Ergod. Th. & Dynam. Sys., (2025), 45, 573–594 © The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence [\(https://creativecommons.org/licenses/by/4.0\)](https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. doi[:10.1017/etds.2024.18](http://dx.doi.org/10.1017/etds.2024.18) 573

Non-rigidity of partially hyperbolic abelian *C*1-actions on tori

FEDERICO RODRIGUEZ HERTZ and ZHIREN WANG

Pennsylvania State University, State College, PA 16802, USA (e-mail: [zhirenw@psu.edu\)](mailto:zhirenw@psu.edu)

(*Received* 10 *June* 2021 *and accepted in revised form* 27 *September* 2022)

Abstract. We prove that every genuinely partially hyperbolic \mathbb{Z}^r -action by toral automorphisms can be perturbed in $C¹$ -topology, so that the resulting action is continuously conjugate, but not C^1 -conjugate, to the original one.

Key words: Abelian actions, rigidity, Anosoc–Katok 2020 Mathematics Subject Classification: 37C15 (Primary); 37C85 (Secondary)

Contents

1. *Introduction*

1.1. *Statement of results.* In this paper, let $\rho : \mathbb{Z}^r \to GL_d(\mathbb{Z}) = Aut(\mathbb{T}^d)$ be a group morphism and denote indifferently by ρ the group action it induces on \mathbb{T}^d . Our main result is the following theorem.

THEOREM 1.1. If an action $\rho : \mathbb{Z}^r \cap \mathbb{T}^d$ by toral automorphisms contains no *hyperbolic automorphisms, then for any* $\tau > 0$, there exists an action $\alpha : \mathbb{Z}^r \curvearrowright \mathbb{T}^d$ by *C*1*-diffeomorphisms such that:*

- (1) $d_{C^1}(\alpha, \rho) < \tau$;
- (2) $\alpha^n = \widetilde{H} \circ \rho \circ \widetilde{H}^{-1}$ *for a homeomorphism* $\widetilde{H} : \mathbb{T}^d \to \mathbb{T}^d$ *that is homotopic to* id;
- (3) *neither* \widetilde{H} *nor* \widetilde{H}^{-1} *is differentiable.*

Here the *C*¹-distance d_{C_1} between two actions is defined as $d_{C_1}(\alpha, \rho) = \max_{\mathbf{n} \in \Xi} ||\alpha^{\mathbf{n}} - \alpha||$ $\rho^{\mathbf{n}}\|_{C^1}$, where $\Xi \in \mathbb{Z}^r$ is the generating set

$$
\Xi = \{\pm \mathbf{e}_i : i = 1, \ldots r\}
$$

with e*ⁱ* being the *i*th coordinate vector.

Definition 1.2. [[DK10](#page-21-2), Section 1.3.2] An action $\rho : \mathbb{Z}^r \cap \mathbb{T}^d$ by toral automorphisms is *genuinely partially hyperbolic* if ρ is ergodic with respect to the Haar measure on \mathbb{T}^d , but *ρ*ⁿ is not hyperbolic for any n.

As remarked in [[DK10](#page-21-2)], a genuinely partially hyperbolic action contains an element which has no root of unity among its eigenvalues, or equivalently an ergodic toral automorphim.

COROLLARY 1.3. Suppose $\rho : \mathbb{Z}^r \cap \mathbb{T}^d$ is a genuinely partially hyperbolic action *by toral automorphisms. Then for any* $\tau > 0$, there exists an action $\alpha : \mathbb{Z}^r \curvearrowright \mathbb{T}^d$ by *C*1*-diffeomorphisms such that:*

- (1) $d_{C_1}(\alpha, \rho) < \tau$;
- (2) α *and* ρ *are not* C^1 *-conjugate.*

Corollary [1.3](#page-1-1) is deduced from Theorem [1.1](#page-0-2) through a standard argument.

Proof. Let α be given by Theorem [1.1](#page-0-2) and assume \widetilde{G} : $\mathbb{T}^d \to \mathbb{T}^d$ is a C^1 diffeomorphism such that $\alpha^{\mathbf{n}} \circ \widetilde{G} = \widetilde{G} \circ \rho^{\mathbf{n}}$ for all $\mathbf{n} \in \mathbb{Z}^d$. Then $G := \widetilde{H}^{-1} \circ \widetilde{G}$ is a homeomorphism of \mathbb{T}^d such that

$$
\rho^{\mathbf{n}} \circ G = \rho^{\mathbf{n}} \circ \widetilde{H}^{-1} \circ \widetilde{G} = \widetilde{H}^{-1} \circ \alpha^{\mathbf{n}} \circ \widetilde{G} = \widetilde{H}^{-1} \circ \widetilde{G} \circ \rho^{\mathbf{n}} = G \circ \rho^{\mathbf{n}}.
$$

Since at least one of the ρ^{n} is an ergodic toral automorphism, *G* is affine by [[W70](#page-21-3), Corollary 2]. So $\tilde{G} = \tilde{H} \circ G$ cannot be C^1 because \tilde{H} is not, which contradicts our assumption. \Box

1.2. *Background.* Faithful linear actions by higher rank abelian groups on tori and nilmanifolds, that is, \mathbb{Z}^r -actions generated by automorphisms where $r \geq 2$, have since been long expected to be rigid, in the following sense: under some additional assumptions, a smooth action α in the same homotopy class should be smoothly conjugated to the linear action itself, which we denote by ρ . The issue we address in this paper is whether the conjugacy, denoted by h , should have the same smoothness as α .

One important rigidity phenomenon is the local rigidity of the actions ρ described above, which stands for rigidity under perturbative assumptions. An action ρ is said to be $C^{l,m,n}$ -locally rigid if all C^l -actions that are sufficiently close to ρ in C^m topology are C^n -conjugate to ρ . For Cartan actions (that is, faithful linear actions by \mathbb{Z}^r with the largest possible *r*, modulo restriction to a finite index subgroup) on tori, $C^{\infty,1,\infty}$ local rigidity was proved by Katok and Lewis [[KL91](#page-21-4)]. For some more general

classes of hyperbolic actions, $C^{\infty,1,\infty}$ local rigidity was proved by Katok and Spatzier [[KS94](#page-21-5), [KS97](#page-21-6)] and Einsiedler and Fisher [[EF07](#page-21-7)]. For global rigidity see [[F69](#page-21-8)], [[FKS11](#page-21-9)], [[FKS13](#page-21-10)] and [[RH07](#page-21-11)]. Damjanović and Katok [[DK10](#page-21-2)] proved $C^{\infty,r,\infty}$ local rigidity for genuinely partially hyperbolic \mathbb{Z}^r -actions by toral automorphisms by the Kolmogorov–Arnold–Moser (KAM) method. For finitely differentiable actions, $C^{l,1,l}$ is not expected to follow from KAM methods because of the loss of regularity when solving a cocycle equation of the form (2.1) below. When $r = 1$, that is, for the dynamics of a single toral automorphism *A* of \mathbb{T}^d that is partially hyperbolic, such loss of regularity in the cocycle equation was discussed by Veech in $[V86]$ $[V86]$ $[V86]$, where it was shown that, although the cocycle equation $g \circ A - A \circ g = f$ can be solved in C^n if $f \in C^l$ and $n < l - d$, there exists a C^1 -function *f* for which the equation has no C^1 -solutions.

Section [3](#page-10-2) of this paper will describe similar loss of regularity when solving the cocycle equation for general genuinely partially hyperbolic \mathbb{Z}^r -actions by toral automorphisms. In [§2,](#page-2-4) we propose a reversed KAM scheme that allows an accumulation of such losses at certain sequences of periodic points, which leads to the failure of $C^{1,1,1}$ -rigidity in Theorem [1.1.](#page-0-2)

1.3. *Notation.* In the rest of this paper:

- *ρ* will be fixed;
- all implicit constants in expression of the forms $X \ll Y$ and $X = O(Y)$ will be assumed to be dependent on r , d , ρ , and Ξ , but independent of other variables;
- $e(t)$ will denote the function $e^{2\pi i t}$.

2. *The inductive scheme*

2.1. *Sequence of conjugacies.* We employ a reversed KAM scheme to construct a counterexample. A sequence of conjugacies H_m will be constructed in later sections, where $H_m = id + h_m$ for a sequence of C^{∞} smooth functions $h_m : \mathbb{T}^d \to \mathbb{R}^d$ that are small in $C¹$ norm. Inductively define

$$
\widetilde{H}_m = H_1 \circ \cdots \circ H_m,\tag{2.1}
$$

and

$$
\alpha_m^n = \widetilde{H}_m \circ \rho^n \circ \widetilde{H}_m^{-1}.
$$
\n(2.2)

For $m = 0$, set $H_0 = id$ and $\alpha_0 = \rho$.

Notice that as H_m is homotopic to id, all the α_m terms are homotopic to ρ .

Define a twisted coboundary $g_m : \mathbb{Z}^r \times \mathbb{T}^d \to \mathbb{R}^d$ over ρ by

$$
g_m^n(x) = h_m \circ \rho^n(x) - \rho^n h_m(x). \tag{2.3}
$$

We pose a list of technical conditions on h_m and g_m as follows.

Condition 2.1. The sequence ${h_m}_{m=1}^{\infty}$ will be chosen, together with:

- a positive number $\tau \in (0, 1)$;
• a sequence of positive number
- a sequence of positive numbers $\{\theta_m\}_{m=1}^{\infty}$;
- unit vectors $v, w \in \mathbb{R}^d$, as well as two sequences of non-zero vectors $\{v_m\}_{m=1}^{\infty}$, $\{v_m^*\}_{m=1}^{\infty}$ from \mathbb{R}^d ,

so that, for all $m \in \mathbb{N}$:

- (i) $\sum_{m=1}^{\infty} \theta_m < \tau;$
- (ii) $||h_m||_{C_1} \ll \tau$ and

$$
\left(\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}^{-1}\|_{C^1}\right) \left(\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}\|_{C^1}\right) \|h_m\|_{C^0} < \theta_m;
$$

- (iii) $\|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \|g_m^n\|_{\mathcal{L}^1} < \theta_m;$
- (iv) $h_m(0) = 0$ and either $(D_0 H_m)v = v + \tau w$ if *m* is odd or $(D_0 H_m)v = v$ if *m* is even;
- (v) either $w = v$ or $(D_0 \tilde{H}_m)w = w$;
- (vi) $h_m(v_{m'}) = h_m(v_{m'}^*) = 0$ for all $1 \le m' \le m 1$, where $v_{m'}$ is identified with its projection in \mathbb{T}^d ;
- (vii) $\lim_{m} ||_{C^{2}} |v_{m}| < \theta_{m}, \ ||\widetilde{H}_{m}||_{C^{1}} |v_{m}/|v_{m}| - v| < \theta_{m}, \ ||\widetilde{H}_{m}||_{C^{2}} |v_{m}^{*}| < \theta_{m}, \text{and } ||\widetilde{H}_{m}||_{C^{1}}$ $|v_m^*|/|v_m^*| - (v + \tau w)/|v + \tau w|| < \theta_m$.

Along our proof, it will turn out that *v* and *w* may or may not be the same.

2.2. *Sufficient inductive conditions.* We now show the following proposition.

PROPOSITION 2.2. *Given the action* ρ *, if Condition [2.1](#page-2-5) is satisfied and the constant* $\tau > 0$ *therein is sufficiently small, then:*

- (1) ${ \{ \widetilde{H}_m \}_{m=1}^{\infty} }$ *converges in* C^0 *to a homeomorphism* \widetilde{H} *that is homotopic to* id;
- (2) *for all* $\mathbf{n} \in \Xi$, $\widetilde{H} \circ \rho^{\mathbf{n}} \circ \widetilde{H}^{-1}$ *is* C^1 *differentiable and*

$$
\|\widetilde{H}\circ\rho^{\mathbf{n}}\circ\widetilde{H}^{-1}-\rho^{\mathbf{n}}\|_{C^1}\ll\tau;
$$

(3) *neither* \widetilde{H} *nor* \widetilde{H}^{-1} *is differentiable.*

We first recall a few technical facts regarding C^k norms.

LEMMA 2.3. *For smooth maps* ϕ , $\psi : \mathbb{T}^d \to \mathbb{T}^d$ and $\Delta : \mathbb{T}^d \to \mathbb{R}^d$:

- (1) $\|\phi \circ \psi\|_{C^2} \ll \|\phi\|_{C^2} (1 + \|\psi\|_{C^0})^2 (1 + \|\psi\|_{C^2})$. If ψ is not homotopically trivial, *then* $\|\phi \circ \psi\|_{C^1} \le \|\phi\|_{C^1} \|\psi\|_{C^1}$;
- (2) $\|\phi \circ (\psi + \Delta) \phi \circ \psi\|_{C^1} \ll \|\phi\|_{C^2} (1 + \|\psi\|_{C^1}) \|\Delta\|_{C^1};$
- (3) *there is* $\epsilon = \epsilon(d)$ *such that if* $\|\phi id\|_{C^1} \leq \epsilon$, *then* ϕ *is invertible, and* $\|\phi^{-1}\|_{C_1} \ll$ $1 + ||\phi||_{C_1}$ *and* $||\phi^{-1}||_{C_2} \ll 1 + ||\phi||_{C_2}$.

Proof of Lemma [2.3.](#page-3-1) (1) The C^2 bound is in [[K99](#page-21-13), Proposition A.2.3]. For the C^1 bound, note $\|\phi \circ \psi\|_{C^0} = \|\phi\|_{C^0} \le \|\phi\|_{C^1} \|\psi\|_{C^1}$, where we used $\|\psi\|_{C^1} \le 1$ because ψ is not homotopically trivial. In addition, $\|D(\phi \circ \psi)\|_{C^0} = \|(D\phi \circ \psi)D\psi\|_{C^0} \le \|\phi\|_{C^1} \|\psi\|_{C^1}$.

(2) We have

$$
\|\phi\circ(\psi+\Delta)-\phi\circ\psi\|_{C^0}\leq\|\phi\|_{C^1}\|\Delta\|_{C^0}\leq\|\phi\|_{C^2}(1+\|\psi\|_{C^1})\|\Delta\|_{C^1}.
$$

Moreover,

$$
||D(\phi \circ (\psi + \Delta) - \phi \circ \psi)||_{C^0}
$$

=
$$
||(D\phi \circ (\psi + \Delta))(D\psi + D\Delta) - (D\phi \circ \psi))D\psi||_{C^0}
$$

$$
= ||(D\phi \circ (\psi + \Delta) - D\phi \circ \psi)D\psi + (D\phi \circ (\psi + \Delta))D\Delta||_{C^0}
$$

\n
$$
\le ||D\phi \circ (\psi + \Delta) - D\phi \circ \psi||_{C^0}||D\psi||_{C^0} + ||D\phi||_{C^0}||D\Delta||_{C^0}
$$

\n
$$
\le ||D\phi||_{C^1}||\Delta||_{C^0}||D\psi||_{C^0} + ||D\phi||_{C^0}||D\Delta||_{C^0}
$$

\n
$$
\le ||\phi||_{C^2}||\psi||_{C^1}||\Delta||_{C^0} + ||\phi||_{C^1}||\Delta||_{C^1}
$$

\n
$$
\le ||\phi||_{C^2}(1 + ||\psi||_{C^1})||\Delta||_{C^1}.
$$

(3) Is proven in [[H82](#page-21-14), Lemma 2.3.6].

Proof of Proposition [2.2.](#page-3-2) In the proof below, we will repeatedly use the fact that, because H_{m-1} is homotopic to id,

$$
\|\widetilde{H}_m\|_{C^1} \ge 1, \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \ge 1. \tag{2.4}
$$

(1) By Lemma [2.3,](#page-3-1) when τ is sufficiently small depending on the dimension *d*, $H_m = id + h_m$ is invertible, and H_m^{-1} is C^1 differentiable and homotopic to id. So every \widetilde{H}_m is invertible in C^1 .

By Condition [2.1\(](#page-2-5)ii) and [\(2.4\)](#page-4-0), for all $x \in \mathbb{T}^d$,

$$
\begin{aligned} |\widetilde{H}_m(x) - \widetilde{H}_{m-1}(x)| \\ &= |\widetilde{H}_{m-1}(x + h_m(x)) - \widetilde{H}_{m-1}(x)| \\ &\leq \|\widetilde{H}_{m-1}\|_{C^1} \|h_m\|_{C^0} < \theta_m. \end{aligned}
$$

It follows that $\{\widetilde{H}_m\}$ is a Cauchy, and hence convergent, sequence in C^0 . Its limit, which we denote by H , is a continuous map that is homotopic to id. Note

$$
\|\widetilde{H} - \widetilde{H}_m\|_{C^0} \le \sum_{k=m+1}^{\infty} \|\widetilde{H}_{k-1}\|_{C^1} \|h_k\|_{C^0}.
$$
 (2.5)

However, it is easy to see that $H_m^{-1} = id + h_m^*$, where $h_m^* = -h_m \circ H_m^{-1}$. In particular, $||h_m^*||_{C^0} = ||h_m||_{C^0}$ and

$$
\sum_{m=1}^{\infty} \|h_m^*\|_{C^0} \le \sum_{m=1}^{\infty} \|\widetilde{H}_{m-1}\|_{C^1} \|h_m\|_{C^0} \| < \sum_{m=1}^{\infty} \theta_m < \tau. \tag{2.6}
$$

As $\widetilde{H}_{m}^{-1} = \widetilde{H}_{m-1}^{-1} + h_{m}^{*} \circ \widetilde{H}_{m-1}^{-1}$, it follows that $\{\widetilde{H}_{m}^{-1}\}$ is a Cauchy sequence in C^{0} topology, and thus converges to a continuous map \widetilde{H}^* . Additionally, \widetilde{H}^* is homotopic to id. We also have

$$
\|\widetilde{H}^* - \widetilde{H}_m^{-1}\|_{C^0} \le \sum_{k=m+1}^{\infty} \|h_k\|_{C^0}.
$$
 (2.7)

Thus, for all *m*,

$$
\|\widetilde{H}\circ\widetilde{H}^*-\mathrm{id}\|_{C^0}
$$
\n
$$
=\|\widetilde{H}\circ\widetilde{H}^*-\widetilde{H}_m\circ\widetilde{H}_m^{-1}\|_{C^0}
$$
\n
$$
\leq \|\widetilde{H}\circ\widetilde{H}^*-\widetilde{H}_m\circ\widetilde{H}^*\|_{C^0}+\|\widetilde{H}_m\circ\widetilde{H}^*-\widetilde{H}_m\circ\widetilde{H}_m^{-1}\|_{C^0}
$$
\n
$$
\leq \|\widetilde{H}-\widetilde{H}_m\|_{C^0}+\|\widetilde{H}_m\|_{C^1}\|\widetilde{H}^*-\widetilde{H}_m^{-1}\|_{C^0}
$$

 \Box

$$
\leq \sum_{k=m+1}^{\infty} \|\widetilde{H}_{k-1}\|_{C^{1}} \|h_{k}\|_{C^{0}} + \|\widetilde{H}_{m}\|_{C^{1}} \sum_{k=m+1}^{\infty} \|h_{k}\|_{C^{0}} \leq \sum_{k=m+1}^{\infty} \theta_{k} + \sum_{k=m+1}^{\infty} \theta_{k} = 2 \sum_{k=m+1}^{\infty} \theta_{k},
$$
\n(2.8)

where we used equation [\(2.7\)](#page-4-1) and the parts (i), (ii) of Condition [2.1.](#page-2-5) As $\sum_{m=1}^{\infty} \theta_m < \tau$, it follows that $\|\widetilde{H} \circ \widetilde{H}^* - id\|_{C^0} = 0$. Therefore, $\widetilde{H} \circ \widetilde{H}^* = id$.

Similarly, for all *m*,

$$
\|\widetilde{H}^{*} \circ \widetilde{H} - id\|_{C^{0}}\n= \|\widetilde{H}^{*} \circ \widetilde{H} - \widetilde{H}_{m}^{-1} \circ \widetilde{H}_{m}\|_{C^{0}}\n\leq \|\widetilde{H}^{*} \circ \widetilde{H} - \widetilde{H}_{m}^{-1} \circ \widetilde{H}\|_{C^{0}} + \|\widetilde{H}_{m}^{-1} \circ \widetilde{H} - \widetilde{H}_{m}^{-1} \circ \widetilde{H}_{m}\|_{C^{0}}\n\leq \|\widetilde{H}^{*} - \widetilde{H}_{m}^{-1}\|_{C^{0}} + \|\widetilde{H}_{m}^{-1}\|_{C^{1}}\|\widetilde{H} - \widetilde{H}_{m}\|_{C^{0}}\n\leq \sum_{k=m+1}^{\infty} \|h_{k}\|_{C^{0}} + \|\widetilde{H}_{m}^{-1}\|_{C^{1}} \sum_{k=m+1}^{\infty} \|\widetilde{H}_{k-1}\|_{C^{1}}\|h_{k}\|_{C^{0}}\n\leq \sum_{k=m+1}^{\infty} \theta_{k} + \sum_{k=m+1}^{\infty} \theta_{k} = 2 \sum_{k=m+1}^{\infty} \theta_{k}.
$$
\n(2.9)

As above, we know $\widetilde{H}^* \circ \widetilde{H} = \text{id}$.

We can now conclude that $\widetilde{H}^* = \widetilde{H}^{-1}$ and \widetilde{H} is a homeomorphism of \mathbb{T}^d . (2) By Lemma [2.3,](#page-3-1) for $n \in \Xi$,

$$
\|\alpha_m^n - \alpha_{m-1}^n\|_{C^1}
$$

\n
$$
= \|\widetilde{H}_{m-1} \circ H_m \circ \rho^n \circ \widetilde{H}_m^{-1} - \widetilde{H}_{m-1} \circ \rho^n \circ H_m \circ \widetilde{H}_m^{-1}\|_{C^1}
$$

\n
$$
\leq \|\widetilde{H}_{m-1} \circ H_m \circ \rho^n - \widetilde{H}_{m-1} \circ \rho^n \circ H_m\|_{C^1} \|\widetilde{H}_m^{-1}\|_{C^1}
$$

\n
$$
\leq \|\widetilde{H}_{m-1}\|_{C^2} (1 + \|H_m \circ \rho^n\|_{C^1})
$$

\n
$$
\cdot \|H_m \circ \rho^n - \rho^n \circ H_m\|_{C^1} \|H_m^{-1}\|_{C^1} \|\widetilde{H}_{m-1}^{-1}\|_{C^1}
$$

\n
$$
\ll \|\widetilde{H}_{m-1}\|_{C^2} (1 + \|H_m\|_{C^1} \|\rho^n\|_{C^1})
$$

\n
$$
\cdot \|(\rho^n + h_m \circ \rho^n) - (\rho^n + \rho^n h_m)\|_{C^1} \|H_m\|_{C^1} \|\widetilde{H}_{m-1}^{-1}\|_{C^1}
$$

\n
$$
\ll \|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \|g_m\|_{C^1} < \theta_m.
$$

Because $\sum_{m=1}^{\infty} \theta_m < \tau$, the sequence $\{\alpha_m^n\}$ is Cauchy in C^1 topology. Denote the limit by α^n . Since $\rho^n = \alpha_0^n$,

$$
\|\alpha^{\mathbf{n}} - \rho^{\mathbf{n}}\|_{C^1} \ll \sum_{m=1}^{\infty} \theta_m < \tau \quad \text{for all } \mathbf{n} \in \Xi. \tag{2.10}
$$

Finally, we want to show that $\alpha^n = \widetilde{H} \circ \rho^n \circ \widetilde{H}^{-1}$. For all $m \in \mathbb{N}$ and $n \in \mathbb{Z}$,

$$
\|\alpha_m^n - \widetilde{H} \circ \rho^n \circ \widetilde{H}^{-1}\|_{C^0}
$$

\$\leq\$ $\|\widetilde{H}_m \circ \rho^n \circ \widetilde{H}_m^{-1} - \widetilde{H}_m \circ \rho^n \circ \widetilde{H}^{-1}\|_{C^0} + \|\widetilde{H}_m \circ \rho^n \circ \widetilde{H}^{-1} - \widetilde{H} \circ \rho^n \circ \widetilde{H}^{-1}\|_{C^0}$

$$
\leq \|\widetilde{H}_{m} \circ \rho^{\mathbf{n}}\|_{C^{1}} \|\widetilde{H}_{m}^{-1} - \widetilde{H}^{-1}\|_{C^{0}} + \|\widetilde{H}_{m} - \widetilde{H}\|_{C^{0}} \n\ll \|\widetilde{H}_{m}\|_{C^{1}} \sum_{k=m+1}^{\infty} \|h_{k}\|_{C^{0}} + \sum_{k=m+1}^{\infty} \|\widetilde{H}_{k-1}\|_{C^{1}} \|h_{k}\|_{C^{0}} \n\ll \sum_{k=m+1}^{\infty} (\max_{k'=1}^{k-1} \|\widetilde{H}_{k'}\|_{C^{1}}) \|h_{k}\|_{C^{0}} \n< \sum_{k=m+1}^{\infty} \theta_{k},
$$
\n(2.11)

which decays to 0 as $m \to \infty$. Thus, $\widetilde{H} \circ \rho^{\mathbf{n}} \circ \widetilde{H}^{-1}$ is the C^0 limit of $\alpha_m^{\mathbf{n}}$, which coincides with α^{n} .

The extension of the definition $\alpha^n = \widetilde{H} \circ \rho^n \circ \widetilde{H}^{-1}$ to general $n \in \mathbb{Z}^r$ forms a C^1 action generated by $\{\alpha^n : n \in \Xi\}.$

(3) Since $H_m(0) = 0 + h_m(0) = 0$,

$$
\tilde{H}_m(0) = 0 \quad \text{for all } m \text{ and } \tilde{H}(0) = 0.
$$

In addition, for all positive integers $m' > m \ge 1$, $h_{m'}(v_m) = 0$ and thus $H_{m'}(v_m) = v_m +$ $h_{m'}(v_m) = v_m$. Therefore, for all $k > m \ge 1$,

$$
\widetilde{H}_{m'}(v_m) = \widetilde{H}_m \circ H_{m+1} \circ \cdots \circ H_{m'-1} \circ H_{m'}(v_m)
$$

= $\widetilde{H}_m \circ H_{m+1} \circ \cdots \circ H_{m'-1}(v_m)$
= $\cdots = \widetilde{H}_m(v_m)$,

and

$$
\widetilde{H}(v_m) = \lim_{m' \to \infty} \widetilde{H}_{m'}(v_m) = \widetilde{H}_m(v_m). \tag{2.12}
$$

Set $y_m = v_m + \sum_{m'=1}^m h_{m'} \circ H_{m'+1} \circ \cdots \circ H_m(v_m)$. Then $\widetilde{H}(v_m) = \widetilde{H}_m(v_m)$ is the projection of y_m to \mathbb{T}^d , which we indifferently denote by y_m .

We first claim that H is not differentiable at 0. To show this, it is helpful to study the asymptotic behavior of the sequence of vectors *ym/*|*vm*|.

Remark that since $\sum_{m=1}^{\infty} \theta_m < \tau$, $\theta_m \to 0$. Moreover, as \widetilde{H}_m is homotopic to id, $||\tilde{H}_m||_{C^2} \ge ||\tilde{H}_m||_{C^1} \ge 1$. Thus, Condition [2.1\(](#page-2-5)vii) shows $|v_m| \le \theta_m$ and $|v_m/|v_m| - v| \le \theta_m$. Thus, $v_m \to 0$ and $v_m/|v_m| \to v$ as $m \to \infty$.

As $\ddot{H}_m(v_m) = y_m$, by Condition [2.1\(](#page-2-5)vii),

$$
\frac{y_m}{|v_m|} - (D_0 \widetilde{H}_m) v
$$
\n
$$
= \left(\frac{\widetilde{H}_m(v_m)}{|v_m|} - \frac{(D_0 \widetilde{H}_m) v_m}{|v_m|} \right) + \left((D_0 \widetilde{H}_m) (\frac{v_m}{|v_m|} - v) \right)
$$
\n
$$
= \frac{O(||\widetilde{H}_m||_{C^2}|v_m|^2)}{|v_m|} + O\left(||\widetilde{H}_m||_{C^1} |\frac{v_m}{|v_m|} - v| \right)
$$
\n
$$
= O(\theta_m).
$$
\n(2.13)

This shows, using Condition [2.1\(](#page-2-5)iv),

$$
\lim_{l \to \infty} \frac{y_{2l+1}}{|v_{2l+1}|} = \lim_{l \to \infty} (D_0 \widetilde{H}_{2l+1}) v = v + \tau w,
$$
\n(2.14)

and similarly,

$$
\lim_{l \to \infty} \frac{y_{2l}}{|v_{2l}|} = \lim_{l \to \infty} (D_0 \widetilde{H}_{2l}) v = v.
$$
\n(2.15)

Non-differentiability ofH-: Assume for the sake of contradiction that *H*- is differentiable at 0. Then, as $\tilde{H}(v_m) = y_m$ as well,

$$
\frac{y_m}{|v_m|} - (D_0 \widetilde{H})
$$
\n
$$
= \left(\frac{\widetilde{H}(v_m)}{|v_m|} - \frac{(D_0 \widetilde{H})v_m}{|v_m|}\right) + \left((D_0 \widetilde{H})(\frac{v_m}{|v_m|} - v)\right)
$$
\n
$$
= \frac{o_{\widetilde{H}}(|v_m|)}{|v_m|} + O_{\widetilde{H}}\left(\left|\frac{v_m}{|v_m|} - v\right|\right) \to 0
$$
\n(2.16)

as $m \to \infty$. This contradicts equations [\(2.14\)](#page-7-0) and [\(2.15\)](#page-7-1) where different subsequences of $y_m/|v_m|$ have different limits. Therefore, *H*-cannot be differentiable at 0.

Non-differentiability of \widetilde{H}^{-1} : By equation [\(2.14\)](#page-7-0), $\lim_{l\to\infty} (|y_{2l+1}|/|v_{2l+1}|) = |v + \tau w|$. Thus,

$$
\lim_{l \to \infty} \frac{y_{2l+1}}{|y_{2l+1}|} = \lim_{l \to \infty} \frac{|v_{2l+1}|}{|y_{2l+1}|} \cdot \lim_{l \to \infty} \frac{y_{2l+1}}{|v_{2l+1}|} = \frac{v + \tau w}{|v + \tau w|}
$$
(2.17)

and

$$
\lim_{l \to \infty} \frac{v_{2l+1}}{|y_{2l+1}|} = \lim_{l \to \infty} \frac{|v_{2l+1}|}{|y_{2l+1}|} \cdot \lim_{l \to \infty} \frac{v_{2l+1}}{|v_{2l+1}|} = \frac{v}{|v + \tau w|}.
$$
\n(2.18)

However, using v_m^* instead, we can define $y_m^* = \widetilde{H}(v_m^*) = \widetilde{H}_m(y_m^*)$ as in equation [\(2.12\)](#page-6-0). Then $|v_m^*| \to 0$ and $|y_m^*| \to 0$ as $m \to \infty$. The same computations in equations [\(2.13\)](#page-6-1), (2.14) , and (2.15) give rise to, in lieu of equation (2.16) ,

$$
\lim_{l \to \infty} \frac{y_{2l}^*}{|v_{2l}^*|} \n= \lim_{l \to \infty} (D_0 \widetilde{H}_{2l}) \frac{v + \tau w}{|v + \tau w|} \n= \lim_{l \to \infty} \frac{(D_0 \widetilde{H}_{2l})v + \tau (D_0 \widetilde{H}_{2l})w}{|v + \tau w|}.
$$
\n(2.19)

If $w = v$, then

$$
\lim_{l \to \infty} \frac{y_{2l}^*}{|v_{2l}^*|} = \frac{(1+\tau)\lim_{l \to \infty} (D_0 \widetilde{H}_{2l})v}{|(1+\tau)v|} = \frac{(1+\tau)v}{|(1+\tau)v|} = v.
$$

Therefore, $\lim_{l \to \infty} (y_{2l}^*/|v_{2l}^*|) = 1$ and

$$
\begin{cases}\n\lim_{l \to \infty} \frac{y_{2l}^*}{|y_{2l}^*|} = v = \lim_{l \to \infty} \frac{y_{2l+1}}{|y_{2l+1}|} \\
\lim_{l \to \infty} \frac{v_{2l}^*}{|y_{2l}^*|} = \lim_{l \to \infty} \frac{v_{2l}^*}{|v_{2l}^*|} = v \neq \frac{v}{1+\tau} = \lim_{l \to \infty} \frac{v_{2l+1}}{|y_{2l+1}|}.\n\end{cases}
$$
\n(2.20)

,

If $w \neq v$, then by equation [\(2.19\)](#page-7-3) and properties (iv), (v) of Condition [2.1,](#page-2-5)

$$
\lim_{l \to \infty} \frac{y_{2l}^*}{|v_{2l}^*|} = \lim_{l \to \infty} \frac{(v + \tau w)}{|v + \tau w|} = \frac{v + \tau w}{|v + \tau w|}
$$

and therefore, $\lim_{l \to \infty} (y_{2l}^*/|v_{2l}^*|) = 1$ and

$$
\begin{cases}\n\lim_{l \to \infty} \frac{y_{2l}^*}{|y_{2l}^*|} = \frac{v + \tau w}{|v + \tau w|} = \lim_{l \to \infty} \frac{y_{2l+1}}{|y_{2l+1}|} \\
\lim_{l \to \infty} \frac{v_{2l}^*}{|y_{2l}^*|} = \lim_{l \to \infty} \frac{v_{2l}^*}{|v_{2l}^*|} = \frac{v + \tau w}{|v + \tau w|} \neq \frac{v}{|v + \tau w|} = \lim_{l \to \infty} \frac{v_{2l+1}}{|y_{2l+1}|}.\n\end{cases}
$$
\n(2.21)

As $v_{2l}^* = \widetilde{H}^{-1}(y_{2l}^*)$ and $v_{2l+1} = \widetilde{H}^{-1}(y_{2l+1})$, in both the cases of equations [\(2.20\)](#page-8-1) and (2.21) , the same argument as in equation [\(2.16\)](#page-7-2) shows \widetilde{H}^{-1} is not differentiable at 0
(2.21), the same argument as in equation (2.16) shows \widetilde{H}^{-1} is not differentiable at 0 either. \Box

2.3. *Fulfillment of the inductive conditions*. We will construct the sequence $\{h_m\}_{m=1}^{\infty}$ based on the following proposition.

PROPOSITION 2.4. If the linear action $\rho : \mathbb{Z}^r \cap \mathbb{T}^d$ contains no hyperbolic automor*phism, then there exist unit vectors* $v, w \in \mathbb{R}^d$, such that for all $\delta > 0$ and $Q \in \mathbb{N}$, there *exists a* C^{∞} *function* $h: \mathbb{T}^d \to \mathbb{R}^d$ *, such that:*

- (1) $h(x) = 0$ *for all* $x \in ((1/O)\mathbb{Z}^d)/\mathbb{Z}^d \subset \mathbb{T}^d$;
- (2) $(D_0h)v = w$; in addition, either $v = w$ or $(D_0h)w = 0$;
- (3) $\|h\|_{C^0} < \delta$ *and* $\|h\|_{C^1} \ll 1$;
- (4) *for all* $\mathbf{n} \in \mathbb{E}$, $g^{\mathbf{n}} := \rho^{\mathbf{n}} h h \circ \rho^{\mathbf{n}}$ *satisfies* $\|g^{\mathbf{n}}\|_{C^1} < \delta$.

The proof of the proposition will be deferred to [§3.](#page-10-2)

PROPOSITION 2.5. Suppose the linear action $\rho : \mathbb{Z}^r \cap \mathbb{T}^d$ contains no hyperbolic auto*morphism and v, w are as in Proposition [2.4.](#page-8-3) Then for all sufficiently small τ >* 0 *and positive numbers* $\{\theta_m\}_{m=1}^{\infty}$ *that satisfy* $\sum_{m=1}^{\infty} \theta_m < \tau$ *, there exist sequences* $\{h_m\}_{m=1}^{\infty}$ *,* ${v_m}_{m=1}^{\infty}$ *and* ${v_m^*}_{m=1}^{\infty}$ *that satisfy Condition [2.1.](#page-2-5)*

Proof. Part (i) is already assumed. So we only need to fulfill the remaining assumptions from Condition [2.1.](#page-2-5)

To inductively construct h_m , assume for all $1 \leq m' \leq m - 1$, there exist a C^{∞} function *h_{m'}*, and non-zero vectors $v_{m'}$, $v_{m'}^* \in \mathbb{Q}^d$ that satisfy, together with *v*, *w*, the remaining properties from Condition [2.1.](#page-2-5) Then the diffeomorphism $H_{m'}$ is also determined for all $1 \leq m' \leq m - 1$ by equation [\(2.1\)](#page-2-3). Remark that with the convention $\widetilde{H}_0 = id$, the

requirements of $(D_0\tilde{H}_m)v = v$ and $(D_0\tilde{H}_m)w = w$ from parts (iv) and (v) of the condition are satisfied at the initial step $m = 0$.

Let

$$
\delta_m = \frac{\theta_m}{\max\left(\left(\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}^{-1}\|_{C^1} \right) \left(\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}\|_{C^1} \right), \|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \right)} \tag{2.22}
$$

and Q_m be the least common multiple of the denominators of $v_1, \ldots, v_{m-1}, v_1^*, \ldots$ $v_{m-1}^* \in \mathbb{Q}^d$. We obtain a C^∞ function \hat{h}_m by applying Proposition [2.4](#page-8-3) with parameters δ_m and *Qm*, and define

$$
h_m = \begin{cases} \tau \mathring{h}_m & \text{if } m \text{ is odd,} \\ \frac{-\tau}{1+\tau} \mathring{h}_m & \text{if } v = w \text{ and } m \text{ is even,} \\ -\tau \mathring{h}_m & \text{if } v \neq w \text{ and } m \text{ is even.} \end{cases} \tag{2.23}
$$

It in turn determines $H_m = \text{id} + h_m$ and $\tilde{H}_m = \tilde{H}_{m-1} \circ H_m$. Remark that $|-\tau/(1+\tau)| < \tau$.

We claim h_m , H_m , and H_m satisfy the clauses (ii)–(vii) in Condition [2.1:](#page-2-5)

 (ii) $||h_m||_{C^1} \leq \tau ||\tilde{h}_m||_{C^1} \ll \tau$ and

$$
\begin{aligned}\n&\left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}^{-1}\|_{C^1}\n\end{array}\right)\n\left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}\|_{C^1}\n\end{array}\right)\n\|\hat{H}_m\|_{C^0} \\
&\leq \left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}^{-1}\|_{C^1}\n\end{array}\right)\n\left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}\|_{C^1}\n\end{array}\right)\cdot \tau \|\hat{H}_m\|_{C^1} \\
&\lt;\tau \left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}^{-1}\|_{C^1}\n\end{array}\right)\n\left(\begin{array}{c}\n\max_{m'=1}^{m-1} \|\widetilde{H}_{m'}\|_{C^1}\n\end{array}\right)\delta_m = \tau \theta_m < \theta_m.\n\end{aligned}
$$

(iii) For all $\mathbf{n} \in \Xi$, with $\mathring{g}_m^{\mathbf{n}} = \mathring{h}_m \circ \rho^{\mathbf{n}} - \rho^{\mathbf{n}} \mathring{h}_m$,

$$
\begin{aligned}\n\|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \|g_m^{\mathbf{n}}\|_{C^1} \\
&\leq \tau \|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \|\mathring{g}_m^{\mathbf{n}}\|_{C^1} \\
&\leq \tau \|\widetilde{H}_{m-1}\|_{C^2} \|\widetilde{H}_{m-1}^{-1}\|_{C^1} \delta_m < \tau \theta_m < \theta_m.\n\end{aligned}
$$

(iv) Since $0 \in ((1/Q)\mathbb{Z}^d)/\mathbb{Z}^d$, $\hat{h}_m(0) = 0$ and thus $h_m(0) = 0$. As it was assumed that $h_1(0) = \cdots = h_{m-1}(0) = 0$, we know $H_1(0) = \cdots = H_m(0) = 0$ and $H_m(0) = \infty$ $H_{m-1}(0) = 0$. So

$$
(D_0\widetilde{H}_m)v = (D_0\widetilde{H}_{m-1})(D_0H_m)v = (D_0\widetilde{H}_{m-1})(v + (D_0h_m)v).
$$

If *m* is odd and $v = w$, then $v + (D_0 h_m)v = v + \tau (D_0 \mathring{h}_m)v = (1 + \tau)v$, and by inductive assumption, $(D_0 \tilde{H}_{m-1})v = v$. So $(D_0 \tilde{H}_m)v = (D_0 \tilde{H}_{m-1})(1 + \tau)v = v +$ $\tau v = v + \tau w$.

If *m* is even and $v = w$, then $v + (D_0 h_m)v = v - \tau/(1 + \tau)(D_0 \mathring{h}_m)v = v (\tau/(1+\tau))v = v/(1+\tau)$, and by inductive assumption, $(D_0H_{m-1})v = v + \tau w =$ $(1 + \tau)v$. So $(D_0\tilde{H}_m)v = (D_0\tilde{H}_{m-1})(v/(1 + \tau)) = v$.

If *m* is odd and $v \neq w$, then $v + (D_0 h_m)v = v + \tau (D_0 \mathring{h}_m)v = v + \tau w$, and by inductive assumption, $(D_0H_{m-1})v = v$, $(D_0H_{m-1})w = w$. So $(D_0H_m)v =$ $(D_0 H_{m-1})(v + \tau w) = v + \tau w.$

If *m* is even and $v \neq w$, then $v + (D_0 h_m)v = v - \tau (D_0 \mathring{h}_m)v = v - \tau w$, and by inductive assumption, $(D_0 \tilde{H}_{m-1})v = v + \tau w$, $(D_0 \tilde{H}_{m-1})w = w$. So $(D_0 \tilde{H}_m)v =$ $(D_0 \tilde{H}_{m-1})(v - \tau w) = (v + \tau w) - \tau \cdot w = v.$

Therefore, we have proved that property (iv) continues to hold at the *m*th step in all cases.

(v) Suppose $v \neq w$. Then $(D_0 \mathring{h}_m)w = 0$ and, thus, $(D_0 h_m)w = 0$ too. So $(D_0 H_m)w =$ $(id + (D_0 h_m))w = w$. Since by inductive assumption $(D_0 H_{m-1})w = w$, we still have $(D_0 \tilde{H}_m)w = (D_0 \tilde{H}_{m-1})(D_0 H_m)w = w.$

(vi) By the choice of Q_m , we know $v_{m'}$, $v_{m'}^*$ are in $((1/Q_m)\mathbb{Z})^d$ for all $1 \leq m' \leq m - 1$. By Proposition [2.4,](#page-8-3) $\hat{h}_m(v_{m'}) = \hat{h}_m(v_{m'}^*) = 0$. So $h_m(v_{m'}) = h_m(v_{m'}^*) = 0$ as h_m is proportional to \hat{h}_m .

(vii) Now that h_m and H_m have been constructed, to finish the inductive step, it remains to choose rational vectors v_m , v_m^* that meet the requirement of property (vii), which can obviously be achieved. In fact, it suffices to take any rational vector $u \in \mathbb{Q}^d$ such that $|u - v| < \theta_m/2 ||\tilde{H}_m||_{C^1}$, and set $v_m = u/L$ for any sufficiently large integer $L > 2 \|\widetilde{H}_m\|_{C^1}/\theta_m$. Additionally, v_m^* can be similarly chosen near the direction of $v + \tau w$. \Box

Proof of Theorem [1.1.](#page-0-2) Theorem [1.1](#page-0-2) immediately follows from Propositions [2.2,](#page-3-2) [2.4,](#page-8-3) and [2.5.](#page-8-4) \Box

3. *Cocycles with small coboundaries*

In this section, we complete the only still missing component of the argument, namely the proof of Proposition [2.4.](#page-8-3)

3.1. *The linear algebra of commuting integer matrices.* The linear algebra of the action *ρ* is characterized by the following basic fact.

LEMMA 3.1. *Suppose* $\rho : \mathbb{Z}^r \to GL_d(\mathbb{Z})$ *is a representation of* \mathbb{Z}^r *in the group of toral automorphism of* \mathbb{T}^d . Then for some $J_1, J_2 \geq 0$ and every $1 \leq j \leq J_1 + 2J_2$, there exist:

- *a number field* \mathbb{F}_i *embedded in* \mathbb{L}_i *, where* $\mathbb{L}_1 = \cdots = \mathbb{L}_{J_1} = \mathbb{R}$ *and* $\mathbb{L}_{J_1+1} = \cdots =$ $\mathbb{L}_{J_1+2J_2} = \mathbb{C}$;
- *a positive dimension* $d_i \geq 1$;
- *a group morphism* $\zeta_j : \mathbf{n} \to \zeta_j^{\mathbf{n}}$ *from* \mathbb{Z}^r *to the multiplicative group* \mathbb{F}_j^{\times} *of* \mathbb{F}_j ;
- *a group morphism* $A_j: \mathbf{n} \to A_j^{\mathbf{n}}$ *from* \mathbb{Z}^r *to the group* $N_{d_j}(\mathbb{F}_j)$ *of upper triangular nilpotent matrices in* $SL_{d_i}(\mathbb{F}_i)$ *;*
- *a linear transform* $\mu_j \in Mat_{d_i \times d}(\mathbb{F}_i)$; *such that:*
- (1) $\{\zeta_j^n : n \in \mathbb{Z}^r\} \nsubseteq \mathbb{R}$ generates \mathbb{F}_j *as a number field, and spans* \mathbb{L}_j *over* \mathbb{R} *;*
- (2) $\zeta_1, \ldots, \zeta_{J_1+2J_2}$ are distinct and this list is invariant under the action by the Galois *group* Gal($\overline{\mathbb{Q}}/\mathbb{Q}$ *). Actually, for all* $1 \leq j \leq J_1 + 2J_2$ *and* $\sigma \in \text{Gal}(\mathbb{F}_j/\mathbb{Q})$ *, there* exists a unique $1 \le j' \le J_1 + 2J_2$ such that $\sigma(\mathbb{F}_j) = \mathbb{F}_{j'}$, $d_j = d_{j'}$, $\sigma(\zeta_j^n) = \zeta_{j'}^n$, $\sigma(A_j^n) = A_{j'}^n$ and $\sigma(\mu_j) = \sigma(\mu_{j'});$
- (3) $\overline{\zeta_j^n} = \zeta_{J_2+j}^n$ *for all* $J_1 \le j \le J_1 + J_2$, $\mathbf{n} \in \mathbb{Z}^r$;

(4) *with* $\iota_j = \mu_j$ *for* $1 \leq j \leq J_1$ *and* $\iota_j = 2$ Re μ_j *for* $J_1 + 1 \leq j \leq J_1 + J_2$ *, the linear transform* $\iota = \bigoplus_{j=1}^{J_1+J_2} \iota_j$ *from* $\bigoplus_{j=1}^{J_1+J_2} \mathbb{L}_j^{d_j}$ *to* \mathbb{R}^d *is an* \mathbb{R} *-linear isomorphism and satisfies*

$$
\iota \circ \bigoplus_{j=1}^{J_1+J_2} \zeta_j^{\mathbf{n}} A_j^{\mathbf{n}} = \rho^{\mathbf{n}} \circ \iota.
$$

The lemma should be a standard fact for experts. However, we still include the proof for completeness.

Proof. Thanks to the commutativity of \mathbb{Z}^r , it is easy to show (see e.g. the proof of **[[RHW14](#page-21-15),** Lemma 2.2]) that $\mathbb{C}^d = (\mathbb{R}^d) \otimes_{\mathbb{R}} \mathbb{C}$ splits as a direct sum $\bigoplus_{j=1}^J E_j^{\mathbb{C}}$, where each $E_j^{\mathbb{C}}$ is a maximal common generalized eigenspace of all the $\rho^{\mathbf{n}}$ terms. More precisely, for every *j*, there exists a group morphism from \mathbb{Z}^r : ζ_j to \mathbb{C}^\times such that

$$
E_j^{\mathbb{C}} = \bigcap_{\mathbf{n} \in \mathbb{Z}^r} \ker_{\mathbb{C}^d} (\rho^{\mathbf{n}} - \zeta_j^{\mathbf{n}} \mathrm{id})^d = \bigcap_{\mathbf{n} \in \mathbb{Z}} \ker_{\mathbb{C}^d} (\rho^{\mathbf{n}} - \zeta_j^{\mathbf{n}} \mathrm{id})^d. \tag{3.1}
$$

(1) Because $\rho^{\mathbf{n}} \in GL_d(\mathbb{Z})$, every eigenvalue $\zeta_j^{\mathbf{n}}$ is an algebraic integer. Denote by \mathbb{F}_j the field generated by $\{\zeta_j^n : n \in \mathbb{Z}^r\}$, which is a number field as \mathbb{Z}^r is finitely generated. Let $\mathbb{L}_i \in \{ \mathbb{R}, \mathbb{C} \}$ be the \mathbb{R} -span of \mathbb{F}_i .

(2) As the $\rho^{\mathbf{n}}|_{E_j^{\mathbb{C}}}$ terms commute, they can be triangularized simultaneously over \mathbb{C} . Actually, equation [\(3.1\)](#page-11-0) asserts that $E_j^{\mathbb{C}}$ is a linear subspace defined over \mathbb{F}_j . Together with the fact that the $\rho^{n} \in GL_d(\mathbb{Z})$, this shows that the simultaneous triangularization can be carried out over \mathbb{F}_j . In other words, one can find a basis $y_{j1}, \ldots, y_{jd_j} \in E_j^{\mathbb{C}} \cap \mathbb{F}_j^d$ of $E_j^{\mathbb{C}}$, such that the linear isomorphism $\mu_j : \mathbb{C}^{d_j} \to E_j^{\mathbb{C}}$ sending the *k*th coordinate vector to y_{jk} satisfies

$$
\rho^{\mathbf{n}} \circ \mu_j = \mu_j \circ (\zeta_j^{\mathbf{n}} A_j^{\mathbf{n}}). \tag{3.2}
$$

Note that μ_j is actually a matrix with coefficients in \mathbb{F}_j .

Moreover, we can make the choices above equivariant under Galois conjugacies. Indeed, for every $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, the correspondence $\mathbf{n} \to \sigma(\zeta_j^{\mathbf{n}})$ is a group morphism from \mathbb{Z}^r to $\sigma(\mathbb{F}_j)^\times$. By equation [\(3.1\)](#page-11-0), $\sigma(E_j^{\mathbb{C}} \cap \overline{\mathbb{Q}}^d) = \bigcap_{\mathbf{n} \in \mathbb{Z}^r} \ker_{\overline{\mathbb{Q}}^d} (\rho^{\mathbf{n}} - \sigma(\zeta_j^{\mathbf{n}}) \text{id})^d$ is a non-empty \overline{Q} subspace of dimension dim_C $E_j^{\mathbb{C}}$ and its \mathbb{C} -span is $\bigcap_{\mathbf{n}\in\mathbb{Z}^r}$ ker $_{\mathbb{C}^d}(\rho^\mathbf{n}-\sigma(\zeta_j^\mathbf{n})$ id $)^d$, which is $E_{j'}^{\mathbb{C}}$ for some $1 \leq j' \leq \tilde{J}$. (Note $j = j'$ if and only if σ fixes every $\zeta_j^{\mathbf{n}}$, or equivalently σ acts trivially on \mathbb{F}_j .) In this case, $d_{j'} = d_j$ and $\zeta_j^n = \sigma(\zeta_j^n)$. Furthermore, one may choose the basis y_{j1}, \ldots, y_{jd_j} for all the indices *j* in such a way that, in the situation above, $y_{j'k} = \sigma(y_{jk})$ for $1 \le k \le d_j$, or equivalently $\mu_{j'} = \sigma(\mu_j)$. Then applying σ to equation [\(3.2\)](#page-11-1) yields

$$
\rho^{\mathbf{n}} \circ \mu_{j'} = \mu_{j'} \circ (\zeta_{j'}^{\mathbf{n}} \sigma(A_j^{\mathbf{n}})).
$$

Since $\mu_{j'}$ is a linear embedding, this forces $A_{j'}^{\mathbf{n}} = \sigma(A_j^{\mathbf{n}})$.

(3) By choice, $\zeta_1, \ldots, \zeta_{\tilde{J}}$ are distinct. Additionally, the previous paragraph shows that, by letting $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ be the complex conjugation, each $\overline{\zeta_j}$ is also in the list.

Remark that $\zeta_j = \overline{\zeta_j}$ if and only if $\{\zeta_j^n : n \in \mathbb{Z}^r\} \subseteq \mathbb{R}$, or equivalently $\mathbb{F}_j = \mathbb{R}$. After rearranging the list, we may assume that there are J_1 , J_2 such that $J_1 + 2J_2 = J$, $\mathbb{F}_j = \mathbb{R}$ assume real values for $j = 1, \ldots, J_1$; and that $\mathbb{F}_{J_2 + j} = \mathbb{F}_j = \mathbb{C}$ and $\zeta_{J_2 + j} = \overline{\zeta_j}$ for $j = J_1 + 1, \ldots, J_1 + J_2.$

(4) As in the statement, set $\iota_j = \mu_j$ for $1 \le j \le J_1$ and $\iota_j = 2$ Re μ_j for $J_1 + 1 \le j \le J_2$ *J*₁ + *J*₂. To show *ι* ο $\bigoplus_{j=1}^{J_1+J_2} \zeta_j^n A_j^n = \rho^n \circ \iota$, we need for each $1 \le j \le J_2$ that

$$
\rho^{\mathbf{n}} \circ \iota_j = \iota_j \circ (\zeta_j^{\mathbf{n}} A_j^{\mathbf{n}}). \tag{3.3}
$$

For $1 \leq j \leq J_1$, this is just equation [\(3.2\)](#page-11-1). For $J_1 + 1 \leq j \leq J_1 + J_2$, let $u \in \mathbb{C}^{d_j}$, because $\rho^{\mathbf{n}}$ is a real matrix, for all $\mathbf{n} \in \mathbb{Z}^r$ and $z \in \mathbb{C}^{d_j}$,

$$
\rho^{\mathbf{n}}(\iota_j(z)) = \rho^{\mathbf{n}}(2 \operatorname{Re} \mu_j(z)) = 2 \operatorname{Re} \rho^{\mathbf{n}}(\mu_j(z))
$$

= 2 \operatorname{Re} \mu_j(\zeta_j^{\mathbf{n}} A_j^{\mathbf{n}} z) = \iota_j(\zeta_j^{\mathbf{n}} A_j^{\mathbf{n}} z).

So equation [\(3.3\)](#page-12-0) holds for all $1 \le j \le J_1 + J_2$.

It remains to show that *ι* is an isomorphism. Recall that $\mathbb{C}^d = \bigoplus_{j=1}^{J_1+2J_2} E_j^{\mathbb{C}}$ is a direct sum. However, the image of $\iota_j = \mu_j$ is contained in $E_j^{\mathbb{C}}$ for $1 \le j \le J_1$; and the image of $\iota_j = 2$ Re $\mu_j = \mu_j + \overline{\mu_j} = \mu_j + \mu_{J_2 + j}$ is contained in $E_j^{\mathbb{C}} \oplus E_{J_2 + j}^{\mathbb{C}}$ for $J_1 + 1 \le j \le J_1 + J_2$. Hence, the images of *ι* is the direct sum $\bigoplus_{j=1}^{J_1+J_2} \iota_j(\mathbb{L}_j^{d_j})$.

In addition, we claim each *ι_j* is injective. This is obvious in the case $1 \le j \le J_1$, where $\iota_i = \mu_i$. For $J_1 + 1 \leq j \leq J_1 + J_2$, if $\iota_j = 2$ Re μ_j is not injective, then $\mu_i(z) = -\overline{\mu_i(z)}$ for some non-zero $z \in \mathbb{C}^{d_j}$. However, $\mu_j(z) \neq 0$, as μ_j is an embedding. This shows $E_j^{\mathbb{C}} \cap E_{J_1+j}^{\mathbb{C}} \neq \{0\}$ as $\mu_j(z) \in E_j^{\mathbb{C}}$ and $\overline{\mu_j(z)} \in E_{J_2+j}^{\mathbb{C}}$, which contradicts the fact that $\bigoplus_{j=1}^{J_1+2J_2} E_j^{\mathbb{C}}$ is a direct sum. Hence, *ι_j* is injective for all $1 \le j \le J_1 + J_2$.

So we may conclude that $\iota = \bigoplus_{j=1}^{J_1+J_2} \iota_j$ is injective from $\bigoplus_{j=1}^{J_1+J_2} \mathbb{L}_j^{d_j}$ to \mathbb{R}^d . As

$$
\dim_{\mathbb{R}} \bigoplus_{j=1}^{J_1+J_2} \mathbb{L}_j^{d_j} = \sum_{j=1}^{J_1} d_j + \sum_{j=J_1+1}^{J_1+J_2} 2d_j = \sum_{j=1}^{J_1+2J_2} d_j = \dim_{\mathbb{C}} \bigoplus_{j=1}^{J_1+2J_2} E_j^{\mathbb{C}}
$$

$$
= \dim_{\mathbb{C}} \mathbb{C}^d = d,
$$

ι must be a linear isomorphism. The proof is completed.

COROLLARY 3.2. *Suppose* $1 \leq k \leq J_1 + J_2$ *and P is a* \mathbb{L}_k *-vector subspace defined over* $\mathbb Q$ *of the kth component* $\mathbb L_k^{d_k}$ *in* $\bigoplus_{j=1}^{J_1+J_2}\mathbb L_j^{d_j}$ *, then there exists a subspace* $P'\subset \mathbb R^d$ *defined over* \mathbb{Q} *such that* $P = \iota_k^{-1}(P')$ *.*

Proof. Choose a linear basis $\{p_1, \ldots, p_N\}$ of *P* from $\mathbb{Q}^{d_k} \subset \mathbb{L}_k^{d_k}$.

There are $j_1, \ldots, j_{M_1} \in \{1, \ldots, J_1\}$ and $j_{M_1+1}, \ldots, j_{M_1+M_2} \in \{J_1+1, \ldots, J_1+J_2\}$ such that, after defining $j_{M_2+m} = J_2 + j_m$ for every $M_1 + 1 \le m \le M_1 + M_2$, $\{\zeta_{j_1}, \ldots, \zeta_{j_{M_1+2M_2}}\}$ form the orbit of ζ_k under the action by the Galois group Gal(\mathbb{F}_k/\mathbb{Q}). For each *m*, let $\sigma_m \in \text{Gal}(\mathbb{F}_k/\mathbb{Q})$ be the element such that $\sigma_m(\zeta_k) = \zeta_{j_m}$.

Define $(P')^{\mathbb{C}} \subseteq \mathbb{C}^d$ as the \mathbb{C} -linear span of

$$
\{\mu_{j_m}(p_n) : 1 \le m \le M_1 + 2M_2, 1 \le n \le N\}.
$$
\n(3.4)

 \Box

Because $\mu_{j_m} = \sigma_m(\mu_k)$ and has image in $E_{j_m}^{\mathbb{C}}$, these vectors have algebraic entries and are linearly independent, and this set is invariant by Galois conjugacies from Gal (\overline{Q}/Q) . Hence, $(P')^{\mathbb{C}}$ is defined over \mathbb{Q} of dimension $(M_1 + 2M_2)N$. The intersection *P*' := $(P')^{\mathbb{C}} \cap \mathbb{R}^d$ is a real vector space defined over ℚ over the same dimension.

For each p_n , $\iota_k(p_n)$ is either $\mu_k(p_n)$ if $1 \leq k \leq J_1$ or $2 \text{ Re } \mu_k(p_n) = \mu_k(p_n) +$ $\mu_{J_2+k}(p_n)$ if $J_1 + 1 \le k \le J_1 + J_2$. In these cases, either *k* or both *k* and $J_2 + k$ are among the list $\{j_1, \ldots, j_{M_1+2M_2}\}$. It follows that $\iota_k(p_n) \in (P')^{\mathbb{C}}$ and hence $\iota_k(p_n) \in P'$. We obtain that $P \subseteq \iota_k^{-1}(P')$.

It remains to show that the equality holds. If $1 \le k \le J_1$, then $\mathbb{L}_k = \mathbb{R}$ and $u_k(\mathbb{L}_k^{d_j}) = \mu_k(\mathbb{L}_k^{d_j}) \subseteq E_k^{\mathbb{C}}$. So $u_k(u_k^{-1}(P')) \subseteq P' \cap E_k^{\mathbb{C}}$. As $(P')^{\mathbb{C}} \cap E_k^{\mathbb{C}}$ is the C-span of $\mu_k(p_1), \ldots, \mu_k(p_N)$, all of which are real vectors, $P' \cap E_k^{\mathbb{C}}$ is contained in the R-span of them. Because ι_k is an embedding, dim_R $\iota_k^{-1}(P') \le N = \dim_R P$. Assume instead $J_1 + 1 \le k \le J_1 + J_2$. Then $\mathbb{L}_k = \mathbb{C}$ and $\iota_k(\mathbb{L}_k^{d_j}) = (\mu_k + \mu_{J_2 + k})(\mathbb{L}_k^{d_j}) \subseteq E_k^{\mathbb{C}} \oplus E_{J_2 + k}^{\mathbb{C}}$. So $\iota_k(\iota_k^{-1}(P'))$ is contained in $P' \cap (E_k^{\mathbb{C}} \oplus E_{J_2+k}^{\mathbb{C}})$. As $(P')^{\mathbb{C}} \cap (E_k^{\mathbb{C}} \oplus E_{J_2+k}^{\mathbb{C}})$ is the C-span of $\mu_k(p_1), \ldots, \mu_k(p_N), \mu_{J_2+k}(p_1), \ldots, \mu_{J_2+k}(p_N)$ and has complex dimension 2*N*. Here, $P' \cap (E_k^{\mathbb{C}} \oplus E_{J_2+k}^{\mathbb{C}}) = \mathbb{R}^d \cap (P')^{\mathbb{C}} \cap (E_k^{\mathbb{C}} \oplus E_{J_2+k}^{\mathbb{C}})$ has real dimension 2*N*. Again, since ι_k is injective, $\dim_{\mathbb{R}}(\iota_k^{-1}(P')) \leq 2N = 2 \dim_{\mathbb{C}} P = \dim_{\mathbb{R}} P$. We conclude that in both cases, $P = \iota_k^{-1}(P')$. \Box

For $1 \le j \le J$, $1 \le k \le d_j$, write u_{jk} for the *k*th coordinate vector in $\mathbb{L}_j^{d_j}$, so that all vectors $s \in \bigoplus_{j=1}^{J} \mathbb{L}_j^{d_j}$ have the form

$$
s = \bigoplus_{j=1}^{J} \sum_{k=1}^{d_j} \pi_{jk}(s) u_{jk},
$$
\n(3.5)

where π_{ik} is the projection to the u_{ik} coordinate.

Since none of the $\rho^{\mathbf{n}}$ terms is hyperbolic, there must be at least one *j*₀ such that $|\zeta_{j_0}^{\mathbf{n}}| = 1$ for all $\mathbf{n} \in \mathbb{Z}^r$. This is because otherwise, the linear functionals $\mathbf{n} \to \log |\zeta_{j_0}^{\mathbf{n}}|$ on \mathbb{Z}^r are all non-zero and one can find one n_{\ast} that is not in the kernel of any of such functionals. Then $|\zeta_j^{n_*}| \neq 1$ for all *j*. In other words, ρ^{n_*} has no eigenvalues in the unit circle, so ρ^{n_*} is a hyperbolic matrix, which contradicts our assumption.

After renormalizing *ι* if necessary, we may assume

$$
|\iota(u_{j_0d_{j_0}})|=1.
$$

We define vectors \mathring{v} , $\mathring{w} \in \mathbb{L}_{j_0}^{d_{j_0}}$ and $v, w \in \mathbb{R}^d$ by

$$
\mathring{v} = u_{j_0 d_{j_0}}, \mathring{w} = \frac{u_{j_0 1}}{|t(u_{j_0 1})|}, \quad v = t(\mathring{v}), \quad w = t(\mathring{w}); \tag{3.6}
$$

as well as projections $\pi_{\hat{v}} : \bigoplus_{j=1}^{J} \mathbb{L}_j^{d_j} \to \mathbb{L}_{j_0}$ and $\psi_v \in (\mathbb{R}^d)^*$ by

$$
\pi_{\hat{v}} = \pi_{j_0 d_{j_0}}, \quad \psi_v = \text{Re } \pi_{\hat{v}} \circ \iota^{-1}.
$$
 (3.7)

Note that

$$
|v| = |w| = 1, \quad \psi_v(v) = 1.
$$
\n(3.8)

In the case where $d_{j0} = 1$, we have $w = v$ and $\psi_v(w) = \psi_v(v) = 1$. However, when $d_{j_0} > 1$, $\mathring{v} \neq \mathring{w}$ and thus $\pi_{\mathring{v}}(\mathring{w}) = 0$, so $\psi_v(w) = 0$. In summary,

$$
\psi_v(w) = \mathbf{1}_{v=w}.\tag{3.9}
$$

Let $W = \iota_{j_0}(\mathbb{L}_{j_0}\hat{w})$, which is isomorphic to \mathbb{L}_{j_0} as a real vector space. For all $\mathbf{n} \in \mathbb{Z}^r$ and $w' \in W$, since $w' = \iota(z\mathring{w})$ for some $z \in \mathbb{L}_{j_0}$, and $A_{j_0}^{\mathbf{n}}$ is an upper triangular nilpotent matrix, $A_{j_0}^{\mathbf{n}}\mathring{w} = \mathring{w}$ and thus

$$
\rho^{\mathbf{n}}w'=\iota(\zeta_{j_0}^{\mathbf{n}}A_{j_0}^{\mathbf{n}}z\mathring{w})=\iota(\zeta_{j_0}^{\mathbf{n}}z\mathring{w})\in W.
$$

So *W* is *ρ*-invariant and

$$
|\rho^{\mathbf{n}}w'| \le ||\iota|| |\zeta_{j_0}^{\mathbf{n}}|| z\hat{w}| = ||\iota|| \cdot |z\hat{w}| \ll |w'| \quad \text{for all } \mathbf{n} \in \mathbb{Z}^r, \text{ for all } w' \in W. \tag{3.10}
$$

Furthermore, for $u \in \mathbb{L}_{d_{j_0}}^{j_0}, \pi_{\hat{v}}(\zeta_{j_0}^{\mathbf{n}}A_{j_0}^{\mathbf{n}}u) = \zeta_{j_0}^{\mathbf{n}}\pi_{\hat{v}}(u)$ and thus

$$
\pi_{\hat{v}}\left(\left(\bigoplus_{j=1}^{J} \zeta_{j}^{\mathbf{n}} A_{j}^{\mathbf{n}}\right) u\right) = \pi_{\hat{v}}(\zeta_{j_{0}}^{\mathbf{n}} A_{j_{0}}^{\mathbf{n}} \pi_{\hat{v}}(u)) = \zeta_{j_{0}}^{\mathbf{n}} \pi_{\hat{v}}(u)
$$

for all $u \in \bigoplus_{j=1}^{J} \mathbb{L}_j^{d_j}$. So

$$
(\rho^{\mathbf{n}})^{\mathrm{T}}\psi_v = \mathrm{Re}\,\pi_{\mathring{v}} \circ \iota^{-1} \circ \rho^{\mathbf{n}} = \mathrm{Re}\left(\pi_{\mathring{v}} \circ \bigoplus_{j=1}^{J} \zeta_j^{\mathbf{n}} A_j^{\mathbf{n}} \circ \iota^{-1}\right)
$$

$$
= \mathrm{Re}(\zeta_{j_0}^{\mathbf{n}} \pi_{\mathring{v}} \circ \iota^{-1}). \tag{3.11}
$$

In particular, as $|\zeta_{j_0}^n| = 1$, the size of $(\rho^n)^T \psi_v \in (\mathbb{R}^d)^*$ is uniformly bounded by

$$
|(\rho^{\mathbf{n}})^{\mathrm{T}}\psi_v| \le \|\pi_{\mathring{v}} \circ \iota^{-1}\|.\tag{3.12}
$$

If $d_{j0} > 1$, by applying Corollary [3.2](#page-12-1) to the \mathbb{L}_{j_0} -subspace $\bigoplus_{k=2}^{d_{j_0}} \mathbb{L}_{j_0} u_{j_0k}$ of $\mathbb{L}_{j_0}^{d_{j_0}}$, there is a subspace $W' \subseteq \mathbb{R}^d$ defined over $\mathbb Q$ such that $\iota_{j_0}^{-1}(W') = \bigoplus_{k=2}^{d_{j_0}} \mathbb L_{d_{j_0}} u_{j_0 k}$. In particular, *W* contains $W = \iota_{j0}(\mathbb{L}_{j0}u_{j0}d_{j0})$. Set $\Psi = {\psi \in (\mathbb{R}^d)^* : \psi|_{W'}} = 0$. Then Ψ is a subspace defined over Q, and

$$
\psi|_{W} = 0 \quad \text{for all } \psi \in \Psi. \tag{3.13}
$$

Moreover,

$$
\iota^{-1}(W') \subseteq \Big(\bigoplus_{k=2}^{d_{j_0}} \mathbb{L}_{d_{j_0}} \mu_{j_0 k} \Big) \oplus \Big(\bigoplus_{\substack{1 \le j \le J_1 + J_2 \\ j \ne j_0}} \mathbb{L}_j^{d_j} \Big) = \ker \pi_{\mathring{v}}.
$$

It follows that $\psi_v = \text{Re }\pi_{\hat{v}} \circ \iota^{-1}$ annihilates W', or equivalently, $\psi_v \in \Psi$. Furthermore, for all $\mathbf{n} \in \mathbb{Z}^r$, we have

$$
\rho^{\mathbf{n}}v = \iota(\zeta_{j_0}^{\mathbf{n}}A_{j_0}^{\mathbf{n}}\mathring{v}) = \iota(\zeta_{j_0}^{\mathbf{n}}\mathring{v}) + \iota(\zeta_{j_0}^{\mathbf{n}}(A_{j_0}^{\mathbf{n}} - \mathrm{id})\mathring{v}).
$$

Because $A_{j_0}^n$ is an upper triangular nilpotent matrix, $\zeta_{j_0}^n(A_{j_0}^n - id)\mathbf{v} \in \bigoplus_{k=2}^{d_{j_0}} \mathbb{L}_{d_{j_0}} u_{j_0 k}$ and $\iota(\zeta_{j_0}^{\mathbf{n}}(A_{j_0}^{\mathbf{n}} - \mathrm{id})\mathring{v}) \in W'.$ Thus,

$$
\psi(\rho^{\mathbf{n}}v) = \psi(\iota(\zeta_{j_0}^{\mathbf{n}}\mathring{v})) \quad \text{for all } \psi \in \Psi.
$$
\n(3.14)

If $d_{j0} = 1$, take $\Psi = (\mathbb{R}^d)^*$ instead, which is also a rational subspace that contains ψ_v . Additionally, equation [\(3.14\)](#page-15-1) remains true in this case, because $A_{j_0}^n = id$. To summarize, we have in any case the following corollary.

COROLLARY 3.3. *There exists a subspace* $\Psi \subset (\mathbb{R}^d)^*$ *defined over* $\mathbb Q$ *which contains* ψ_v *and satisfies equation [\(3.14\)](#page-15-1). In addition, if* $d_{j0} > 1$ *, then equation [\(3.13\)](#page-14-0) holds as well.*

It should be remarked that all the constructions above are determined by the actions *ρ*.

3.2. *The construction of the cocycle.* The construction is inspired by the construction of Veech in [[V86](#page-21-12), Proposition 1.5].

Let $\epsilon > 0$ be a small parameter to be specified later.

We identify $(\mathbb{R}^d)^*$ with \mathbb{R}^d in the standard way so that $(\mathbb{T}^d)^* \subset (\mathbb{R}^d)^*$ is realized as \mathbb{Z}^d . Let Ψ be as in Corollary [3.3.](#page-15-2) Then $\Psi_{\mathbb{Z}} := \Psi \cap \mathbb{Z}^d$ is a lattice in Ψ . There is a constant $R > 0$ such that for every $\psi \in \Psi$, there exists $\eta \in \Psi_{\mathbb{Z}}$ with $|\psi - \eta| < R$. The choice of *R* depends only on *ρ*.

Let η_v be the nearest vector to $(Q/\epsilon)\psi_v$ in the lattice $Q\Psi_{\mathbb{Z}}$. Then

$$
\left|\eta_v - \frac{Q}{\epsilon}\psi_v\right| \le QR \ll Q. \tag{3.15}
$$

Recall $W = \iota_{j0}(\mathbb{L}_{j0}\hat{w})$, which is isomorphic to \mathbb{L}_{j0} as an R-vector space and contains *w*. The function $h : \mathbb{T}^d \to \mathbb{R}^d$ will take value in $W \subseteq \mathbb{R}^d$ and have the form

$$
h(x) = c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} (e((\rho^{\mathbf{n}})^{\mathrm{T}} \eta_v \cdot x) - 1) \rho^{-\mathbf{n}} w + (e(\eta_v \cdot x) - 1) w_{\Delta} \tag{3.16}
$$

for some $c > 0$, $N \in \mathbb{N}$, and $w_{\Delta} \in W$, all of which will be defined later. Remark that *h* is C^{∞} as it is a Fourier series supported on finitely many frequencies.

LEMMA 3.4. *If h has the form in equation [\(3.16\)](#page-15-3), then property (1) in Proposition [2.4](#page-8-3) holds.*

Proof. Since $\eta_v \in Q\Psi_{\mathbb{Z}} \subset Q\mathbb{Z}^d$ and $\rho^n \in GL(d, \mathbb{Z})$, $(\rho^n)^T \eta_v \in (Q\mathbb{Z})^d$ for all **n**. Moreover, if $x \in ((1/O)\mathbb{Z}^d)/\mathbb{Z}^d$, then $e(\eta_v \cdot x) = 1$ and $e((\rho^{\mathbf{n}})^T \eta \cdot x) = 1$ for all $\mathbf{n} \in \mathbb{Z}^r$. Therefore, $h(x) = 0$. This proves part (1). \Box The derivative of equation [\(3.16\)](#page-15-3) at $x = 0$ is the matrix

$$
D_0 h = c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} ((\rho^{\mathbf{n}})^T \eta_v) \otimes (\rho^{-\mathbf{n}} w) + \eta_v \otimes w_{\Delta}
$$

\n
$$
= c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^T \frac{Q}{\epsilon} \psi_v \right) \otimes (\rho^{-\mathbf{n}} w)
$$

\n
$$
+ c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^T (\eta_v - \frac{Q}{\epsilon} \psi_v) \right) \otimes (\rho^{-\mathbf{n}} w)
$$

\n
$$
+ \eta_v \otimes w_{\Delta}.
$$
 (3.17)

We first study the values of the first two terms in equation (3.17) with *v* or *w* as linear input. By definition of *v* and *w*,

$$
\sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} (((\rho^{\mathbf{n}})^T \psi_v) \otimes (\rho^{-\mathbf{n}} w))v
$$
\n
$$
= \sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} (\psi_v \cdot (\rho^{\mathbf{n}} v)) (\rho^{-\mathbf{n}} w)
$$
\n
$$
= \sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} \text{Re}\,\pi_{\hat{v}} \circ \iota^{-1} (\iota(\zeta_{j_0}^{\mathbf{n}} \hat{v})) \cdot \iota(\zeta_{j_0}^{-\mathbf{n}} \hat{w}) = \iota \bigg(\sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} \text{Re}(\zeta_{j_0}^{\mathbf{n}}) \zeta_{j_0}^{-\mathbf{n}} \hat{w}\bigg)
$$
\n
$$
= \frac{1}{2} \iota \bigg(\sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} \zeta_{j_0}^{-\mathbf{n}} \cdot \zeta_{j_0}^{\mathbf{n}} \hat{w} + \sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} \zeta_{j_0}^{-\mathbf{n}} \zeta_{j_0}^{\mathbf{n}} \hat{w}\bigg)
$$
\n
$$
= \frac{1}{2} \iota^{-1} \bigg((2N+1)^r \hat{w} + \sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}} \zeta_{j_0}^{-\mathbf{n}} \overline{\zeta_{j_0}^{\mathbf{n}}} \hat{w}\bigg).
$$
\n(3.18)

If $\mathbb{L}_{j_0} = \mathbb{R}$, then $\mathring{w} \in \mathbb{R}^{d_{j_0}}, \zeta_{j_0}^{-n} \overline{\zeta_{j_0}^n} = 1$, and thus

$$
\sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} (((\rho^{\mathbf{n}})^T \psi_v) \otimes (\rho^{-\mathbf{n}} w)) v
$$

=
$$
\frac{1}{2} \iota^{-1} ((2N + 1)^r \mathring{w} + (2N + 1)^r \mathring{w}) = (2N + 1)^r w.
$$
 (3.19)

If $\mathbb{L}_{j_0} = \mathbb{C}$, then by Lemma [3.1\(](#page-10-3)1), there is at least one $i \in \{1, \ldots, r\}$, say $i = 1$ without loss of generality, such that $\zeta_{j_0}^{\mathbf{e}_i} \notin \mathbb{R}$. Then $\overline{\zeta_{j_0}^{\mathbf{e}_1}}/\zeta_{j_0}^{\mathbf{e}_1}$ is in the unit circle but not equal to 1. In this case, $\sum_{n=-N}^{N} (\overline{\zeta_{j_0}^{e_1}}/\zeta_{j_0}^{e_1})^n$ is uniformly bounded when *N* varies. Therefore,

$$
\left| \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \zeta_{j_0}^{-\mathbf{n}} \overline{\zeta_{j_0}^{\mathbf{n}}} \right| = \left| \sum_{n_1, \dots, n_r \in \{-N, \dots, N\}} \prod_{i=1}^r (\zeta_{j_0}^{\mathbf{e}_i})^{-n_i} (\overline{\zeta_{j_0}^{\mathbf{e}_i}})^{n_i} \right|
$$

\n
$$
= \left| \prod_{i=1}^r \sum_{n=-N}^N \left(\frac{\overline{\zeta_{j_0}^{\mathbf{e}_i}}}{\zeta_{j_0}^{\mathbf{e}_i}} \right)^n \right| = \prod_{i=1}^r \left| \sum_{n=-N}^N \left(\frac{\overline{\zeta_{j_0}^{\mathbf{e}_i}}}{\zeta_{j_0}^{\mathbf{e}_i}} \right)^n \right|
$$

\n
$$
\le (2N+1)^{r-1} \left| \sum_{n=-N}^N \left(\frac{\overline{\zeta_{j_0}^{\mathbf{e}_i}}}{\zeta_{j_0}^{\mathbf{e}_i}} \right)^n \right| \ll (2N+1)^{r-1}.
$$
 (3.20)

So

$$
\sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} (((\rho^{\mathbf{n}})^T \psi_v) \otimes (\rho^{-\mathbf{n}} w)) v
$$

= $\frac{1}{2} \iota ((2N + 1)^r \mathring{w} + O((2N + 1)^{r-1}) \mathring{w})$
= $\frac{(2N + 1)^r}{2} \iota \left(\mathring{w} + O\left(\frac{1}{N}\right) \right) = \frac{(2N + 1)^r}{2} \left(w + O\left(\frac{1}{N}\right) \right).$ (3.21)

Both equations [\(3.19\)](#page-16-1) and [\(3.21\)](#page-17-0) can be expressed as

$$
\sum_{\substack{\mathbf{n}\in\mathbb{Z}^r\\|\mathbf{n}|\leq N}}(((\rho^{\mathbf{n}})^{\mathrm{T}}\psi_v)\otimes(\rho^{-\mathbf{n}}w))v=\frac{(2N+1)^r}{\dim_\mathbb{R}\mathbb{L}_{j_0}}\bigg(w+O\bigg(\frac{1}{N}\bigg)\bigg).
$$
 (3.22)

We now attend to the second term in equation [\(3.17\)](#page-16-0).

Since $\eta_v - (Q/\epsilon)\psi_v \in \Psi$, by equations [\(3.14\)](#page-15-1), [\(3.15\)](#page-15-4), and the fact that $|\zeta_{j_0}^{\mathbf{n}}| = 1$,

$$
\left| \left((\rho^{\mathbf{n}})^{\mathrm{T}} \big(\eta_v - \frac{Q}{\epsilon} \psi_v \big) \right) v \right| = \left| \left(\eta_v - \frac{Q}{\epsilon} \psi_v \big) (\iota(\zeta_{j_0}^{\mathbf{n}} \mathring{v})) \right| \ll \left| \left(\eta_v - \frac{Q}{\epsilon} \psi_v \right) \right| \ll Q.
$$

Moreover, $|\rho^{-n}w| \ll 1$ by equation [\(3.10\)](#page-14-1). So

$$
\left| \left(\sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^{\mathrm{T}} \left(\eta_v - \frac{Q}{\epsilon} \psi_v \right) \right) \otimes (\rho^{-\mathbf{n}} w) \right) v \right|
$$

\n
$$
\le \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left| \left((\rho^{\mathbf{n}})^{\mathrm{T}} \left(\eta_v - \frac{Q}{\epsilon} \psi_v \right) \right) v \right| \cdot |\rho^{-\mathbf{n}} w|
$$

\n
$$
\ll (2N + 1)^r Q. \tag{3.23}
$$

Choose

$$
c = \frac{\epsilon \dim_{\mathbb{R}} \mathbb{L}_{j_0}}{(2N+1)^r Q}.
$$
\n(3.24)

Then by equations (3.22) and (3.23) ,

$$
\left(c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^{\mathrm{T}} \frac{\mathcal{Q}}{\epsilon} \psi_v \right) \otimes (\rho^{-\mathbf{n}} w) \n+ c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^{\mathrm{T}} \left(\eta_v - \frac{\mathcal{Q}}{\epsilon} \psi_v \right) \right) \otimes (\rho^{-\mathbf{n}} w) \right) v \n= c \frac{\mathcal{Q}}{\epsilon} \frac{(2N+1)^r}{\dim_{\mathbb{R}} \mathbb{L}_{j_0}} \left(w + O\left(\frac{1}{N}\right) \right) + c O((2N+1)^r \mathcal{Q}) \n= w + O\left(\frac{1}{N} + \epsilon\right).
$$
\n(3.25)

To make $(D_0h)v = w$, one needs to find the solution $w_{\Delta} \in W$ to

$$
\eta_v(v)w_{\Delta} = (\eta_v \otimes w_{\Delta})v
$$

= $-(\left(c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^{\mathrm{T}} \frac{Q}{\epsilon} \psi_v\right) \otimes (\rho^{-\mathbf{n}} w)$
+ $c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} \left((\rho^{\mathbf{n}})^{\mathrm{T}} \left(\eta_v - \frac{Q}{\epsilon} \psi_v\right)\right) \otimes (\rho^{-\mathbf{n}} w)\right)v - w$ (3.26)

which by equation (3.25) is

$$
w_{\Delta} = -\frac{1}{\eta_v(v)} O\bigg(\frac{1}{N} + \epsilon\bigg).
$$

Since $\psi_v(v) = 1$, by equation [\(3.15\)](#page-15-4), $\eta_v(v) = Q/\epsilon + O(Q) = (Q/\epsilon)(1 + O(\epsilon))$ and thus, we have

$$
w_{\Delta} = \frac{1}{(Q/\epsilon)(1+O(\epsilon))} O\left(\frac{1}{N} + \epsilon\right) = O\left(\frac{\epsilon}{Q}\left(\frac{1}{N} + \epsilon\right)\right)
$$
(3.27)

as long as $\epsilon \ll 1$. Note that w_{Δ} is automatically in *W* because equation [\(3.25\)](#page-18-0) and $w \in W$.

Moreover, if $w \neq v$, or in other words $d_{j_0} = 1$, then by Corollary [3.3](#page-15-2) and the fact that $\eta_v \in \Psi$, $\eta_v|_W = 0$. As $\rho^{\mathbf{n}} w \in W$ for all **n**, in this case,

$$
(D_0 h) w = c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} ((\rho^{\mathbf{n}})^{\mathrm{T}} \eta_v) w) \cdot (\rho^{-\mathbf{n}} w) + \eta_v(w) \cdot w_{\Delta} = 0. \tag{3.28}
$$

LEMMA 3.5. *Given c and h respectively from equations [\(3.16\)](#page-15-3) and [\(3.24\)](#page-17-3), for N*, $Q \in \mathbb{N}$ *and sufficiently small* $\epsilon \ll 1$, there exist $w_{\Delta} \in W$ of size $O((\epsilon/Q)(1/N + \epsilon))$ such that $(D_0 h)v = w$ *. In addition,* $(D_0 h)w = 0$ *if* $w \neq v$ *.*

The first part of part (3) in Property [2.4](#page-8-3) is given by the following lemma.

LEMMA 3.6. *Suppose c,* w_{Δ} *, and h are chosen as above. Then* $||h||_{C^0} \ll \epsilon/Q$.

Proof. By equations [\(3.16\)](#page-15-3), [\(3.24\)](#page-17-3), and Lemma [3.5,](#page-18-1)

$$
||h||_{C^0} \ll c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} |\rho^{-\mathbf{n}} w| + |w_\Delta|
$$

\$\ll c(2N+1)^r + \frac{\epsilon}{Q} \left(\frac{1}{N} + \epsilon\right) \ll \frac{\epsilon}{Q} + \frac{\epsilon}{Q} \left(\frac{1}{N} + \epsilon\right) \ll \frac{\epsilon}{Q}\$. \$\square\$

To bound the C^1 norms of *h* and g^n , write

$$
\|\rho\|=\max_{\mathbf{n}\in\Xi}\|\rho^\mathbf{n}\|\geq 1
$$

for the matrix norm of the linear action ρ , so that

$$
\|\rho^{\mathbf{n}}\| \le \|\rho\|^{|\mathbf{n}|} \quad \text{for all } \mathbf{n} \in \mathbb{Z}^r. \tag{3.29}
$$

For $\mathbf{n} \in \mathbb{Z}^r$, we deduce from equations [\(3.12\)](#page-14-2) and [\(3.15\)](#page-15-4) that

$$
\|(\rho^{\mathbf{n}})^{\mathrm{T}}\eta_{v}\| \leq \left|(\rho^{\mathbf{n}})^{\mathrm{T}}\frac{Q}{\epsilon}\psi_{v}\right| + \left|(\rho^{\mathbf{n}})^{\mathrm{T}}\left(\eta_{v} - \frac{Q}{\epsilon}\psi_{v}\right)\right|
$$

$$
\leq \frac{Q}{\epsilon} |(\rho^{\mathbf{n}})^{\mathrm{T}}\psi_{v}| + \|\rho\|^{|\mathbf{n}|} \left|\eta_{v} - \frac{Q}{\epsilon}\psi_{v}\right|
$$

$$
\ll \frac{Q}{\epsilon}(1 + \|\rho\|^{|\mathbf{n}|}\epsilon).
$$
 (3.30)

By the construction in equation [\(3.16\)](#page-15-3) of *h*, Lemma [3.6,](#page-18-2) as well as the bounds in equations [\(3.10\)](#page-14-1), [\(3.12\)](#page-14-2), [\(3.27\)](#page-18-3), and [\(3.30\)](#page-19-0),

$$
||h||_{C^1} \ll ||h||_{C^0} + c \sum_{\substack{\mathbf{n} \in \mathbb{Z}^r \\ |\mathbf{n}| \le N}} |(\rho^{\mathbf{n}})^{\mathrm{T}} \eta_v||\rho^{-\mathbf{n}} w| + |\eta_v||w_\Delta|
$$

$$
\ll \frac{\epsilon}{Q} + c(2N+1)^r \frac{Q}{\epsilon} (1 + ||\rho||^N \epsilon) + \frac{Q}{\epsilon} \cdot \left(\frac{\epsilon}{Q} \left(\frac{1}{N} + \epsilon\right)\right)
$$

$$
\ll \frac{\epsilon}{Q} + (1 + ||\rho||^N \epsilon) + \left(\frac{1}{N} + \epsilon\right) \ll 1 + ||\rho||^N \epsilon.
$$
 (3.31)

For every $\mathbf{n} \in \Xi$, $g^{\mathbf{n}} = \rho^{\mathbf{n}} h - h \circ \rho^{\mathbf{n}}$ is linearly controlled by *h* in C^0 norm:

$$
\|g^{n}\|_{C^{0}} \leq |\rho^{n}|\|h\|_{C^{0}} + \|h\|_{C^{0}} \ll \|h\|_{C^{0}} \ll \frac{\epsilon}{Q}.
$$
 (3.32)

In addition, $gⁿ$ has the form

$$
g^{\mathbf{n}} = \left(c \sum_{\substack{\mathbf{a} \in \mathbb{Z}^r \\ |\mathbf{a}| \le N}} (e((\rho^{\mathbf{a}})^T \eta_v \cdot x) - 1) \rho^{\mathbf{n} - \mathbf{a}} w + (e(\eta_v \cdot x) - 1) \rho^{\mathbf{n}} w_\Delta \right)
$$

$$
- \left(c \sum_{\substack{\mathbf{a} \in \mathbb{Z}^r \\ |\mathbf{a}| \le N}} (e((\rho^{\mathbf{a}})^T \eta_v \cdot \rho^{\mathbf{n}} x) - 1) \rho^{-\mathbf{a}} w + (e(\eta_v \cdot \rho^{\mathbf{n}} x) - 1) w_\Delta \right)
$$

$$
= \left(c \sum_{\substack{\mathbf{a} \in \mathbb{Z}^r \\ |\mathbf{a} + \mathbf{n}| \le N}} (e((\rho^{\mathbf{a} + \mathbf{n}})^T \eta_v \cdot x) - 1) \rho^{-\mathbf{a}} w + (e(\eta_v \cdot x) - 1) \rho^{\mathbf{n}} w_\Delta \right)
$$

$$
-\left(c\sum_{\substack{\mathbf{a}\in\mathbb{Z}^r\\|\mathbf{a}| \le N}} (e((\rho^{\mathbf{a}+\mathbf{n}})^{\mathrm{T}}\eta_v \cdot x) - 1)\rho^{-\mathbf{a}}w + (e((\rho^{\mathbf{n}})^{\mathrm{T}}\eta_v \cdot x) - 1)w_\Delta\right)
$$

= $c\left(\sum_{\substack{\mathbf{a}\in\mathbb{Z}^r\\|\mathbf{a}| > N, |\mathbf{a}+\mathbf{n}| \le N}} - \sum_{\substack{\mathbf{a}\in\mathbb{Z}^r\\|\mathbf{a}| \le N, |\mathbf{a}+\mathbf{n}| > N}} (e((\rho^{\mathbf{a}+\mathbf{n}})^{\mathrm{T}}\eta_v \cdot x) - 1)\rho^{-\mathbf{a}}w + ((e(\eta_v \cdot x) - 1)\rho^{\mathbf{n}}w_\Delta - (e((\rho^{\mathbf{n}})^{\mathrm{T}}\eta_v \cdot x) - 1)w_\Delta). \right)$ (3.33)

Because $\mathbf{n} \in \Xi$, the summations $\sum_{|\mathbf{a}| > N, |\mathbf{a}+\mathbf{n}| \le N}$ and $\sum_{|\mathbf{a}| \le N, |\mathbf{a}+\mathbf{n}| > N}$ each has $O(N^{r-1})$ terms. Since $|\mathbf{n}| = 1$ for all $\mathbf{n} \in \mathbb{E}$, in all the terms in both summations, $|{\bf a}| \le N + 1$ and $|{\bf a} + {\bf n}| \le N + 1$. For each of these terms, the derivative is bounded by

$$
||D(e((\rho^{a+n})^T \eta_v \cdot x) - 1)\rho^{-a}w)||_{C^1}
$$

\n
$$
\leq |(\rho^{a+n})^T \eta_v| \cdot |\rho^{-a}w|
$$

\n
$$
\ll \frac{Q}{\epsilon} (1 + ||\rho||^{a+n}|\epsilon) \ll \frac{Q}{\epsilon} (1 + ||\rho||^{N+1}\epsilon) \ll \frac{Q}{\epsilon} (1 + ||\rho||^N \epsilon)
$$
 (3.34)

thanks to equations [\(3.10\)](#page-14-1), [\(3.12\)](#page-14-2), and [\(3.30\)](#page-19-0). As $w_{\Delta} \in W$, $|\rho^n w_{\Delta}| \ll |w_{\Delta}|$ by equation [\(3.10\)](#page-14-1), and the derivative of $((e(\eta_v \cdot x) - 1)\rho^n w_\Delta - (e((\rho^n)^T \eta_v \cdot x) - 1)w_\Delta)$ is bounded by

$$
\|D((e(\eta_v \cdot x) - 1)\rho^{\mathbf{n}}w_{\Delta} - (e((\rho^{\mathbf{n}})^T \eta_v \cdot x) - 1)w_{\Delta})\|_{C^1}
$$

\n
$$
\leq |\eta_v| \cdot |\rho^{\mathbf{n}}w_{\Delta}| + |(\rho^{\mathbf{n}})^T \eta_v| \cdot |w_{\Delta}|
$$

\n
$$
\ll \frac{Q}{\epsilon} \cdot |w_{\Delta}| + \frac{Q}{\epsilon}(1 + ||\rho||^{|\mathbf{n}|}\epsilon) \cdot |w_{\Delta}| \ll \frac{Q}{\epsilon}(1 + ||\rho||^N \epsilon)|w_{\Delta}|
$$

\n
$$
\ll \frac{Q}{\epsilon}(1 + ||\rho||^N \epsilon) \cdot \frac{\epsilon}{Q}(\frac{1}{N} + \epsilon) = (1 + ||\rho||^N \epsilon)(\frac{1}{N} + \epsilon)
$$
 (3.35)

thanks to equations (3.12) and (3.10) .

Combining the above inequalities yields:

$$
\|g^n\|_{C^1} \ll \|g^n\|_{C^0} + cN^{r-1} \frac{Q}{\epsilon} (1 + \|\rho\|^N \epsilon) + (1 + \|\rho\|^N \epsilon) \left(\frac{1}{N} + \epsilon\right)
$$

$$
\ll \frac{\epsilon}{Q} + \frac{1}{N} (1 + \|\rho\|^N \epsilon) + (1 + \|\rho\|^N \epsilon) \left(\frac{1}{N} + \epsilon\right)
$$

$$
\ll (1 + \|\rho\|^N \epsilon) \left(\frac{1}{N} + \epsilon\right).
$$
 (3.36)

To summarize equations [\(3.31\)](#page-19-1) and [\(3.36\)](#page-20-0), we have the following lemma.

LEMMA 3.7. Suppose c, w_{Δ} , and h are chosen as above. Then $||h||_{C^1} \ll 1 + ||\rho||^N \epsilon$ and $\|g^n\|_{C^1} \ll (1 + \|\rho\|^N \epsilon)(1/N + \epsilon)$ for all $n \in \mathbb{Z}$.

Proof of Proposition [2.4.](#page-8-3) The proposition follows directly from Lemmas [3.4,](#page-15-5) [3.5,](#page-18-1) [3.6,](#page-18-2) and [3.7](#page-20-1) after choosing *N* and ϵ appropriately. Indeed, with $C > 1$ denoting the largest among the implicit constants from Lemmas [3.6](#page-18-2) and [3.7,](#page-20-1) choose ϵ sufficiently small such that $N := \lfloor \log_{\|\rho\|}(1/\epsilon) \rfloor > 4C/\delta$ and $C \cdot (\epsilon/Q) < \delta$. Then $1 + \|\rho\|^N \epsilon < 2$ and $1/N + \epsilon \leq 2/N \leq \delta/2C$. So $||h||_{C^0} \leq C \cdot (\epsilon/Q) < \delta$; $||h||_{C^1} \leq C(1 + ||\rho||^N \epsilon) < 2C$; and $||g||_{C^1} < C(1 + ||\rho||^N \epsilon)(1/N + \epsilon) < C \cdot 2 \cdot (\delta/2C) = \delta$. \Box

Acknowledgements. We would like to thank the referee for their helpful comments. F.R.H. was supported by NSF grant DMS-1900778. Z.W. was supported by NSF grant DMS-1753042.

REFERENCES

- [DK10] D. Damjanović and A. Katok. Local rigidity of partially hyperbolic actions I. KAM method and \mathbb{Z}^k actions on the torus. *Ann. of Math. (2)* 3 (2010), 1805–1858.
- [EF07] M. Einsiedler and T. Fisher. Differentiable rigidity for hyperbolic toral actions. *Israel J. Math.* 157 (2007), 347–377.
- [F69] J. Franks. *Anosov diffeomorphisms on tori*. *Trans. Amer. Math. Soc.* 145 (1969), 117–124.
- [FKS11] D. Fisher, B. Kalinin and R. Spatzier. Totally nonsymplectic Anosov actions on tori and nilmanifolds. *Geom. Topol.* 15(1) (2011), 191–216.
- [FKS13] D. Fisher, B. Kalinin and R. Spatzier. Global rigidity of higher rank Anosov actions on tori and nilmanifolds. *J. Amer. Math. Soc.* 26(1) (2013), 167–198, with an appendix by J. Davis.
- [H82] R. S. Hamilton. The inverse function theorem of Nash and Moser. *Bull. Amer. Math. Soc. (N.S.)* 7(1) (1982), 65–222.
- [K99] R. Krikorian. Réductibilité des systèmes produits-croisés à valeurs dans des groupes compacts. *Astérisque* 259 (1999), vi+216pp (in French, with English and French summaries).
- [KL91] A. Katok and J. Lewis. Local rigidity for certain groups of toral auto-morphisms. *Israel J. Math.* 75(2–3) (1991), 203–241.
- [KS94] A. Katok and R. J. Spatzier. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. *Publ. Math. Inst. Hautes Études Sci.* 79 (1994), 131–156.
- [KS97] A. Katok and R. J. Spatzier. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. *Tr. Mat. Inst. Steklova* 216(Din. Sist. i Smezhnye Vopr.) (1997), 292–319; Engl. Transl. *Proc. Steklov Inst. Math.* 1(216) (1997), 287–314.
- [RH07] F. Rodriguez Hertz. Global rigidity of certain abelian actions by toral automorphisms, *J. Mod. Dyn.* 1(3) (2007), 425–442.
- [RHW14] F. Rodriguez Hertz and Z. Wang. Global rigidity of higher rank abelian Anosov algebraic actions. *Invent. Math.* 198(1) (2014), 165–209.
- [V86] W. A. Veech. Periodic points and invariant pseudomeasures for toral endomorphisms. *Ergod. Th. & Dynam. Sys.* 6(3) (1986), 449–473.
- [W70] P. Walters. Conjugacy properties of affine transformations of nilmani-folds. *Math. Systems Theory* 14 (1970), 327–333.