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Denote by P the Euclidean plane with a rectangular Cartesian coordinate
system where the x-axis is horizontal and the y-axis is vertical. An arc in P shall
mean a simple continuous curve A:{t:0 ^ t < 1} -> P having the properties
that limit^jA^) exists and limit,.,t A(V) # A(f0) for 0 ^ t0 < 1. An arc at a
point £ in P shall be an arc A where l im,^ A(f) = £. If S is an arbitrary subset
of the plane, £ is termed an ambiguous point relative to S provided there are
arcs A and F at £ with A ^ S and F ^ P—S; such arcs are referred to as arcs
of ambiguity at £. If y4 is a set of arcs we say a point £ in P is accessible via 4̂
provided there is an arc at £ which is an element of A. If B is also a collection of
arcs, then A and B are said to be pointwise disjoint if whenever oceA and fieB,
a n / ? = 0 . The collections /I and 5 are said to be terminally arcwise disjoint
if whenever aeA and fleB and both a and /? are arcs at a point £ in P , then
a n /? contains no arc at £. If S is a planar set, we let s#{S) denote the set of all
arcs contained in S. Note that if S n T — 0 then s#(S) and J&(T) are pointwise
disjoint collections of arcs.

In this paper we deal with accessibility of points via sets of rectifiable arcs
and sets of totally nonrectifiable arcs, and related questions in ambiguous point
theory. (An arc a is totally nonrectifiable if a/[*i, ?2] is nonrectifiable for
0 ^ tx < t2 ^ 1 •) Let M denote the set of all planar rectifiable arcs, and let J/~
denote the set of all planar totally nonrectifiable arcs. Bagemihl (1966) showed
that there is a set Sx such that every point of the plane is an ambiguous point
relative to Sx and the arcs of ambiguity may be chosen to be rectifiable. In the
first part of this paper we strengthen this result by showing that both

1.
2.

Secondly, we use Si to define a set S2 s= P such that every point of the plane is
an ambiguous point relative to S2 and both

1. s/(S2) <= <V,
2. ^(P-S2)<=^T.
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An example of a set S3 is then presented such that every point of the plane is an
ambiguous point relative to S3 and yet

2.

The final portion of the paper is devoted to proving a general theorem which
shows that these three examples are, in a sense, extreme cases.

1. The Set S t

The first part of this paper is devoted to the investigation of the set S t which
was presented by Bagemihl (1966). We state this result as Theorem B below, and
describe the construction of S t for completeness. (We also take this occasion to
point out that Figures 5 and 6 in Bagemihl (1966) should be rotated through 90°.)

THEOREM B. There exists a set St <= P such that every point of P is a rec-
tifiably ambiguous point relative to S j .

We shall introduce only the construction of St; for verification that S t has
the stated properties, see Bagemihl (1966).

We construct Sj and its complement P—St = Tt in the following manner.
We first construct what we call a maze M. This consists of a certain number of
horizontal and vertical rectilinear segments, some of which we put into St, the
rest into 7 \ . The remaining points of P are then put into St or Tt in any way
whatsoever, whereupon St becomes completely defined. The maze itself is con-
structed in enumerably many stages: we first construct a submaze Mu then add
certain segments to Mx to obtain a submaze M2, and so on; and finally we set
M = U "= I Mn. Each submaze Mn in turn is constructed in four steps in a cer-
tain order. The procedure for constructing M t is different from that for the re-
maining submazes: we describe Mx first, then give the procedure for construct-
ing M2 from Mt, this procedure is then repeated with M2 to obtain M3, and so
on. Thus, from the second stage on, the procedure is essentially the same.

To construct M t :
(at) put the vertical lines x = In (n = 0, ± 1, + 2, • • •) into S t ,
(bt) put the vertical lines x = 2n + I (n = 0, ± 1 , +2,---) into T l s

(ct) put those points of the horizontal lines y = In (n = 0, ± 1 , ±2 , •••)
that have not already been accounted for into S x ,

(d,) put those points of the horizontal lines y — In + 1 (n = 0, + 1 , + 2, •••)
that have not already been accounted for into 7 \ .

The resulting configuration of enumerably many vertical and horizontal
straight lines constitutes the submaze M j . Each point on these lines has been
assigned unambiguously to one of the sets Su Tt. A portion of My is illustrated
in Figure 1. Here the heavy lines belong to Sx, the light lines to 7 \ . The point
of intersection of a heavy line and a light line is marked with a black or a white
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dot according as this point belongs to Su or to 7\ . The point of intersection of
a heavy horizontal line and a heavy vertical line will be called an Si-node, of a
light horizontal line and a light vertical line a Tj-node. Observe that Mt divides
the plane into enumerably many squares of side length one, which will be called
the squares of the first stage. For each of one of these squares, one vertex is an
Sx-node and the opposite vertex is a Tx-node. This is the procedure for construct-
ing M2:

Figure 1.

(a2) from every Sx-node of Mx, proceed in either direction horizontally a
distance of 2/3, and at each of the two points reached erect an open vertical seg-
ment of length 2 with said point as midpoint; put these vertical segments into
Sly making the aforementioned two points new Sj-nodes;

(b2) from every Tj-node of Mt proceed as in (a2), except put the resulting
vertical segments into T,, thus creating two new 7\-nodes;

(c2) from every S^node of Mx as well as those newly created by (a2), proceed
in either direction vertically a distance of 2/3, and at each of the two points
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reached erect an open horizontal segment of length 2/3 with the said point as mid-
point; put these horizontal segments into St, making the aforementioned two
points new Si-nodes;

(d2) from every T -̂node of Mt as well as those newly created by (b2), proceed
as in (c2), except put the resulting horizontal segments into 7\, thus creating
two new Ti-nodes.

• • • • • £

(

) c ) 1 <

Figure 2.

The resulting configuration of Ml and the newly added vertical and hori-
zontal segments constitutes the submaze M2. Each point on the enumerably
many vertical and horizontal straight lines contained in M2 has been assigned
unambiguously to one of the two sets S t , Tx. The portion of M2 that arises from
the portion of Mt illustrated in Figure 1 is shown in Figure 2. Observe that M2

divides the plane into enumerably many squares of side length 1/3, called the
squares of the second stage. And again, for each one of these squares, one vertex
is an Sj-node and the opposite vertex is a T^-node.

Now to construct M3, proceed as in the construction of M2, except that
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in (a3) and (b3) the distance is 2/9 instead of 2/3 and the length is 2/3 instead of 2;
and in (c3) and (d3) the distance is 2/9 instead of 2/3, and the length is also 2/9
instead of 2/3.

Proceeding successively in this fashion, we construct the submaze Mn for
every natural number n. It divides the plane into enumerably many squares of
side length 1/3""1.

Finally, define M and St as was indicated at the beginning.
As was noticed in Bagemihl (1966) at the conclusion of the proof of this Theo-

rem B, if f e P there are arcs at £ of arbitrarily large diameter which are contained
in St and, likewise, there are arcs of arbitrarily large diameter which are contained
in 7\ . From this and the fact that St n Tt = 0 we conclude that neither St

nor 7\ contains a loop. Let A e J / (S X ) . Through a series of lemmas we shall
show that A is a rectifiable arc.

LEMMA 1. Suppose l^eS1 U(P—M) and £ is an interior point of a square
Qn of the nth stage. Suppose further that <x and fi are arcs at £ such that

1. a(0) and /?(0) are in F-Int(gn) , [Int = interior]
2. a (0 and P(t) are in Stfor0^t<l.

Then a(tt) = P(t2) where

tt = sup{*:a(0eBd(2n)}, [Bd = boundary]

t2 = sup{t:P(t)eBd(Qn)}.

PROOF. The case when n = 1 is typical, and we consider this case. In parti-
cular we let Qi be the square whose vertices are .4(0,0), B(0,1), C(l , l ) , and
.0(1,0) where A is the S^node of gi and C is the Ti-node of Qx. Suppose that
a 0 i ) ¥> P(t2) • Then as gx is a square of the first stage and both a(^) and P(t2)
lie on the boundary of Qt, there is an arc T contained in B d ^ ) n St such that
T(0) = a(fi) and F(l) = P(t2). Hence, if there existed t3 and t4 such that

1. fj < t3 < 1 and t-, < t4 < 1,
2. a(f3) = P(t4)

then the arcs a, /?, T would determine a loop, and as each of these arcs is in Si
a contradiction would arise. The remainder of the proof is devoted to verifying
the existence of t3 and tA.

If Ci and £2
 a r e m P > f° r notational convenience we denote the closed line

segment between £x and (2 by [Ci.G]. and the open line segment between Ci
and £2 by (Clt £2). At stage two of the construction the following points of Qx

are assigned to either St or Tt. Refer to Figure 3.
(a2) The open segment ((2/3,0), (2/3,1)) is assigned to S t .
(b2) The open segment ((1/3,0), (1/3,1)) is assigned to 7\ .
(c2) The open horizontal segments ((0,2/3), (1/3,2/3)) and ((1/3,2/3), (1,2/3))

are placed into St.

https://doi.org/10.1017/S1446788700023971 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023971


90 Frederick Bagemihl and Paul D. Humke [6]

(d2) The open horizontal segments ((0,1/3), (2/3,1/3)) and ((2/3,1/3), (1,1/3))
are placed into T,.

Let R* be that subsquare of Q1 whose vertices are (1/3,1/3), (1/3,1), (1,1/3),
and (1,1). The boundary of R* is contained in 7\ except for the point z(2/3,1/3)
which resides in S t . Hence, if £ is in the interior of R*, then both a and /? contain
z, but this would imply the existence of t3 and *4 such that t1 < t3 < 1, t2 < f4 < 1,
and a(<3) = /J(/4) = z, and that is impossible. Thus, if £ e R* the lemma is valid.

o

0

•O

1
Figure 3.

Secondly, we show that if £ is an interior point of the square region R*,
having vertices (1/9,1/9), (1,1/9), (1/9,1), and (1,1) the lemma is also valid. An
inductive argument then provides that if £ is in the interior of the square region
R*, whose vertices are (1/3", 1/3"), (1,1/3"), (1/3", 1), and (1,1) then the lemma
is true. But, as ( is an interior point of Q t , £ e \J " = t Int R* and hence, the result
follows. We exhibit the third stage of the construction within Q.x - R* and
consider the seven closed square subregions of R* which border R*. See Figure
3 where R\ is shaded.
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1. R\ having vertices (7/9,1/9), (7/9,1/3), (1,1/3), and (1,1/9).

2. R\ having vertices (7/9,1/9), (7/9, 1/3), (5/9, 1/9), and (5/9,1/3).

3. Rl with vertices (5/9,1/9), (5/9, 1/3), (1/3, 1/9), and (1/3,1/3).

4. R$ with vertices (1/3, 1/9), (1/3,1/3), (1/9,1/9), and (1/9,1/3).

5. R\ with vertices (1/9,1/3), (1/3,1/3), (1/9,5/9), and (1/3,5/9).

6. Rt having vertices (1/9,5/9), (1/3,5/9), (1/9,7/9), and (1/3,7/9).

7. Rn
2 having vertices (1/9, 7/9), (1/3,7/9), (1/9,1), and (1/3,1).

Squares R\, R\, and R2 have exactly one point of Sj on their respective boun-
daries, and hence if both a and /? intersect the interior of one of these three squares
then both a and /? must contain that point. That is, there is but one ^-entrance
to each one of these squares. It follows that if £ is interior to one of R2, R\, or
R2 the lemma obtains. The remaining square which lies below R* is Rl. Now,
R\ U i?x*has but one point of its boundary in Slf and again, if both a and /? inter-
sect the interior of R%\jRf then both a and /? contain that point, and the
lemma is valid.

The remaining squares are those to the left of R*, and their union
Rl U R\ u ^2 o n c e more has exactly one point of its boundary in Sx. Hence,
as before, if £ is an interior point of R| U R\ U Rl the lemma is true. But,

IntKf - [(IntKlO U(IntU|) U l n t ( ^ ) U l n t ^ Un?) Ulnt(R2
5

Consequently, if ^elntRf then ( is an interior point of one of the sets
Rl,R2,R$>R2 U ^ ? » or Rl UR6

2 URl, as £ is in St U ( P - M ) , and thus the
lemma obtains. An inductive argument now completes the proof.

LEMMA 2. / / a is an arc such that a(0 eStfor0 ^ t < 1, then a(0 e St n M
for 0 < t < 1.

PROOF. Suppose, to the contrary, that there exists a number s*, 0 < s* < 1,
such that a(s*).^M. Consider the following two arcs at a(s*):

1. ax(t) = a(s*0 for 0 ^ t < 1,

2. a2(0 = 4^-j-^t + —^J for 0 g I< 1.

As <x(s*)$M there exists a nested sequence of squares {Qn: n = 1,2, •••}, where
Qn is a square of the nth stage, such that (~)™=iQn = a(s*) > a n ^ *(**) is a n m"
terior point of each Qn; n = 1,2, •••. Consequently, there is a natural number
N > 0 such that both aj(0) and a2(0) are exterior to QN. As ô  and a2 are arcs
at a(s*) we may apply Lemma 1 to obtain numbers <! and t2 such that
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/s* _ i s* + n
a^tj) — <x2(t2). It follows that a(s*^) = a |—-—1 2 H =—I where

s* - 1 s* + 1 ,
5% < s* < — — 1 2 + —j— < 1.

This, however, is impossible as a is an arc. One can easily verify that there are
arcs in S1 such that the initial points of those arcs do not lie on M (if St d: M).
Hence, in this sense, Lemma 2 is a best possible result.

We will now need to refer to points of S1 which were admitted to St at a
particular stage of the construction. For this reason we define

Si(n) = {C e S t : C was placed into Sx during the nth stage of the construc-
tion and not before}.

LEMMA 3. Let a. be an arc in St with a(0) eS^N) and a(«)e Un^iv^iC")
for 0 < t< 1. Let 0 g fj < t2 < 1 be such that a(ft)6 S^m) and a.(t2) e St(/c).
T/ien m ^ fc.

PROOF. Suppose that m> k and denote by Qfc a particular square of the /cth
stage containing a(ft). We note that as m > k and k ^ N, m> N and conse-
quently 11 > 0. The boundary of g t is part of the maze, Mk, of the fcth stage
of the construction and as such does not contain oe^) e S^m). It follows then
that <x(f0 is an interior point of Qk. Define

1. y(t) = a^jf) for 0 ^ t< 1,
2. 0(0 = a([ft -f2]f + f2) for 0 g < < 1.

Now, both y and jS are arcs at <z(ft), and u(t{) is an interior point of Qk. Further,
a(0) = 7(0) and a(t2) = )3(0), and as a^GS^JV) cMk and a^eSjCfe) c Mt,
each of 7(0) and P(0) is a noninterior point of £*. We may therefore apply Lemma
1 to obtain numbers st and s2 such that y(st) = )8(s2). It follows that

aCMi) = a ( [ ' i - ' 2 > 2 + f2)
where

0 g t 1 s 1 < l 1 < [ f 1 - r 2 ] s 2 + r2 ^ t2.

This, however, contradicts the fact that a is an arc.
A consequence of this lemma is that if a is an arc satisfying the hypothesis

of Lemma 3 and if tt and t2 are numbers such that 0 ^ tt < t2 < 1, with both
a(fj) and <x(t2) in S^m) for some m ^ N, then a(0 eS^m) for tt g ( ^ (2-

LEMMA 4. Let a fee an arc in Sx suc/i f/iaf a(0) e St(JV) /or some iV > 0
and a(0e U ™=NS1(n) for 0 < * < 1. T/ien a is rectifiable.

PROOF. Define /„ = {te[0,1): a(l)eS,(n)}. As iV is the least number such
that a U SX(N) ^ 0 , Ik = 0 for fc < N. Further, as a(0) e S^N) and a(0 e Un°°=iv
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S^ri), the consequence we mentioned of Lemma 3 above guarantees that /„ is
either an interval, a point, or empty, for n ^ N. Also, Lemma 3 insures that if
m < k then Im lies to the left of Ik (i.e., if xelm and yelk then x < y). Hence
in order to prove that a is rectifiable, it is sufficient to prove that a//n is recti-
fiable with length say Ln for n = 1,2,--, and in addition, that E"= 1LB < oo.

Evidently a/Jj is of finite length. It is possible, however, to define arcs a
in such a manner that a//t is as long as any predetermined length. This is a unique
property, though, not had by a//n for n > 1; in fact, in general, a//B has length
less than 2/3"~1. To show that this is the case, we first notice that if Qn is a square
of the nth stage, then a side of Qn has length 1/3"-1 for n = 1,2, •••. Now, let
t eln for n > 1 (if /„ = 0 then the length of <x//n = 0) and let Qn_r be a square
of the n — 1st stage which contains <x(t). The boundary of Qn_j lies in
T[ U( U "ZjSx(/c)) and consequently does not meet S^n). As /„ is an interval
and a//n is connected, it follows that a//n does not meet the exterior of Qn-i.
But a(0eQn_1; and hence gn_! contains <x//n. The maximum length of an arc
in S ^ n C - i 's 1/3""2.

Consequently, a is a rectifiable arc and the length of a does not exceed
\alh\+ L ,1=21/3'~2= | a/^ | + 3/2.

The following lemma completes our work concerning St.

LEMMA 5. If Kestf{Sx), then A is rectifiable.

PROOF. AS A(t) e Sx for 0 g t < 1, we may apply Lemma 2 to obtain that
A(f) e S! U M for 0 < t < 1. It follows that A(f) e Un°l i S^n) for 0 < t < 1. De-
note by N the smallest integer n such A O St(n) # 0 , and let t* be such that
A(£*)eS!(iV). Define

1. Ax(0 = A([l -**]« + (*) for 0 g f < 1,
2. A2(t) = A(-**f + /*) for 0 ^ i < 1.

It is evident that a necessary and sufficient condition for A to be rectifiable is
that both At and A2 be rectifiable. But each of At and A2 satisfies the hypothesis
of Lemma 4, and as such is rectifiable. This completes the proof of Lemma 5.

As Sj and Tx were constructed in similar fashion, we can verify the analogues
of Lemmas 1 through 4 for Tt, and hence can establish the following result.

LEMMA 5*. IfTe^T^, then T is rectifiable.

Thus, we have shown that not only is every point of the plane a rectifiably
ambiguous point relative to S t , but the only arcs contained wholly in either St

or in 7\ are rectifiable arcs. The results of this section are collected in Theorem 6.

THEOREM 6. There exists a set St<= P such that every point of P is an am-
biguous point relative to.Slt and both ^(S^c^t and
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2. The Sets S2 and S3

In this section we construct two other sets in P having the property that
every point of P is an ambiguous point relative to that set. The first set we con-
struct, S2, has the additional property that both s/{S2) <= ./T and s/(P—S2) <= JT.
The second construction provides a set S3 having the property that J^(S3) C 3t
while ^(P-S^ajV.

The set S2 is constructed as the image of St under a suitable homeomorphism
from P onto itself. Let ¥ be a continuous function of a real variable which is
of bounded variation in no subinterval of real numbers. For the existence of such
a function, sa function, see Caratheodory (1948; page 190). Then the graph of
*F over any interval is nonrectifiable. Further, if / is a function of bounded varia-
tion on an interval [a, fe] then ¥ + / is not of bounded variation on [a, b~] and
its graph {(x, *F(x) +/(x)): xe[a,fc]}, is also nonrectifiable.

We obtain S2 from St in two steps.
1. First rotate the set Sx of Bagemihl's construction 45° in the clockwise

direction about the origin to obtain the set S'2.
2. Now, let T b e a function of a real variable which is continuous but of

bounded variation in no interval of real numbers. Define O(x, y) = (x, y + ¥(x)).
Then O is a homeomorphism from the plane onto itself, and we let S2 be the
image of S'2 under the mapping O. Denote by F the rotation about the origin
through 45° followed by the mapping O. Then F is a homeomorphism from the
plane onto itself such that

and we let

If { e P , then C = F" i(£) is an ambiguous point relative to S t . Hence, there
are arcs A^C) and A2(O at £' where A^C) <= St and A2(C) <= 7\. As F is
a homeomorphism, FofA1(C') and Fo A2(£') are arcs at £ such that
r o A 1 ( ( ' )cS 2 and Fo A2(C) <= T2, and consequently £ is an ambiguous
point relative to S2.

In order to verify that ^{S2) <= ^V it is sufficient to show that if A is an arc
contained in S2 then A is nonrectifiable. However, as A is contained in S2 it fol-
lows that F" i o A is an arc contained in St, and by Lemma 2 we obtain that
F~J o A(0 e M except possibly when t = 0.

Let N denote the least integer such that (F~>oA)n S^N) # 0, and let
f! be such that F~ i o A(/t) e S^iV). Define

F- i o A([l - i jf + tj for 0 ^ t < 1
and

/„ = {(e [0,1); A(0 e S^n)} for n = N, iV + 1, - .
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In the course of the proof of Lemma 4 we showed that /„ was an interval (possibly
degenerate) for n = N,N + 1, ••• and Lemma 2 insures that \J™=NIn = [C, 1)-
It follows that there is an index m Si JV such that Jm is a nondegenerate interval,
and as Xjlm c Sx{m), Xjlm contains either a vertical or a horizontal line segment.
As X is a subarc of F~ l o A, F~x o A contains that same line segment, and con-
sequently A is a nonrectifiable arc. Hence <E/(S2)

 C ^r-
In a wholly analogous manner one can easily verify that £?(T2) cz ^V. Our

results concerning S2 are contained in Theorem 7.

THEOREM 7. There exists a set S2 cz P such that every point of P is an
ambiguous point relative to S2, and both s/{S2) a JV and stf{P — S2) cz ./F.

The second set we construct in this section is a set S3 having the following
properties:

1. every point of P is ambiguous relative to S3,
2.
3.

In order to construct S3 we resort to a construction technique similar to that
which Bagemihl used to define the set St. One preliminary construction is re-
quired.

Insertion of a Graph into an Arc

Let Lj be a line in the plane, and let a be an arc in the plane such that
a n Lt = 0 and each line which is perpendicular to Lx meets a in at most
one point. Denote by L2 a particular line which is perpendicular to Lx and assume
that L2Ha # 0. Let A = LlC\L2 and B = L2 n a. Suppose further that
s> 0 is given, and that g(x) is a continuous function defined for 0 g x ^ 1 such
that 0(0) = 0(1) = 0 and - 1 < #(x) < 1 for 0 g x ^ 1. We shall define what
it means to e-insert g into a along [A, B~\, where [A,B~\ denotes the closed line
segment extending from A to B.

The general case is analogous to that where Lt is the x-axis, A = (1/2,0),
a is the graph of a continuous function/(x) defined for 0 g x ^ 1, and/(l/2) > 0.
In this instance, B = (l/2,/(l/2)). Further assume that 0 < e < 1/2, and define
the fluctuation of a function h{x) defined on a closed interval [a, b] as

max{/i(x): x e [a, b]} — min{/i(x): x e [a, b]}.

We define a "pyramid" consisting of an infinite sequence of closed rectangular
regions, each of which is symmetric about the line segment fyl,.B], has edges
which are parallel to the coordinate axes, and lies between the graph of/ and the
x-axis, in the following manner.

i. Let 1/10 ><5t > 0 be such that both 5X < e and the fluctuation of/(x)
on the closed interval [1/2 - 8U1/2 + 5^ is less than [l/102]/(l/2). Denote by
/?! the closed rectangular region having vertices
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(1/2 - <5l5O), (1/2 + Si,0), (1/2 - Slt [9/10]/(l/2», and (1/2 + SU

The number 5t will be referred to as the width of the insertion and the choice of
Si precludes the possibility of the graph of/ intersecting Rt.

ii. In general, let 1/10" > §„ > 0 be such that <5B < e and the fluctuation of
/(x) on the closed interval [1/2 - 5n, 1/2 + <5n] is less than [l/10"+i]/(l/2). De-
note by Rn the closed rectangular region having vertices

(1/2 - ^ , ( [10-1 - l]/[10-i])/(l/2)), (1/2 + 5

(1/2 -5n,([10"-l]/10")/(l/2)), and (1/2 - 5B,([10--l]/10-)/(l/2)).

We now place a copy of the graph of g into each of these rectangular regions,
using the segment [A, J3] as an axis. The restriction that g(0) = g(l) = 0 insures
that the inserted copies link in such a fashion that their union is an arc at B.
Specifically, we define the graph of g placed into Rn (n = 1,2,---) to be

Gn = {(1/2 + to[(10"/9)(3>//(l/2)) - 10-/9 + 10/9],y):

([10-x - l j / 10" - 1 ) / ^ ) ^ y g ([10" - l]/10")/(l/2)}.

The e-insertion of g into /along [A,B~\ is then U"=i G«- The insertion itself is
the graph of a continuous function g*(y) = x defined for 0 < y </(l /2). Suppose
0 < y i </(l /2) , and n is such that ([10""i - l]/10"-i)/(l/2) g yt. Then the
construction provides that the fluctuation of g* on [j>i,/(l/2)] is at most 28n.
This completes our preliminary construction, and we are now able to proceed
to the first stage of the construction of the set S3.

We construct the set S3, and its complementary set T3, in a manner quite
analogous to the way Bagemihl constructed the set St. Again a maze is constructed
in an inductive fashion, and again this maze, M, will carry every arc of ambiguity.
The difference is that T3n M consists not of vertical and horizontal line segments
as does 7\ n M, but rather of arcs which are totally nonrectifiable. These arcs
are, however, graphs of functions inserted along either vertical or horizontal line
segments. In particular, let /(x) be a continuous function defined for 0 ^ x ^ 1
such that /(x) has the following properties:

1. / is of bounded variation in no subinterval of [0,1],
2. -1/10 </(x) < 1/10 for 0 ^ x ^ 1,

As/is of bounded variation in no subinterval of [0,1], its graph, F, is totally
nonrectifiable. Stage 1 of the construction for M occurs in four parts.

(at) Put the vertical lines x = 2n (n = 0, ±1 , + 2,---) into S3 .
(bx) Define /*(x) = / (x - [ [x ] ] ) where [[x]] is the greatest integer less

than or equal to x. Denote the graph of/* by F*. Now, rotate F* about the
origin using n/2 as the angle of rotation, and translate the rotated set In + 1
units horizontally to obtain the set F*n+1 where n = 0, + 1, ±2, •••. Place the
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sets F*n+i into T3. Each set F%n+l is termed a vertical T3-set of stage 1 and is
said to have the line x = In + 1 as an axis.

(cj) The plane has now been divided into enumerably many unbounded
vertical "columns", and in this part we subdivide each column into bounded
regions by introducing horizontal T3-sets. As the construction in this third part
is carried out similarly within each column, we shall restrict our attention to the
column bounded by the _y-axis and the vertical T3-set F*. From each of the
points (0,2« + 1) (n = 0, ± 1, ± 2, •••) 1/10-insert the function / into F* along
the horizontal line segment extending from (0,2n + 1) to the set F*, and place
the points of these insertions, with the exception of their initial points on the
j>-axis which already belong to S 3 , into T3. Denote the width of this insertion
by <5X. These inserted sets are termed horizontal T3-sets of stage 1, and their
axes, which are the horizontal line segments along with the insertions occur,
are at odd integer heights.

(dt) The points of the horizontal lines y = 2n (n = 0, + 1, + 2, •••) which
have not as yet been assigned, are now assigned to S3.

This completes stage 1 of the construction of M. See Figure 4.
Stage 1 of the construction divides the plane into enumerably many regions

which are called "grid squares" of the first stage. The intersection of a vertical
T3-arc with a horizontal T3-arc is called a T3-node, while an S3-node is the inter-
section of a horizontal line segment in S3 with a vertical line segment in S3.
Every grid square contains exactly one S3-node and one T3-node.

Stage 2 of the construction of M is typical of the construction at future stages,
and occurs within the grid squares of stage 1. As the construction at this stage is
carried out analogously within each grid square, we restrict our attention to the
one having vertices (0,0), (1,0), (0,1), and (1, 1). The S3-node of this grid
square is (0,0), and the horizontal T3-set has been inserted into the vertical
T3-set. The horizontal T3-set bounding this grid square is the graph of a con-
tinuous function, h(x), defined for 0 < x < 1. We proceed as follows:

(a2) Partition the interval [0,9/10] into an even number of subintervals
[XQ.XJ = [O.Xj], [xj ,x2] , •••,O2n_1,x2,,] = [ X 2 B - I , 9 / 1 0 ] such that

1. \xk - x t _ ! | < 1/10 for k = 1 , 2 , - - , 2 H .

2. All the partitioning intervals are of the same length, denoted by d.

3. The fluctuation of h{x) on \xk_uxj for k = 1,2, •••,2n is less than 1/102.

Erect a vertical line segment from the point (x2k, 0) to the point (x2t, h(x2k))
for k = 1,2, •••,n, and place the points of these open segments into S3. For
notational convenience we denote the interval [9/10,1] by [x2n, x 2 n + 1 ] .

(b2) From the line y = 0, and along the vertical segments [_(x2k-i,0),
(x2t_1,/i(x24_1))] for k = 1,2, ••-,«, £2-insert the function/(x) into the graph
of h(x), where

e2 = min{l/102,d/10}.
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These newlyPlace the points of these insertions not already assigned into T3

inserted sets are called vertical T3-sets of the second stage.
(c2) Denote the vertical T3-set inserted along the line segment [(x2it-i>0)>

(x2k-uKx2k-i)X\ by V2k-i where k = \,2,--,n. Denote by V2n+1 that portion

of the vertical r3-set of stage 1 which has the line x = x 2 n + 1 = 1 as an axis,
and lies on the boundary of the grid square under consideration. The original
grid square of stage 1 can now be considered as having been divided into columns

Figure 4.

determined by the original boundary of the grid square and by the newly inserted
vertical T3-sets. All save one of these columns are bounded vertically by an
adjacent pair of vertical T3-sets, while the other column is bounded on the right
by a vertical T3-set Vt and on the left by the vertical S3-set consisting of the
segment [(0,0), (0,1)]. The construction continues within these columns. Each
column of the former type has a vertical line segment separating the vertical
T3-sets which border it. If V2k-3 and V2k-i (fc = 2,3, •••, n + 1) form the vertical
borders of this column, then the central segment (which is a vertical S3-set) for
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that column is [(x2k-2,0),(x2k-2,h(x2k-2y)]. Denote h(x2k-2) - ^ by C where
(5X is the width of the horizontal insertion of (cx). Also, V2k-3 and V2k_x are
graphs of continuous functions denned on the open intervals (0, h(x2k_3)) and
(0»/i(^2fc-i)). and we denote those functions by g2k-ziy) = x and g2k-i(y) = x,
respectively. Partition the interval [0, C] into an even number of subintervals,
bo.J'i] = [0,3'i],|>i,3'2].-»[j'2«-i.J'2j = l>2»-i.C] such that

1- \yq-y,-i\<llM f o r 1 = l ,2 , - ,2m.
2. All of the partitioning intervals are of the same length, denoted by dx.

3. The fluctuation of g2k-3(y) and of g2k-i(y) o n {yt-\>y^\ ls less than
1/102 for q = 1,2, -,2m.

Now, along the horizontal segments I(x2k-2,y2q-i), (ff2*-3(^2,-1),^2,-1)]
and [(x2i_2>j;2,_1), (02(t-i(.F2(!-i),.y2,,-i)] and from the point (x2t_2, ^ . ^
£3-insert the function f(x) into F2(c_3 and F2k_1; respectively, where
e3 = min^/lO, 1/102}. The points of these insertions not as yet assigned are now
placed into T3. The column of the remaining type is handled similarly; however,
horizontal insertions are into Fi only, and hence in only one direction.

(d2) For columns of the initial type, horizontal segments are now constructed
which extend from F2t_3 to V2k-Y and which pass through the points (x2k_2,y2q)
for q = l , 2 , - , m , and these horizontal segments are placed into S3. For the
remaining column, horizontal segments spanning the gap between [(0,0), (0,1)]
and Vt are constructed and placed into S3.

The maze M2, then, consists of the maze Mj described in the first stage of
the construction together with the newly added points. See Figure 5. The plane
has once again been subdivided into regions, which are termed grid squares of
the second stage. Each grid square consists of its interior, which does not meet
M2, two line segments, one horizontal and one vertical meeting at a common
endpoint (the S3-node of this second-stage grid square), and the graphs of two
continuous functions, each of which is of bounded variation in no subinterval
on which it is defined. One of these graphs has been inserted into the other.
Further, one graph has a horizontal axis and the other has a vertical axis. If
we assume that for a particular grid square of stage two the horizontal T3-arc
has been inserted into the vertical T3-arc, then the fluctuation of the horizontal
T3-arc is less than 2/102, while the fluctuation of the vertical T3-arc is less than
1/102. The construction of M3 is carried out within the grid squares of stage two
and is analogous to that completed for M2.

Proceeding inductively we obtain a maze Mn for each n = 1,2, •••. Define
M = U n°°= 1 Mn. Finally, let S3 consist exactly of those points which have been
entered into S3 during the course of the construction of M, and let T3 = P—S3.
This completes the construction, and we now proceed to verify that S3 has the
properties we initially claimed it would have.

https://doi.org/10.1017/S1446788700023971 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023971


100 Frederick Bagemihl and Paul D. Humke [16]

First we must show that every point of the plane is an ambiguous point
relative to S 3 . To this end we let £ e P, and define an arc at £ in the following way.
It is evident that there is a nested sequence of grid squares, {Qn: n = 1,2,--},
such that Qn is a grid square of the nth stage and f |"=i Qn = {£} • Let an be the
S3-node of Qn. The construction of M n + 1 from Mn provides that if an ^ <rn+1

then there is an arc Tn lying in S3 n M n + 1 such that Tn(0) = an and Fn(l) = an+1.
We define Tn = an if an = <rn+1. Letting A* = \J™=1Tn we find that A?

Figure 5.

provides a path (possibly not an arc) from a1 to £ which lies entirely in S 3 . It
follows then that there is an arc h^ s A* at £ which lies entirely within S 3 . Fur-
thermore, due to the fact that a± lies on a vertical straight line contained in S3

(see stage one of the construction of S3), it is possible to obtain such arcs at ( of
arbitrarily large diameter. In an analogous manner, arcs at £ of arbitrarily large
diameter which are contained in T3 can be exhibited.

The existence of these arcs at £ emanating from distant points allows us
to conclude that neither S3 nor T3 contains a loop. The fact that neither S3 nor
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T3 contains a loop, together with the similarity of construction between S3 and Su

allows us to prove the analogue of Lemma 1 for each of the sets S3 and T3 . These
results are listed below as Lemma 8a and Lemma 8b. The proof of each of these
lemmas follows the proof of Lemma 1 closely and therefore is not given.

LEMMA 8a. Suppose £eS3 U(P —M) and £ is an interior point of a grid
square Qn of the nth stage. Suppose further that a and P are arcs at £ such that

1. a(0) and 0(0) are in P-lnt(Qn),
2. a(0 and fl(t) are in S3for 0 g t< 1.

Then a(tt) = ft(t2) where

t, =sup{f:a(0eBd(en)},

LEMMA 8b. Suppose £eT 3 U ( P - M ) and £ is an interior point of a grid
square Qn of the nth stage. Suppose further that a and /? are arcs at £ such that

1. a(0) and j8(0) are in P-Int(Qn),
2. a(0 and $(t) are in T3 for 0 ^ t < 1.

Then a ^ ) = 0(t2) where

t, =sup{f:a(0eBd(en)},

We are now able to use Lemmas 8a and 8b to prove the analogues of Lemmas
2 and 3 for this new construction. Only the following two analogues are needed,
however, and we list them without further verification.

LEMMA 9. If a is an arc such that <x(0 e T3for 0 S t < 1, then a(t) eT3nM
for 0<t< 1.

Define S3(n) = {£ e S3: £ was entered into S3 during the nth stage of the
construction and not before}.

LEMMA 10. Let a be an arc in S3 with a(0)e S3(N) and a(t) e \J™=N S3(n)
for 0< t < 1. Let C ^ tv < t2 < 1 be such that aO1)eS3(m) and a(t2)eS3(k).
Then m :g k.

Lemma 9 guarantees that if a is an arc such that a(f) 6 T3 for 0 ^ t < 1 then
a is nonrectifiable, for it is clear that if a contains a subarc which is imbedded in
the maze M, then that subarc is totally nonrectifiable, and consequently a is non-
rectifiable. Lemma 10 is important, for it enables us to prove the rectifiability
of arcs that are subsets of S3. We prove this in the spirit of Lemmas 4 and 5.

LEMMA 11. Let a. be an arc in S3 such that a(0)eS3(N) for some N > 0
and oc(t)<=\J™=NS3(n) for 0<t<l. Then a is rectiftable.
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PROOF. Again as in Lemma 4, define

As N is the least integer such that a n S3(n) # 0 we have lk = 0 for k < N.
Further, as a(0)eS3(JV) and a( l )eU "=JVS3(n), Lemma 10 guarantees that /„
is either an interval, a point, or 0 for n S: JV. Lemma 10 also entails that if
x e Jm and y e /^ and m> k then x > y. Thus, in order to prove that a is recti-
fiable, it is sufficient to prove that both

1. a//n is rectifiable for n = 1,2, •••
and

2. £ I a//n I < oo .

As in Lemma 4, the case where n = 1 does not fit the pattern of the other
cases. However, a/T^ is of finite length. In general (i.e., for n = 2,3, •••) we find
the length of <*//„ to be less than 11/10"" i. It follows, then, that a is rectifiable
and that the length of <x does not exceed | cnjl^ \ + 11/9.

LEMMA 12. / / ae&/(S3), then a is rectifiable.

PROOF. The proof of Lemma 12 is identical with the proof of Lemma 5.
We collect the results of the previous lemmas concerning S3 in the following

theorem.

THEOREM 13. There exists a set S3<= P such that every point of P is an
ambiguous point relative to S3, and &?(S3) c M but «s/(P-S3) aJT.

In view of the previous theorems one might conjecture that it is possible
to define a set S4c P such that every point of P is both rectifiably ambiguous
relative to SA, and nonrectifiably ambiguous relative to S 4 . Indeed this is the
case, and an example is constructed by letting S4 be the image of Sx under the
function ¥ : P -> P where

and

j
( 0 for y g 0.

If C e P and C is not on the x-axis, then an arc a at £ which lies in S4 may be
extended or shortened so as to include or exclude a nonrectifiable portion, and
hence may be chosen to be either rectifiable or nonrectifiable. The same is true
for an arc at £ which lies in P - S 4 . For every point £ on the x-axis there is a non-
rectifiable arc at £ which is contained in the upper half-plane intersected with S4 ,
and a rectifiable arc at ( contained in the lower half-plane intersected with S 4 .
Similar arcs lying in P-S4 can also be found.
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The question of whether terminally different arcs of approach can exist
in both a set S and its complement for a large set of points is answered in the next,
and concluding, section.

3. A General Theorem

This section is devoted to proving a general theorem which entails that if
S is a planar set, the set of points which are both rectifiably ambiguous relative
to S and totally nonrectifiably ambiguous relative to S is of first Baire category.

THEOREM 14. Suppose that Au A2, Bu and B2 are sets of planar arcs,
and let A = At(JA2 and B = B1UB2. Further, assume that

1. At and A2 are terminally arcwise disjoint,
2. Bt and B2 are terminally arcwise disjoint,
3. A and B are pointwise disjoint.

Then the set of points which are accessible via each of the sets Alt A2, B±, and
B2 is of first Baire category.

PROOF. Suppose to the contrary that the set of points of P which are accessible
via each of the sets Au A2, Bu and B2 is a set of second Baire category, Q. That
is, if CeQ there are arcs a't(0, «2(0, J?'i(0, and j?2(0 at £ where 4(0eAt,
a'2(0eA2, /^(Qe-Bi, and /?2(Qe.B2. We shall assign an ordered sextuple of
rational numbers to £ in the following manner using a technique developed
by Bagemihl (1966).

1. Let A(Q be a rational disc (i.e., a planar disc with a rational center and
radius) which contains £ and is such that the four arcs of accessibility meet the
boundary of A(Q. Assign A(Q to £ and let

a. t\ = max{f:ai(C;f)6Bd(A(0)},

b. t* = max{l:a'2(C;OeBd(A(0)},

c. t* = max{t;/Ji(C;QeBd(A(O)},

d. tX = max{f:/Ji(£;0eBd(A(O)}.

Then define

a. a i(£; 0 = «!(£; [1 - t*]t + t*); 0 | « l ,

b. a2(£;f) = «i(C;[l - f*]* + *5); 0 ^ t < 1,

c. ptf; t) = # ( £ ; [1 - t*-]t + tt); 0 ^ t < 1,

d. J82(C;O = /J2(C;[l -tX]t + t*); 0 ^ < l .

2. If £t and £2 are in P we let [£1( £2] denote the closed line segment extending
from Ci to C2. Let e(Q be a rational number satisfying
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0 < 8(0 < 1/2min{| [ai(C; 0) ,P&; 0)] | , | [ai(C;0),j82(C;0)] | , | [«2(C; 0), &(£;0)] |,

|[a2(f;0),j82(C;0)]|}
and assign e(Q to £.

3. We now choose rational directions Jwhich approximate the directions of
the rays emanating from the center of A(£) to the initial points of the shortened
arcs of accessibility at f. For notational convenience let r(0) denote the ray
whose initial point is the center of A(Q and whose direction is 0 . We define these
approximating directions as follows:

a. Let 0t(O be a rational direction such that rid^O)n Bd(AvQ) is within
(1/4) [«(0] of a i (C;0).

b. Let 02(Q be a rational direction such that r(62(O) n Bd(A(0) is within
(1/4) [£(Q] of a2(C;0).

c. Let 0i(O be a rational direction such that K^i(O) ^>Bd(A(0) is within
(1/4)[8(0] offiM-,0).

d. Finally, let 02(Q be a rational direction such that r(02(O) n Bd(A(0)
is within (1/4) [e(0] of /?2(C;0).

Assign these four directions to £•

The assigning is now completed and we define Q(A,E,61,02,</>I,<I>2) to be
the set of all points in Q to which the ordered sextuple (A, e, 01,02,<l>i, $2) n a s

been assigned. Evidently then Q = U 6(A,e,01,02,</)i,^2) where the union is
taken over all admissible sextuples. As the set of indices over which the union is
taken is an enumerable set, and as Q is of second Baire category, there is at least
one index (A*,s*, 0f, 02* <£f, <j>*2) and a disc Ao such that Q* = Q(A*, e*, 0?, 0j, < t̂, </>5)
is dense in Ao. It is apparent that Ao c A*. Once again, let r(6) denote the ray
whose initial point is at the center of A* and whose direction is 0, and let

a- £1 = r(0*)n Bd(A*),

b. $2 = r ( 0 | )O Bd(A*),

See Figure 6.
The disc A* can now be classified according to the positions of the points

^t and £2 relative to the points £,[ and £2. In particular, we say A* is of type 1
if the point pair {£i,£2} does not separate the pair {^i,^2} on the boundary
of A* or if either {t = £2 or ^ = £2. We refer to A* as of type 2 if the pair
{£,u £2} does separate the pair {£,[, £,'2) on the boundary of A*. Consequently,
we have two cases to consider depending on the type of A*. Before entering into
a discussion of these particular cases, however, we prove two results. The first
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deals with the arcs xt(O and a2(0» the second with pt(Q and /?2(0, for a
point £ e Q * n Ao:

1. If (* = sup{f: a i (C;Oea2(0}, then t* ^ 1.
2. If *** = sup{(:^(C;0ej82(O}, then t** * 1.

As the proof of 2. is analogous to the proof of 1., we prove only 1. Suppose that
sup{l: a^C; 0 e a 2 ( 0 } = 1. There exists a tt such that 0 < r t < 1 and OC^
for tt < t < 1. Let

G = {t: tt < t < 1 and ax(C;0 $ac2(Q} and

F = { * : ? ! < * < ! and ai(C;Oea2(0}•

Figure 6.

As aiCOe^! and a2(Qe^2 and both 0^(0 and a2(0 are arcs at ^, it follows
that ax(0 n a2(0 contains no arc at £. We conclude that there exist two numbers
t2 and f3 in F such that t1 < t2 < t3 <1 and {f: t2 < t < t3] <= G. That is,
a!(C;f2)ea2(0 and ai(C;t3)6«2(0 but a1(C;O^a2(0 for t2 < t < t3. As a^C;^)
ea2(0, there is a f2 such that a!(C;(2) = a2(C;f2); and as a1(C;f3)ea2(0, there
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is a f'3 such that a^f;^) = cc2(£;t'3). Let R denote the region bounded by the
arcs a1(O/[r2)f3] and a2(Q/[f2, t3~\. (We have made the tacit assumption that
t'2 < t'3, which may not be true. If t3 < t2, an interchange of these two numbers
in the definition of R is needed for notational correctness.) As R n Ao ^ 0 ,
there exists a £* eRC\A0 nQ*. But fi^C*; 0) is on the boundary of A*, and hence
exterior to R. Further,

It follows that /?i(C*) meets the boundary of R. This, however, is impossible,
as the boundary of R consists of subarcs of arcs in A, and A and B are pointwise
disjoint. The proof of 2. is similar.

We now proceed to discuss the two cases mentioned previously.

CASE 1. Suppose that A* is of type 1. See Figure 7. We show that if
C e Ao n Q*, then £ lies on an arc contained in A, and also on an arc contained
in B, thus contradicting the hypothesis that A and B are pointwise disjoint col-
lections.

Let CeA0 r\Q*. In order to show £ lies on an arc in B, we consider two
subcases which depend on whether or not a K 0 n a2(0 = 0 -

a.
Let t* = sup{f:a1(C;t)6a2(0}; then as was shown earlier, t* < 1. Let s*

be such that <x2(£;s*) = a ^ f * ) , and denote by .Rj the region bounded by the
arcs a^Q/r^*, 1) and a2(Q/[s*, 1), and by the point £. As £ e Ao, we conclude
that i ? 1 n A o # 0 , and hence there is a £*eg* HRt n A0. But WC*;*)) is on
Bd(A*), while limit,-1 p±(C*; i) = £*, and consequently ^(C*) must intersect
the boundary of Rt. As the sets of arcs A and B are pointwise disjoint,
WC*) n «i(0/l>*> 1) = 0 and /*!«*).na2(0/[s*,l) = 0 . It follows then that
Ce/*!«•), and hence £e £!(£*).

b. «1(0na2(O = 0 .
As A* is of type 1, there is a path F on the boundary of A* such that F(0) = £u

F(l) = {2, and neither £[ nor £2 is on F. Further, ^ is within (1/4)E* of at(C;0),
§2 is within (l/4)e* of a2(£;0), £,\ is within (l/4)e* of &(£;()), and ^2' is within
(l/4)e* of ^2(C;0). Consequently, there is a path F* on the boundary of A*
satisfying

i. F*(0) = ai(C;0),
ii. F*(l) = oc2(C;0),
iii. )S1(C;O)^F* and JS2(C;O)^F*.

Denote by R2 the region bounded by the path F*, the arcs at(0 and a2(Q, and
the point £. Again R2 n Ao # 0 , and we let ( * s R 2 n A o n Q * . Then £* is an
interior point of R2 while /?i(£*; 0) lies exterior to R2, and hence jSi(C*) must
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A* of Type 2

A* of Type 1

Figure 7.
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meet the boundary of R2 • But Px(C*;O) is the only point of y?i(C*) lying on the
boundary of A*, and &(£*; 0) £ F*; hence /?!(£*) n F * = 0 . Further, p^*)
OajCO = 0 and /?i(C*)n<x2(Q = 0 , as the sets A and B are pointwise dis-
joint. We again conclude that ££&(£*), and thus that ( €$[(£*).

In either subcase, then, we find that £ lies on an arc which is contained in
the set B. In an analogous manner it can be shown that f also lies on an arc
contained in A, and hence we reach the contradiction that the sets A and B are
not pointwise disjoint. It must be, then, that A* is of type 2.

CASE 2. Suppose A* is of type 2. See Figure 7. We again show that if
C e Ao n Q*, then f lies both on an arc contained in B and on an arc contained
in A, thus contradicting the hypothesis that A and B are pointwise disjoint. As
before, we only show that f is on an arc contained in B, as this proof is wholly
analogous to showing that £ lies on an arc in A. We have the same two subcases
to consider. Let £ e Ao n Q*.

a. a1(On«1(O#0.
This subcase cannot occur, as the arcs a t(0 and a2(0 are separated by the

union of the arcs /?i(£), jS2(O» a nd the point £.

b.
As A* is of type 2, there exists an arc F on the boundary of A* having the

properties that F(0) = £u F(l) = £2> and exactly one of £i or £2 resides
on F . Now a^fX',0), oc2(C;O), /?i(£;0), and /?2(£;0) were chosen sufficiently close
to (within e*/4 of) ^l5 £2, £i, and £2, respectively, for there to exist an arc F*
on the boundary of A* with the following properties:

ii. r*(l) = «2(C;0),
iii. F* contains exactly one of Pi(C;O) or /?2(£;0).

Suppose, for the sake of definiteness, that /?j(£;0)er*, and let R2 denote the
region bounded by F*, the arcs at(Q and a2(0, and the point £. Once again we
find that R2 n Ao ^ 0 , and consequently there is a C* e R2 n Ao n Q*. But
^2(C*;0) is within e*/4 of <*2, and hence is not on F*. It follows then, that
Pi(£,*10) lies exterior to R2. However, £* is an interior point of R2, and hence
P2(C*) must intersect the boundary of R2. As A and B are pointwise disjoint col-
lections, we infer that both ax(Q and «2(0 miss /?2(C*). Also, )82(C*; 0) £ F*,
and j82(£*;0) is the only point /?2(C*) has in common with the boundary of A*.
It follows that jS2(C*)nF* = 0 and consequently Cej?2(C*)'c y?2'(£*)•

A similar argument shows that f is also an element of an arc contained in A.
This contradicts the fact that A and B are pointwise disjoint collections of arcs,
and the supposition in case 2 has also proved untenable. Hence, our original
assumption that Q is of second Baire category is false, and the theorem follows.

If a is an arc at a point £e P, a is said to be terminally nonrectifiable if
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a/[f, 1) is nonrectifiable for 0 ^ t < 1. If S is a planar set and ( e P, £ is termed
a terminally nonrectifiably ambiguous point relative to S if the arcs of ambi-
guity may be chosen to be terminally nonrectifiable.

COROLLARY 15. Let S be a planar set. Then the set of points which are both
rectifiably ambiguous points relative to S and terminally nonrectifiably ambi-
guous points relative to S is a set of first Baire category.

PROOF. Let Ax denote the set of rectifiable arcs lying in S and let A2 denote
the set of terminally nonrectifiable arcs in S. Denote by Bx the set of rectifiable
arcs in P—S and by B2 the set of terminally nonrectifiable arcs in P—S. Let
A = A1 \JA2 and B = B1UB2. Then Au A2, Bu B2, A, and B satisfy the
hypothesis of the previous theorem, and the result follows.

As every totally nonrectifiable arc is terminally nonrectifiable, we also obtain
the following corollary.

COROLLARY 16. Let S be a planar set. Then the set of points of P which are
both rectifiably ambiguous relative to S and totally nonrectifiably ambiguous
relative to S is a set of first Baire category.
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