indicates that the
subject fails to complete the first category, and R j = r j for 0 < r j < Hj indicates that the subject
has completed categories 1, . . . , r j successfully and failed to complete category r j +1. R j = Hj

simply means the subject successfully completed all the categories. Therefore, categories within
one item are not exchangeable, and such ordered categories make it different from the previous
GPDINA model setup.

Due to the sequential hierarchy of the categories, different categories could require different
attributes. What’s worth noticing is that though response categories are assumed to be attained
sequentially, there is no required structure for the attributes required by different categories. For
each item j , its different categories should have their corresponding q-vectors. In Ma and de la
Torre (2016), they refer suchQ-matrix as restricted Q-matrix. As defined, the polytomous item j
has Hj nonzero categories, so for the associations between the attributes and the polytomous item
j , we have Hj rows in the Q-matrix to characterize such information. With each row having K
entries indicating which attributes are required by the category, the Q-matrix can be summarized
as a (

∑J
j=1 Hj ) × K binary matrix. Specifically, we index the Q-matrix in the following way:

For l ∈ [Hj ], we define the ( j, l)-th row of the matrix, q j,l , as a K dimensional binary vector
indicating the association between the category l of item j and the K attributes. According to
our model construction, the q j,l vector indicates the attributes required to complete category l of
item j , given that the subject has successfully completed the previous categories 1, . . . , l − 1. To
further illustrate the model setup, we present an example in the following.
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Example 2. Suppose there are two polytomous items with H1 = H2 = 2 and two attributes α1
and α2, and

Q =

⎛
⎜⎜⎜⎜⎝

i tem 1

{
category 1 q1,1 = [1 0]
category 2 q1,2 = [0 1]

i tem 2

{
category 1 q2,1 = [0 1]
category 2 q2,2 = [1 1]

⎞
⎟⎟⎟⎟⎠

. (7)

Therefore, to complete the first category of the first item, a subject needs to require the first
attribute, and given that the subject has completed the first category, he/she needs to require the
second attribute to complete the second category of the first item.

Since different categories require different attributes, the ideal response needs to be specified
accordingly to different categories. We define the ideal response as ξ j,l,α = I (α � q j,l) for
category l of item j . This is also different from the setup in GPDINA, for which we only need to
define item-wise ideal response. To quantify the uncertainty of the response to different categories,
we define the item parameters specific to the Sequential DINA model as:

β+
j,l := P(R j ≥ l | R j ≥ l − 1, ξ j,l,α = 1), l ∈ [Hj ], (8)

β−
j,l := P(R j ≥ l | R j ≥ l − 1, ξ j,l,α = 0), l ∈ [Hj ], (9)

and we assume that 0 ≤ β−
j,l < β+

j,l ≤ 1. Note that the inequality β−
j,l < β+

j,l is assumed to
respect the monotonicity assumption of the latent attributes (Xu & Zhang, 2016), which is also
needed to avoid the label switching issue of the DINA model. Consequently, β−

j,l is permitted to

take on values within the range [0, 1), while β+
j,l can take on values within the range (0, 1]. These

parameters characterize the probability of completing category l of item j given a subject with
attributes α has completed the previous categories. Furthermore, 1 − β+

j,l can be interpreted as

the slipping parameter and β−
j,l interpreted as the guessing parameter (Junker & Sijtsma, 2001).

Also, notice that

P(R j ≥ 0 | ξ j,l,α = 1) = 1, l ∈ [Hj ],
P(R j ≥ 0 | ξ j,l,α = 0) = 1, l ∈ [Hj ],

and we let β+
j,Hj+1 = β−

j,Hj+1 = 0.
To see how these item parameters are related to the model setup inMa and de la Torre (2016),

we formulate several concepts in their paper as the following. The processing function S j (l | α)

in Ma and de la Torre (2016), which denotes the probability of completing category l of item j
provided that they have already completed category l − 1 successfully, given the attribute profile
α, can be written as

S j (l | α) = (β+
j,l)

ξ j,l,α (β−
j,l)

1−ξ j,l,α = P(R j ≥ l | R j ≥ l − 1, α), l ∈ [Hj ].
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Let S j (0 | α) = P(R j ≥ 0 | α) = 1 and S j (Hj + 1 | α) = 0. Then, noticing that

P(R j ≥ r j | α) =
r j∏
l=1

P(R j ≥ l | R j ≥ l − 1, α) · P(R j ≥ 0 | α)

=
r j∏
l=1

S j (l | α)

=
r j∏
l=1

(β+
j,l)

ξ j,l,α (β−
j,l)

1−ξ j,l,α ,

given the attribute profile α, the probability of R j = r j can be written as

P(R j = r j | α) = P(R j ≥ r j | α) − P(R j ≥ r j + 1 | α)

= [
1 − S j (r j + 1 | α)

] r j∏
l=0

S j (l | α).

Similar to GPDINA, when q j,l = 0, ξ j,l,α ≡ 1 for all α, and then β−
j,l is not defined. We

will show later in Proposition 2 that excluding these categories with q j,l = 0 does not affect our
analysis. Note that when β−

j,l = 0 (q j,l is not necessarily 0), some model parameters may not be

well defined. Suppose category l∗ is the first category in item j which appears to have β−
j,l∗ = 0,

i.e., β−
j,l > 0 for l < l∗. If we denote �−

j,l∗ := {α : ξ j,l∗,α = 0} as the set of attribute profiles that
are not able to complete the l∗-th category of item j ideally, and if the probability of guessing
correctly category l∗ of item j is also 0, then there’s no way for the subject to complete higher
categories of item j . So we define for α ∈ �−

j,l∗ ,

β+
j,l = β−

j,l = 0, for l > l∗. (10)

Assume that a subject’s responses to the J items are conditionally independent given the
attribute profiles. We let

β+
j =

⎛
⎝β+

j,1, β+
j,1β

+
j,2, . . .

Hj∏
l=1

β+
j,l

⎞
⎠ and β−

j =
⎛
⎝β−

j,1, β−
j,1β

−
j,2, . . .

Hj∏
l=1

β−
j,l

⎞
⎠ , for j ∈ [J ]

and β+ = (β+
1 ,β+

2 , . . . ,β+
J ), β− = (β−

1 ,β−
2 , . . . ,β−

J ), then

P(R = r | Q,β+,β−, p) =
∑

α∈{0,1}K
pα

J∏
j=1

P(R j = r j | α). (11)

The Sequential DINA model parameters consist of (β+,β−, p). Following the literature, we
formally define the identifiability for the Sequential DINA model in the following.
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Identifiability.We say that the Sequential DINA model parameters are identifiable if there is no
(β̄

+
, β̄

−
, p̄) �= (β+,β−, p) such that

P(R = r | Q,β+,β−, p) = P(R = r | Q, β̄
+
, β̄

−
, p̄) for all r ∈ S. (12)

Similar to GPDINA, in the following proposition, we show that excluding categories with
q j,l = 0 does not influence our analysis of the identifiability. Therefore, for simplicity, we assume
that q j,l �= 0 for all l ∈ [Hj ], j ∈ [J ] in this paper.
Proposition 2. Let �s = {

( j, l) : q j,l = 0
}
denote the set of categories whose q-vectors are

zero, then the Sequential DINA model parameters withQ-matrix are identifiable if and only if the
Sequential DINA model parameters with Q−�s -matrix are identifiable, where Q−�s is obtained
by removing the q-vectors in Q corresponding to the categories in �s .

1.3. Relationship Between GPDINA and Sequential DINA Models

In this section, we briefly discuss the relation between the GPDINAmodel and the Sequential
DINA model.

Fundamentally, GPDINA and Sequential DINA models differ by the hierarchy of the cate-
gories of items. In GPDINA, different nonzero categories of the same item can be exchanged and
share the same q-vector, whereas in Sequential DINAmodel, different nonzero categories are gen-
erally not exchangeable and need to be completed sequentially, and different nonzero categories
are allowed to have arbitrarily different q-vectors. However, when all the nonzero categories of
an item share the same q-vector, the Sequential DINA model becomes equivalent to GPDINA.

Formally, in Sequential DINA model, when q j,1 = · · · = q j,Hj , such Q-matrix is referred
to as unrestricted Q-matrix (Ma & de la Torre, 2016), we have ξ j,1,α = · · · = ξ j,Hj ,α for all
α and j ∈ [J ]. Under this Q-matrix, attribute profile α is either capable of completing all the
nonzero categories of an item or unable to complete any nonzero category. With these constraints,
such Q-matrix is also applicable to GPDINA, and we show that the two models are equivalent
by presenting a bijective mapping from the item parameters of GPDINA to the parameters of the
Sequential DINAmodel when the parameters are well defined. Specifically, for each item j ∈ [J ],
we have the following relation between the two models’ parameters.
From Sequential DINA model to GPDINA:

{
P(R j = l | ξ j,α = 1) = θ+

j,l = (1 − β+
j,l+1)

∏l
h=1 β+

j,h, for l ≥ 1;
P(R j = l | ξ j,α = 0) = θ−

j,l = (1 − β−
j,l+1)

∏l
h=1 β−

j,h, for l ≥ 1.

From GPDINA to Sequential DINA model:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P(R j ≥ l | R j ≥ l − 1, ξ j,α = 1) = β+
j,l =

∑Hj
h=l θ

+
j,h∑Hj

h=l−1 θ+
j,h

, for l ≥ 1;

P(R j ≥ l | R j ≥ l − 1, ξ j,α = 0) = β−
j,l =

∑Hj
h=l θ

−
j,h∑Hj

h=l−1 θ−
j,h

, for l ≥ 1.

By examining the above equations, it becomes apparent that there is a one-to-one correspondence
between the parameters of the two models, demonstrating the equivalence of the two models
under the considered Q-matrix constraints.
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2. Identifiability

This section introduces our identifiability results for the GPDINA model and the Sequential
DINAmodel. To provide a foundation for these results, wefirst generalize theT-matrix, a powerful
tool in the literature to establish the identifiability of CDMswith binary responses (Liu et al., 2013;
Xu & Zhang, 2016; Xu, 2017), to polytomous models in Sect. 2.1. Since the structure of the two
polytomous models differs, the T-matrix generalizations also differ, and we provide examples to
illustrate this. We then formally present our identifiability results for the two models in Sects. 2.2
and 2.3, respectively.

2.1. Generalized T-Matrix for CDMs with Polytomous Responses

Directly working on Eqs. (6) and (12) from the definitions of identifiability is challenging.
Alternatively, we work on the marginal probability matrix, the T-matrix, firstly introduced by Liu
et al. (2013), which sets up a linear dependence between attribute distribution and the response
distribution. However, under the DINAmodel setting, most existing literature only focuses on the
T-matrix for binary responses. For polytomous responseDINAmodels, there aremore parameters
involved for each item, and these parameters cannot be naively treated separately. Our aim in this
section is to generalize this powerful T-matrix tool to polytomous response models adjusted
accordingly to the model setup.

2.1.1. T-Matrix for GPDINA The T-matrix for GPDINA T(θ+, θ−) is a
∏J

j=1(Hj +1) × 2K

matrix, where the entries are indexed by row index r ∈ S with r j ∈ {0, 1, . . . , Hj } and column
index α ∈ {0, 1}K . The r-th row and α-th column entry of T(θ+, θ−), denoted by tr,α(θ+, θ−),
is defined as

tr,α(θ+, θ−) = P

⎛
⎝ ⋂

j :r j �=0

{R j = r j } | Q, θ+, θ−,α

⎞
⎠ =

∏
j :r j �=0

P
(
R j = r j | Q, θ+, θ−,α

)
.

When r = 0, t0,α(θ+, θ−) = 1 for any α. When r = r j · e j ,

tr,α(θ+, θ−) = P(R j = r j | Q, θ+, θ−,α).

Let Tr(θ
+, θ−) be the row vector in the T-matrix corresponding to r . Then for any r �= 0, we

can write Tr(θ
+, θ−) = ◦

j :r j �=0
Tr j ·e j (θ+, θ−), where ◦ is the element-wise product of the row

vectors. Since there exists a one-to-one mapping between Tr and P(R = r | Q, θ+, θ−, p) for
all r ∈ S, we may substitute the original identifiability problem with an equivalent statement as
follows.

Lemma 1. Following the definition in (6) and letting the attribute α index of p be consistent with
the α index in T, the GPDINA parameters are identifiable if and only if there is no (θ̄

+
, θ̄

−
, p̄) �=

(θ+, θ−, p) such that

T p = T̄ p̄. (13)

To illustrate the construction of the T-matrix, we provide an example in the following.
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Example 3. For the Q-matrix given in Example 1, the T-matrix for this Q-matrix is

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α : (0, 0) (1, 0) (0, 1) (1, 1)
Tr=(0,0) 1 1 1 1
Tr=(1,0) θ−

1,1 θ+
1,1 θ−

1,1 θ+
1,1

Tr=(2,0) θ−
1,2 θ+

1,2 θ−
1,2 θ+

1,2
Tr=(0,1) θ−

2,1 θ−
2,1 θ+

2,1 θ+
2,1

Tr=(0,2) θ−
2,2 θ−

2,2 θ+
2,2 θ+

2,2
Tr=(1,1) θ−

1,1θ
−
2,1 θ+

1,1θ
−
2,1 θ−

1,1θ
+
2,1 θ+

1,1θ
+
2,1

Tr=(2,1) θ−
1,2θ

−
2,1 θ+

1,2θ
−
2,1 θ−

1,2θ
+
2,1 θ+

1,2θ
+
2,1

Tr=(1,2) θ−
1,1θ

−
2,2 θ+

1,1θ
−
2,2 θ−

1,1θ
+
2,2 θ+

1,1θ
+
2,2

Tr=(2,2) θ−
1,2θ

−
2,2 θ+

1,2θ
−
2,2 θ−

1,2θ
+
2,2 θ+

1,2θ
+
2,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Tr=(1,1) = Tr=(1,0) ◦ Tr=(0,1), Tr=(2,1) = Tr=(2,0) ◦ Tr=(0,1), Tr=(1,2) = Tr=(1,0) ◦
Tr=(0,2), Tr=(2,2) = Tr=(2,0) ◦ Tr=(0,2). We can see that the T-matrix’s structure is the same as
the classic T-matrix for binary DINA model, where the entries of the T-matrix involve at most
two parameters.

2.1.2. T-Matrix for Sequential DINA Model Similarly, we generalize the T-matrix for the
Sequential DINA model. However, due to the special structure of the Sequential DINA model,
the generalization of the T-matrix here is slightly different from the literature, which we denote
as Ts-matrix, where the “s” stands for Sequential DINA model. Let the entries of Ts-matrix
Ts(β+,β−) be indexed by row index r ∈ S and column index α ∈ {0, 1}K . The r-th row and
α-th column entry of Ts(β+,β−), denoted by t sr,α(β+,β−), is defined as

t sr,α(β+,β−) = P

⎛
⎝ ⋂

j :r j �=0

{R j ≥ r j } | Q,β+,β−,α

⎞
⎠

=
∏

j :r j �=0

P
(
R j ≥ r j | Q,β+,β−,α

)

=
∏

j :r j �=0

r j∏
l=1

(β+
j,l)

ξ j,l,α (β−
j,l)

1−ξ j,l,α .

Apparently, t s0,α(β+,β−) = 1 for any α. When r = r j · e j ,

t sr j ·e j ,α(β+,β−) = P(R j ≥ r j | Q,β+,β−,α) =
r j∏
l=1

(β+
j,l)

ξ j,l,α (β−
j,l)

1−ξ j,l,α .

LetTs
r(β

+,β−) be the row vector in theTs-matrix corresponding to r . Then for any r �= 0, we can
write Ts

r(β
+,β−) = ◦

j :r j �=0
Ts
r j ·e j (β

+,β−). Similarly, due to the one-to-one mapping between

Ts
r and P(R ≥ r | Q, θ+, θ−, p) for all r ∈ S, we may substitute the original identifiability

problem using the Ts-matrix technique, and we state this consequence in the following lemma.
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Lemma 2. Following the definition in (12) and letting the attribute α index in p be consistent
with the α index in T, the Sequential DINA model parameters are identifiable if and only if there
is no (β̄

+
, β̄

−
, p̄) �= (β+,β−, p) such that

Ts p = T̄s p̄. (14)

In the following, we present the Ts-matrix for the model given in Example 2. Due to the unique
structure of the Sequential DINA model, the Ts-matrix is designed in a very different way from
a standard T-matrix for the DINA model.

Example 4. For the Q-matrix given in Example 2, the Ts-matrix for this Q-matrix is

Ts =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α : (0, 0) (1, 0) (0, 1) (1, 1)
Ts
r=(0,0) 1 1 1 1

Ts
r=(1,0) β−

1,1 β+
1,1 β−

1,1 β+
1,1

Ts
r=(2,0) β−

1,1β
−
1,2 β+

1,1β
−
1,2 β−

1,1β
+
1,2 β+

1,1β
+
1,2

Ts
r=(0,1) β−

2,1 β−
2,1 β+

2,1 β+
2,1

Ts
r=(0,2) β−

2,1β
−
2,2 β−

2,1β
−
2,2 β+

2,1β
−
2,2 β+

2,1β
+
2,2

Ts
r=(1,1) β−

1,1β
−
2,1 β+

1,1β
−
2,1 β−

1,1β
+
2,1 β+

1,1β
+
2,1

Ts
r=(2,1) β−

1,1β
−
1,2β

−
2,1 β+

1,1β
−
1,2β

−
2,1 β−

1,1β
+
1,2β

+
2,1 β+

1,1β
+
1,2β

+
2,1

Ts
r=(1,2) β−

1,1β
−
2,1β

−
2,2 β+

1,1β
−
2,1β

−
2,2 β−

1,1β
+
2,1β

−
2,2 β+

1,1β
+
2,1β

+
2,2

Ts
r=(2,2) β−

1,1β
−
1,2β

−
2,1β

−
2,2 β+

1,1β
−
1,2β

−
2,1β

−
2,2 β−

1,1β
+
1,2β

+
2,1β

−
2,2 β+

1,1β
+
1,2β

+
2,1β

+
2,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Ts
r=(1,1) = Ts

r=(1,0) ◦ Ts
r=(0,1), Ts

r=(2,1) = Ts
r=(2,0) ◦ Ts

r=(0,1), T
s
r=(1,2) = Ts

r=(1,0) ◦
Ts
r=(0,2), and Ts

r=(2,2) = Ts
r=(2,0) ◦ Ts

r=(0,2).

Unlike the T-matrix for GPDINA, the entries of the Ts-matrix for the Sequential DINA model
usually involvemore than two parameters, making identifying them technically more challenging.
For instance, Ts

r=(2,2) in the Sequential DINA model has four parameters in each entry, whereas
Tr=(2,2) in GPDINA only has two parameters in each entry. The following sections give a more
detailed discussion of the identifiability issue.

2.2. Identifiability of the GPDINA Model

In this section, we develop the sufficient and necessary condition for the identifiability of
the GPDINA model. To begin with, we introduce the terminology “completeness” for Q-matrix,
which was firstly proposed by Chiu et al. (2009). A Q-matrix is said to be complete if it can
differentiate all latent attribute profiles. Under the DINA model with binary responses, it requires
that for each attribute, there exists some item requiring solely that attribute; that is, a complete
Q-matrix must contain an identity matrix IK up to some row permutations, which can be written
as

Q =
(IK

Q∗
)

J×K
. (15)

Similar to the binary response case (Xu & Zhang, 2016), the completeness of the Q-matrix is
necessary for the identifiability of the population proportion parameter p. Additionally, each
attribute must be required by a certain amount of items, and formally we state these conditions as
follows.

Condition C1. The Q-matrix must be complete, taking the form (15).
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Condition C2. Each of the K attributes is required by at least three items.

Condition C3. Any two different columns of the submatrix Q∗ in (15) are distinct.

Theorem 1. Conditions C1–C3 are sufficient and necessary for the identifiability of the param-
eters of the GPDINA model.

Remark 1. When Hj = 1 for all j ∈ [J ], the model is reduced to binary DINA model, and the
result we develop here is consistent with the result in Gu and Xu (2019b).

Remark 2. While the identifiability conditions are the same as those for the DINA model with
binary responses Gu and Xu (2019b), we would like to emphasize several significant distinctions.
In the case of the DINAmodel with binary responses, the uncertainty of each item is characterized
by two parameters—the slipping and guessing parameters. In contrast, the GPDINA model with
polytomous responses introduces more than two parameters for each item, significantly com-
plicating the models and rendering the study of identifiability more challenging. In particular,
as discussed in Sect. 2.1, one crucial theoretical tool commonly employed in the literature to
investigate the identifiability of the DINA model is the T-matrix, which is primarily designed
for binary response models (Xu, 2027; Gu and Xu, 2019). However, when extending our focus
to the polytomous response scenario such as the GPDINA model, it cannot be directly applied
and a generalization of this tool becomes necessary. The first contribution of our work, detailed
in Sect. 2.1, lies in this generalization, extending the applicability of these analytical techniques
to a broader class of cognitive diagnosis models. Moreover, with the newly developed T-matrix
tool, significant efforts and new techniques are involved in the establishment of our new results.
From the sufficient condition perspective, although conditions C1–C3 are also the counterparts
of those of the DINA model, it is not immediately evident if these conditions, transposed from
the binary model, are still capable of capturing the complexity and ensuring the identifiability of
the more parameter-rich GPDINAmodel. Additionally, from the necessary condition perspective,
evaluating the necessity of conditions C1–C3 for the GPDINA model is more challenging than
that of the DINA model with binary responses, due to the increased complexity of the GPDINA
model, as illustrated in the following example and our proof of the theorem.

The completeness of the Q-matrix is necessary for the identifiability of the population pro-
portion parameters, which follows from a similar argument as the binary DINAmodel (Gu & Xu,
2019b). See our proof in Supplementary Material for more details. To illustrate the necessity of
the second condition C2 and the third condition C3, we consider a simple case when K = 2 in
the following example.

Example 5. We illustrate the necessity of the conditions C2 and C3 with an example with K = 2.
We first consider the necessity of the second condition. Suppose the Q-matrix is complete, but
does not satisfy condition C2, i.e., there exists some attribute which is required by at most two
items. Without loss of generality (WLOG), assume that this is the first attribute. According to
Proposition 1, q j �= 0 for all j ∈ [J ], so the Q-matrix can be written as one of the following:

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
...

...

0 1

⎞
⎟⎟⎟⎟⎟⎠

J×2

or Q =

⎛
⎜⎜⎜⎜⎜⎝

1 0
1 1
0 1
...

...

0 1

⎞
⎟⎟⎟⎟⎟⎠

J×2

, (16)

where the dashline “- - -” indicates the separation of different items. For simplicity, wemay assume
that theQ-matrix takes thefirst formula. The casewhen theQ-matrix takes the other formula can be
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similarly obtained. So then only the first and the second item require α1. Under thisQ-matrix, we
show that themodel parameters (θ+, θ−, p) are not identifiable by constructing a set of parameters
(θ̄

+
, θ̄

−
, p̄) �= (θ+, θ−, p)which satisfy (6). Take θ̄

+ = θ+ and θ̄
−
j = θ−

j for j > 2, and p̄(11) +
p̄(01) = p(11) + p(01). Next we show that the remaining parameters (θ−

1 , θ−
2 , p(00), p(01), p(10))

are not identifiable. Using the T-matrix tool, it can be shown that the non-identifiability occurs if
the following equations hold: P

(
(R1, R2) = (r1, r2) | Q, θ̄

+
, θ̄

−
, p̄

) = P
(
(R1, R2) = (r1, r2) |

Q, θ+, θ−, p
)
for all r1 ∈ {0, 1, . . . H1}, r2 ∈ {0, 1, . . . , H2}, where (R1, R2) are the first two

entries of the random response R. These equations can be further expressed as the following
equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄(00) + p̄(10) + p(01) + p(11) = p(00) + p(10) + p(01) + p(11);
θ̄−
1,l1

[ p̄(00) + p̄(01)] + θ+
1,l1

[ p̄(10) + p̄(11)] = θ−
1,l1

[p(00) + p(01)] + θ+
1,l1

[p(10) + p(11)];
θ̄−
2,l2

[ p̄(00) + p̄(01)] + θ+
2,l2

[ p̄(10) + p̄(11)] = θ−
2,l2

[p(00) + p(01)] + θ+
2,l2

[p(10) + p(11)];
θ̄−
1,l1

θ̄−
2,l2

[ p̄(00) + p̄(01)] + θ+
1,l1

θ+
2,l2

[ p̄(10) + p̄(11)] = θ−
1,l1

θ−
2,l2

[p(00) + p(01)] + θ+
1,l1

θ+
2,l2

[p(10) + p(11)];
(17)

where l1 ∈ [H1], l2 ∈ [H2]. Then, there are (1 + H1 + H2 + H1H2) equations above in total. If
we further let some κ ∈ (0, 1) s.t.

⎛
⎜⎜⎝

θ−
1,l1

θ̄−
1,l1

θ+
1,l1

θ̄+
1,l1

⎞
⎟⎟⎠ = κ l1−1

⎛
⎜⎜⎝

θ−
1,1

θ̄−
1,1

θ+
1,1

θ̄+
1,1

⎞
⎟⎟⎠ , and

⎛
⎜⎜⎝

θ−
2,l2

θ̄−
2,l2

θ+
2,l2

θ̄+
2,l2

⎞
⎟⎟⎠ = κ l2−1

⎛
⎜⎜⎝

θ−
2,1

θ̄−
2,1

θ+
2,1

θ̄+
2,1

⎞
⎟⎟⎠ for l1 ∈ [H1], l2 ∈ [H2], (18)

then Eq. (17) can be reduced to four equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p̄(00) + p̄(10) + p(01) + p(11) = p(00) + p(10) + p(01) + p(11);
θ̄−
1,1[ p̄(00) + p̄(01)] + θ+

1,1[ p̄(10) + p̄(11)] = θ−
1,1[p(00) + p(01)] + θ+

1,1[p(10) + p(11)];
θ̄−
2,1[ p̄(00) + p̄(01)] + θ+

2,1[ p̄(10) + p̄(11)] = θ−
2,1[p(00) + p(01)] + θ+

2,1[p(10) + p(11)];
θ̄−
1,1θ̄

−
2,1[ p̄(00) + p̄(01)] + θ+

1,1θ
+
2,1[ p̄(10) + p̄(11)] = θ−

1,1θ
−
2,1[p(00) + p(01)] + θ+

1,1θ
+
2,1[p(10) + p(11)].

(19)

For any (θ+, θ−, p), there are 4 constraints in (19) but 5 parameters (θ̄−
1,1, θ̄

−
2,1, p̄(00), p̄(10),

p̄(01)) to solve. Therefore, there are infinitelymany solutions and (θ+, θ−, p) are non-identifiable.
As for the case when the Q-matrix takes the other formula, the proof can be easily obtained with
minor change of notation.

Next we prove the necessity of the third condition C3. Suppose the Q-matrix is complete,
according to Proposition 1, we may assume that the Q-matrix has the following form up to some
permutation:

Q =
( I2
1J−2 1J−2

)

J×2
. (20)

Take θ̄
+ = θ+ and θ̄

−
j = θ−

j for j > 2, and p̄(11) = p(11). Next we show the remaining

parameters (θ−
1 , θ−

2 , p(00), p(10), p(01)) are not identifiable. Using the T-matrix tool, again we
can show that the non-identifiability occurs if the following equations hold: P

(
(R1, R2) =

(r1, r2) | Q, θ̄
+
, θ̄

−
, p̄

) = P
(
(R1, R2) = (r1, r2) | Q, θ+, θ−, p

)
for all r1 ∈ {0, 1, . . . H1},

r2 ∈ {0, 1, . . . , H2}, where (R1, R2) are the first two entries of the random response R. These
equations can be further expressed into (1+ H1 + H2 + H1H2) equations similar to Eq. (17) with
minor notation modification. Similarly, if we further let some κ ∈ (0, 1) s.t. Eq. (18) hold, then
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these equations can be reduced to only four equations. For any (θ+, θ−, p), there are four con-
straints but five parameters (θ̄−

1,1, θ̄
−
2,1, p̄(00), p̄(10), p̄(01)) to solve. Therefore, there are infinitely

many solutions and (θ+, θ−, p) are non-identifiable. Thus, we have shown that that the conditions
C2 and C3 are indeed necessary. For the proofs of more general cases and the sufficiency of the
conditions, see Supplementary Material for more details.

2.3. Identifiability of the Sequential DINA Model

To study the identifiability of the Sequential DINA model, different techniques need to be
developed. From the discussion in Sects. 2.1 and 2.2, the structure of the Ts-matrix for the
Sequential DINA model is different from the T-matrix defined for the GPDINA model, since the
rows of the Ts-matrix of Sequential DINA corresponding to higher response categories generally
involve more than two item parameters, making it different from the usual DINAmodel structure.

To address this issue, note that

Ts
e j = P(R j ≥ 1 | Q,β+,β−,α) = (β+

j,1)
ξ j,1,α (β−

j,1)
1−ξ j,1,α (21)

only involves two parameters β+
j,1 and β−

j,1, which has a similar algebraic structure to that for
the DINA model with binary responses, and thus working on these parameters firstly would be a
good strategy to consider. The focus of these quantities can be interpreted as follows: Consider
“binary” responses of the form I (item j ≥ 1), the Sequential DINA model is then reduced to a
binary DINA model. According to equation (21), the uncertainty parameters for this model are
{β+

j,1, β−
j,1} j∈[J ]. The corresponding T-matrix for this reduced model consists of exactly vectors(

Ts
e j

)
j∈[J ] and their element-wise products. That is, let T1 denote the T-matrix for the reduced

model (here we compress the notation “s” in Ts), which is a submatrix of Ts-matrix, then

T1 =
(

i j◦
l=i1

Ts
el

)
for i1 < · · · < i j , j ∈ [J ].

Furthermore, let Q1 denote the submatrix of the Q-matrix for the first category of each item, i.e.,
Q1 = (q j,1) j∈J . Then, the Q-matrix for the above reduced model is Q1, as only the attributes
required for completing the first categories are in scope. For notation convenience, we let Q1

1:K
denote the submatrix of the Q1-matrix that consists of the q-vectors for the first categories of the
first K items, and Q1

K+1:J denote the submatrix of Q1 that consists of the q-vectors for the first
categories of items (K + 1), . . . , J , i.e.,

Q1 =
(

Q1
1:K

Q1
K+1:J

)
.

To better illustrate this idea, we present an example in the following.

Example 6. The Q1-matrix and the T1-matrix for the reduced model of Example 2 are:

Q1 =
(
1 0
0 1

)
, T1 =

⎛
⎜⎜⎜⎜⎜⎝

α : (0, 0) (1, 0) (0, 1) (1, 1)
T1
r=(0,0) 1 1 1 1

T1
r=(1,0) β−

1,1 β+
1,1 β−

1,1 β+
1,1

T1
r=(0,1) β−

2,1 β−
2,1 β+

2,1 β+
2,1

T1
r=(1,1) β−

1,1β
−
2,1 β+

1,1β
−
2,1 β−

1,1β
+
2,1 β+

1,1β
+
2,1

⎞
⎟⎟⎟⎟⎟⎠

,
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where T1
r=(1,1) = T1

r=(1,0) ◦ T1
r=(0,1).

It turns out that the first category of each item plays a crucial role in the identifiability of the
Sequential DINA model. Provided the first categories of the items are informative enough, based
on the identifiability results for the DINA model with binary responses, we can identify the item
parameters of the first categories and the population proportion parameters. More interestingly,
we can show that the item parameters of the other categories can be identified based on these
identified parameters without additional requirements. Motivated by this, we have the following
sufficient condition for the identifiability of the Sequential DINA model.

Theorem 2. The Sequential DINA model parameters are identifiable if the Q1 matrix satisfies
the following conditions S1–S3.

Condition S1. Q1-matrix is complete, i.e., under some permutation, Q1
1:K = IK .

Condition S2. Each of the K attributes is required by at least three items’ first categories.

Condition S3. Suppose Q1
1:K = IK , then any two different columns of Q1

K+1:J are distinct.

Remark 3. Conditions S1–S3 are similar to conditions C1–C3, with different target. S1–S3 are
stated for Q1-matrix in the Sequential DINA model, whereas C1–C3 are stated for Q-matrix
in GPDINA. When Hj ≡ 1, both polytomous models are reduced to binary DINA model, and
conditions C1–C3 are equivalent to S1–S3.

The conditions S1–S3, as sufficient conditions for identifying the SequentialDINAmodel, provide
guidelines for practitioners to designQ-matrix that validates identifiability. Based on the theorem,
it is suggested to design Q-matrix with informative first categories (satisfying S1–S3) to ensure
identifiability.

On the other hand, sufficient these conditions are: Their requirements only rely on themodel’s
first categories. With polytomous response data involving more categories, it is natural to ask
whether other categories can aid in relaxing these conditions. It turns out that relaxing these
conditions necessitates careful consideration. In the following, we examine the necessity of each
condition, and our primary finding is that while these conditions are challenging to relax, with
certain constraints that allow for other informative categories to help, they might be possible to
be relaxed. The finding that these conditions are challenging to relax comes from the intrinsic
sequential structure of the model. Specifically, we will show that condition S1 cannot be relaxed
and conditions S2 and S3 are hard to relax as non-identifiable examples do exist with the absence
of these conditions.

Our first claim is that without additional constraints, the first condition S1 cannot be relaxed,
i.e., S1 is necessary.

Proposition 3. (Necessity of Condition S1) Condition S1 is necessary for the identifiability of
the parameters of the Sequential DINA model.

For the convenience of the following discussion, we present the proof of Proposition 3.

Proof of Proposition 3. Suppose that the Q-matrix does not satisfy condition S1, i.e., Q1 is not
complete, then there exists some attribute that is not solely required by any item’s first category.
WLOG, assume that this is the first attribute, and thus any item’s first category that requires the
first attribute also requires some other attributes. We claim that the model parameters are not
identifiable for such an incomplete Q1-matrix. Specifically, take β−

j,1 ≡ 0, for j ∈ [J ]. Then,
subjects with attribute profiles 0 and e1 are not able to complete the first categories of all the
items. Since β−

j,1 ≡ 0, according to the model construction in Sect. 1.2, subjects with attribute
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profiles 0 and e1 cannot complete the other categories either, and for attribute profiles 0 and
e1, β+

j,l ≡ β−
j,l ≡ 0 for l > 1. Therefore, the the two attribute profiles 0 and e1 share the same

probability of completing all the categories of all the items, which is zero, i.e., tr,0 = tr,e1 ≡ 0,∀r.
Thus, parameters p0 and pe1 are not identifiable. 
�

In the above proof, we constructed a Sequential DINA model with β−
j,1 ≡ 0 so that the

parameters of higher categories are defined to be zero for attribute profiles 0 and e1. Note that the
identifiability definition requires any set of the parameters in the parameter space to be identifiable.
With the model parameters space including 0 ≤ β−

j,l < β+
j,l ≤ 1, in the proof of Proposition 3,

showing the non-identifiability of the case β−
j,1 = 0 would be enough to establish our claim on

the necessity of the completeness condition.
However, this example is tender and may no longer be valid if we add additional constraints

for the model parameters; that is, we only focus on the identifiability of a subset of the model
parameters space. For instance, if we restrict our model parameters to the subset 0 < β−

j,l <

β+
j,l ≤ 1, then the necessity of S1 may not hold anymore. This is because by constraining

0 < β−
j,l < β+

j,l ≤ 1, we allow more categories to help identifying the parameters. The following
gives an example of the model with identifiable parameters whose Q-matrix does not satisfy
condition S1 under the assumption that 0 < β−

j,l < β+
j,l ≤ 1.

Example 7. Assume that 0 < β−
j,l < β+

j,l ≤ 1, and consider the case when K = 2 where the
Q-matrix takes the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i tem1

{
1 1

0 1

i tem2
{
1 1

i tem3
{
1 1

i tem4
{
1 0

i tem5
{
1 0

i tem6
{
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
1 0
1 0
1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

Clearly, theQ1-matrix does not satisfy the completeness condition, but the model parameters with
this Q-matrix are identifiable, whose proof is presented in Supplementary Material.

Remark 4. Through the above analysis, we can see that condition S1 is necessary in a strict sense,
which may impose overly stringent requirements for practical cognitive diagnostic tests. Statis-
tically, “strict sense” in this context refers to the standard identifiability definition of the model
parameters that requires any set of the parameters in the parameter space to be identifiable (Gu
& Xu, 2020). Contrary to the notion of strict identifiability is the notion of generic identifiability
(Allman et al., 2009; Gu & Xu, 2020), where we allow for non-identifiability to happen within a
zero-measure set.

This slightly weaker notion can often suffice for real data analysis purposes (Allman et al.,
2009; Gu & Xu, 2020) and is therefore useful in practice. The extent to which our necessary
conditions can be relaxed for generic identifiability of the Sequential DINA model needs further
explorations in the future, and the above case with β−

j,l = 0 in the Sequential DINA model is one
of such example.

Next we study the necessity of conditions S2 and S3. It turns out that the analysis for conditions
S2 and S3 is more complicated. We start by presenting two examples to illustrate that.
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Example 8. Consider the case when K = 2 with two attributes α1 and α2, J = 4 items, and the
Q-matrix takes the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i tem 1
{
1 0

i tem 2
{
0 1

i tem 3
{
0 1

i tem 4

{
1 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎝
1 0
0 1
0 1
1 1

⎞
⎟⎟⎠ . (23)

The above Q-matrix satisfies conditions S1 and S3, but does not satisfy condition S2, and the
model parameters are not identifiable.

Example 9. Consider the case when K = 2 with two attributes α1 and α2, J = 4 items, and the
Q-matrix takes the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i tem 1
{
1 0

i tem 2
{
0 1

i tem 3

{
1 1

1 0

i tem 4
{
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎝
1 0
0 1
1 1
1 1

⎞
⎟⎟⎠ . (24)

The above Q-matrix satisfies conditions S1 and S2, but does not satisfy condition S3, and the
model parameters are not identifiable.

We defer the proofs of the non-identifiability of the above two examples in Supplementary Mate-
rial. The preceding examples illustrate the difficulty in relaxing conditions S2 and S3, even in
simple cases such as J = 4 and K = 2, where non-identifiable examples exist when these
conditions are violated. For more general cases, relaxing these conditions could be even more
challenging.

However, the existence of these examples does not necessarilymean that conditions S2 and S3
are always necessary. In fact, we construct two identifiable examples that do not satisfy conditions
S2 and S3 in the following, which indicates that conditions S2 and S3 may not be necessary in
general. The identifiability of the following two examples relies on other additional categories,
which carry relevant information in place of the first categories. This is also aligned with intuition,
as we expect other categories to contribute to the identification of the model parameters. In other
words, with the help of other categories, the model parameters could possibly be identified.
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Example 10. Consider the case when K = 2 with two attributes α1 and α2, and J = 4 items.
Each item contains two categories, and the Q-matrix takes the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i tem 1

{
1 0

0 1

i tem 2

{
1 0

0 1

i tem 3

{
0 1

1 0

i tem 4

{
0 1

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎝
1 0
1 0
0 1
0 1

⎞
⎟⎟⎠ . (25)

The aboveQ1 matrix does not satisfy the condition S2, yet the model parameters are identifiable,
whose proof is deferred to Supplementary Material.

Remark 5. Condition S2 assumes each attribute is required by three items’ first categories. In
the above example, both attributes α1 and α2 are required by only two items’ first categories,
yet the two attributes are also required by the second categories of other items, which provides
additional information and eventually makes the model parameters identifiable. This suggests that
the information provided by higher categories would also be helpful for the model identifiability.

Similarly, as illustrated in the following example, the role of the first category in condition
S3 could also be replaced by other categories, which may make the model identifiable as well.

Example 11. Consider the case when K = 2 with two attributes α1 and α2, and J = 5 items, and
the Q-matrix takes the following form:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i tem 1

{
1 0

0 1

i tem 2

{
0 1

1 0

i tem 3
{
1 1

i tem 4
{
1 1

i tem 5
{
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q1 =

⎛
⎜⎜⎜⎜⎝

1 0
0 1
1 1
1 1
1 1

⎞
⎟⎟⎟⎟⎠

.

The aboveQ1 matrix does not satisfy the condition S3, yet the model parameters are identifiable,
whose proof is presented in Supplementary Material.

While the above two examples imply that the conditions S2 and S3 may not be necessary for
the identifiability of the parameters for the Sequential DINAmodel, the followingweaker versions
of S2 and S3 (denoted as conditions S2∗ and S3∗) are necessary for the model identifiability. This
proposition is summarized as follows.

Proposition 4. (Necessity of Conditions S2∗ and S3∗) The Sequential DINA model parameters
are identifiable only if the Q-matrix satisfies the following conditions S2∗ and S3∗.
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Condition S2∗ Each of the K attributes is required by at least three categories (not necessarily
the first categories), and the three categories must come from at least two different items.
Condition S3∗ Suppose Q-matrix satisfies S1, i.e., Q1

1:K = IK , and any two different columns
of the following matrix (which removes the identity matrix of Q1

1:K from Q)

(
Q−1

1:K
QK+1:J

)

are distinct, where Q−1
1:K denotes the remaining submatrix of Q1:K after removing Q1

1:K .

We can see that conditions S2 and S3 are stronger versions of S2∗ and S3∗, which means that
any Q-matrix satisfying condition S2 (S3) will satisfy condition S2∗ (S3∗). We can also see that
the two identifiable models in Example 10 and Example 11 that do not satisfy conditions S2 and
S3 both satisfy condition S2∗ and condition S3∗. For instance, the Q-matrix in Example 10 does
not satisfy condition S2 since there are only two items’ first categories require α1 and only two
items’ first categories require α2. However, it does satisfy condition S2*, since two other items’
second categories require α1 and other two items’ second categories require α2. Similarly, the
Q-matrix in Example 11, not satisfying condition S3, does satisfy condition S3*, as the second
category of the first item requires only α2 and the second category of the second item requires
only α1.

In summary, from the above discussions, we conclude that the sufficient conditions S1–S3
are challenging to relax. Specifically, condition S1 cannot be relaxed unless additional constraints
are imposed. While conditions S2 and S3 are also difficult to relax, we found that other categories
may assist in identifying the parameters.

In spite of the fact that the sufficient condition and the necessary condition proposed in this
section are different, filling the gap is not an easy task, as the model structure is more subtle and
the interactions between parameters are more complex. For instance, the Ts-matrix structure is
different from the T-matrix structure for the binary DINA model except for the first categories.
The Ts

r -vectors for higher categories behave more similar to the Tr -vectors for G-DINA model
(de la Torre, 2011), as the uncertainty for these categories is characterized by more than two
parameters. Therefore, to study the identifiability of the Sequential DINA model requires more
techniques beyond the DINA setting.

3. Data Examples

In this section, we demonstrate the application of our proposed results by examining two
educational assessment datasets: a PISA 2000 reading assessment dataset using the GPDINA
model (Chen & de la Torre, 2018) and a TIMSS 2007 fourth-grade mathematics assessment
dataset using the Sequential DINA model (Ma & de la Torre, 2016).

Identifiability of the GPDINA model: a PISA 2000 data example. We consider a dataset
from the PISA 2000 reading assessment, which was previously studied in Chen and de la Torre
(2018). This assessment, released by the OECD (1999, 2006), comprised both polytomous and
binary items. The dataset for this application comprises responses from 1,039 English examinees
to 20 specific items from a designated test booklet. Out of these 20 items, five are polytomous.
Following Chen and de la Torre (2018), the attribute definitions for the PISA dataset are given
in Table 1 and the Q-matrix for this application is presented in Table 2. Since in the GPDINA
model, different categories within the same item share the same q-vectors, it suffices to provide
one q-vector for each item.
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Table 1.
Attribute definitions for the PISA data (Chen & de la Torre, 2018).

Symbol Description

c Number of categories
α1 Retrieving information
α2 Forming a broad general understanding
α3 Developing an interpretation
α4 Reflecting on and evaluating the content of a text
α5 Reflecting on and evaluating the form of a text

Table 2.
Items and Q-matrix for the PISA data (Chen & de la Torre, 2018).

No. Item Code c α1 α2 α3 α4 α5 No. Item Code c α1 α2 α3 α4 α5

1 R040Q02 2 1 0 1 0 0 11 R088Q04T 3 1 0 1 0 0
2 R040Q03A 2 1 0 1 1 0 12 R088Q05T 2 0 1 1 1 0
3 R040Q04 2 0 1 1 1 0 13 R088Q07 2 0 1 0 0 1
4 R040Q06 2 1 0 1 0 0 14 R216Q01 2 0 1 0 0 0
5 R077Q03 3 0 1 0 1 1 15 R216Q02 2 1 0 0 0 1
6 R077Q04 2 1 1 1 0 0 16 R216Q03T 2 0 1 1 0 0
7 R077Q05 3 0 1 1 1 0 17 R216Q04 2 0 1 1 0 0
8 R077Q06 2 0 1 0 0 1 18 R216Q06 2 0 1 0 1 0
9 R088Q01 2 0 1 1 0 0 19 R236Q01 2 1 0 1 0 0
10 R088Q03 3 1 0 1 0 0 20 R236Q02 3 0 0 1 1 0

According to our Theorem 1, thisQ-matrix does not contain an identity matrix, and thus, the
model parameters are not identifiable. Specifically, since the matrix does not contain e�

1 , e
�
3 , e

�
4

and e�
5 , attribute profiles 0, e1, e3, e4 and e5 have the same conditional response distributions.

Therefore, the parameters p0, pe1 , pe3 , pe4 and pe5 cannot be identified.

Identifiability of the Sequential DINA model: a TIMSS 2007 data example. We consider
the dataset in Ma and de la Torre (2016), which is derived from booklets 4 and 5 of the TIMSS
2007 fourth-grade mathematics assessment. This subset, originally utilized by Lee et al. (2011),
includes responses from 823 students to 12 items, which are linked to eight of the original 15
attributes. Notably, items 3 and 9 are constructed-response items scored polytomously across three
response categories (0, 1, and 2). The dataset also features items like 7a and 7b which, due to their
heavy interdependence, can be treated as a single polytomous item. We consider the Sequential
DINA model in this example. Following Ma and de la Torre (2016), the attribute definitions for
the TIMSS data are given in Table 3 and theQ-matrix is in Table 4. The correspondingQ1-matrix
is also presented below.
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Table 3.
Attribute definitions for TIMSS 2007 data (Ma & de la Torre, 2016).

Attribute Description

α1 Representing, comparing, and ordering whole numbers as well as demonstrating
knowledge of place value

α2 Recognizing multiples, computing with whole numbers using the four operations,
and estimating computations

α3 Solving problems, including those set in real-life contexts
α4 Finding the missing number or operation and modeling simple situations involving

unknowns in number sentence or expression
α5 Describing relationships in patterns and their extensions; generating pairs of whole

numbers by a given rule and identifying a rule for every relationship given pairs
of whole numbers

α6 Reading data from tables, pictographs, bar graphs, and pie charts
α7 Comparing and understanding how to use information from data
α8 Understanding different representations and organizing data using tables,

pictographs, and bar graphs

Table 4.
Q-matrix for TIMSS 2007 data (Ma & de la Torre, 2016).

Item TIMSS item no. Category Attributes
α1 α2 α3 α4 α5 α6 α7 α8

1 M041052 1 1 1 0 0 0 0 0 0
2 M041281 1 0 1 1 0 1 0 0 0
3a M041275 1 1 0 0 0 0 1 0 1
3b M041275 2 1 0 0 0 0 1 0 1
4 M031303 1 0 1 1 0 0 0 0 0
5 M031309 1 0 1 1 0 0 0 0 0
6 M031245 1 0 1 0 1 0 0 0 0
7a M031242A 1 0 1 1 0 1 0 0 0
7b M031242B 2 0 0 0 0 0 0 1 0
8 M031242C 1 0 1 1 0 1 0 1 0
9a M031247 1 0 1 1 1 0 0 0 0
9b M031247 2 0 1 1 1 0 0 0 0
10 M031173 1 0 1 1 0 0 0 0 0
11 M031172 1 1 1 0 0 0 1 0 1

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 1 1 0 1 0 0 0
1 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 1 0
0 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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According to Proposition 3, since the Q1-matrix does not contain an identity matrix, the
model parameters are not identifiable. Specifically, since the matrix does not contain any e j for
j = 1, 2, . . . , 8, if we take β−

j,1 = 0 for j = 1, 2, . . . 20, then subjects with attribute profiles 0 and

e j for j = 1, 2, . . . , 8 are not able to complete the first categories of all the items. Since β−
j,1 ≡ 0,

according to the model construction in Sect. 1.2, these attribute profiles cannot complete other
categories either. Therefore, attribute profiles 0, e j for j = 1, 2, . . . , 8 have the same probability
of completing all the categories of all the items, which is zero. Therefore, the parameters p0, pe j
for j = 1, 2, . . . , 8 cannot be identified.

Remark 6. For the above educational assessment examples, while the analysis shows non-
identifiability issues for the two considered models, this should not overshadow the potential
for analyzing these data using polytomous DINA or more general cognitive diagnosis models.
First, as discussed in Sect. 2.3, although the two models in our application data fail to satisfy
the completeness condition, if we consider the more relaxed generic identifiability of the model
parameters, that is, allowing non-identifiability of parameters in a negligible zero-measure set of
the parameter space, the stringent completeness condition may not be necessary, as discussed in
Gu and Xu (2020). Second, the investigation of partial identifiability, as proposed by Gu and Xu
(2020), could also be extended to the current situation. Specifically, when the completeness condi-
tion is violated, partial identifiability may be established to partially identify the non-identifiable
proportion parameters p up to their equivalent classes. For example, in the first example, since
attribute profiles 0, e1, e3, e4 and e5 have the same conditional response distributions, they can be
grouped and considered as an equivalent latent class. Partial identifiability then seeks to identify
parameter (p0 + pe1 + pe3 + pe4 + pe5) as a whole, instead of treating each proportion parameter
separately. Under such relaxation, the models applied to the data examples may be partially iden-
tifiable. Finally, beyond the DINA models considered in this paper, general cognitive diagnosis
models (Chen & de la Torre, 2018; Ma & de la Torre, 2016) may be more appropriate for the
two datasets, and studying the identifiability (Gu & Xu, 2020) of these models could be also of
great interest. Further explorations of these interesting extensions are promising future research
directions.

4. Discussion

This paper presents the sufficient and necessary conditions for the identifiability of CDMs
with polytomous responses. Our results focus on two popular models under the DINA assump-
tion: the GPDINA model and the Sequential DINA model. For both models, we provide the
sufficient and necessary conditions for their identifiability. The results can be easily extended to
the DINO (deterministic input; noisy “or” gate) model (Templin & Henson, 2006) through the
duality between the DINA and DINOmodels. While the minimum requirements for more general
CDMs are still unknown, our proposed necessary conditions remain necessary for them since our
polytomous DINAmodels are submodels of the general CDMs. Therefore, our results would also
shed light on the study of their identifiability.

The popularity of polytomous data is not restricted to response data, and polytomous attributes
data are also receiving more and more attention (Haberman et al., 2008; von Davier, 2008; Chen
& Torre, 2013; de la Torre et al., 2022). Yet the discussion on the identifiability of such models
has sparingly been considered. More interestingly, we may further study the identifiability results
under the general CDM framework with polytomous responses and polytomous attributes.

The Q-matrix in this paper is assumed to be correctly specified. In practice, the Q-matrix
is usually constructed by the designers, which can be subjective and may not be accurate. For
this reason, researchers have proposed to estimate and validate the design Q-matrix based on the
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response data, which motivates the study of the identifiability of the Q-matrix (e.g., Liu et al.,
2013; Chen et al., 2015; Xu and Shang, 2018; Culpepper, 2019; Chen et al., 2020; Gu and Xu,
2021). Nevertheless, most of these existing works focus on dichotomous responses, and only few
have explored the identifiability ofQ-matrix in the polytomous data setting, which would also be
an interesting future research topic.
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