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Abstract

Let C be an arbitrary smooth algebraic curve of genus g over
a large finite field K. We revisit fast addition algorithms in
the Jacobian of C due to Khuri-Makdisi (math.NT/0409209,
to appear in Mathematics of Computation). The algorithms,
which reduce to linear algebra in vector spaces of dimension
O(g) once |K| � g and which asymptotically require O(g2.376)
field operations using fast linear algebra, are shown to per-
form efficiently even for certain low genus curves. Specifically,
we provide explicit formulae for performing the group law on
Jacobians of C3,4 curves of genus 3. We show that, typically,
the addition of two distinct elements in the Jacobian of a C3,4

curve requires 117 multiplications and 2 inversions in K, and an
element can be doubled using 129 multiplications and 2 inver-
sions in K. This represents an improvement of approximately
20% over previous methods.

1. Introduction and background

This article presents the fastest algorithms to date for arithmetic in the Jacobians
of certain nonhyperelliptic genus 3 curves — specifically, C3,4 curves over a very
large finite field K that is not of characteristic 2 or 3. We attain this by adapting
ideas from the asymptotically fastest algorithms known for general curves of large
genus [9, 10]. Those algorithms boil down to linear algebra on matrices of size

O
(
g(1 + log g/ log |K|)

)
× O(g),

where g is the genus of the curve; if |K| is large, the matrices will hence be of size
O(g)×O(g). The complexity of those algorithms is thus O(g2.376) using the current
record for fast linear algebra.

Our results in this article illustrate how the asymptotic improvements introduced
in [10], coupled with further new techniques, actually result in a significant speedup
even for low genus curves that are slightly ‘special’ for their genus. However, fairly
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fast jacobian group operations for C3,4 curves

special curves, such as hyperelliptic curves for example, are still probably better
implemented using Cantor’s algorithm or the general methods of [8], which have
complexity O(g2) for curves of bounded gonality, but which have complexity O(g4)
for ‘most’ curves of genus g.

Previous work on Jacobian group arithmetic for nonhyperelliptic genus 3 curves
includes [2, 7], building on earlier work for curves of the form y3 = x3 + αx + β
(see [3, 6]). The papers [2, 7] give slower algorithms for C3,4 curves than ours,
under the same hypotheses on K. This article follows the lead introduced by [3],
and adopted by [2, 6, 7], in that we present algorithms which are designed to
work only for ‘typical’ (that is, sufficiently generic) elements of the Jacobian of C.
Here, non-typical elements belong to a proper subvariety of the Jacobian, and so
occur with frequency O(1/ |K|), which means that they do not arise in practice.
As in those previous articles, we also measure the complexity of our algorithms
by counting only the number of multiplications and inversions that need to be
performed in K. This is reasonable, because in practical implementations of finite
field arithmetic, addition and subtraction are much faster than multiplication or
inversion, and inversion can take between 3 and 10 times as long as multiplication,
as pointed out in [2]. Our approach requires 117 multiplications and 2 inversions
in K to add a typical pair of distinct elements of the Jacobian; we abbreviate this
complexity as 117M, 2I. In contrast, the complexity of adding a typical pair of
distinct elements in [7] is 145M, 2I, while the complexity in [2] is 150M, 2I. As
for doubling a typical element of the Jacobian, our approach requires 129M, 2I, as
opposed to the doubling algorithm in [7], which needs 167M, 2I, and to that in [2],
which needs 174M, 2I. Our algorithms and those of [7] actually compute first the
negative of a sum of two elements of the Jacobian (respectively −2 times an element
during doubling), and then invert the final result. The final inversion costs 7M in
our approach, and 16M in [7] (as gathered from an inspection of their computer
code). This final inversion is not needed if one wishes to compute a large multiple
of an element of the Jacobian by the usual ‘double and add’ method; one can use
instead the approach in [1], which uses the ‘addflip’ primitive ξ, ξ′ �→ −(ξ + ξ′)
(where ξ may equal ξ′, for multiplication by −2) instead of the usual addition and
doubling. Due to recent progress in index calculus methods for discrete logarithms
(see [4], [5], and their references), it appears unlikely that the discrete logarithm
problem in Jacobians of C3,4 curves is worth using as a cryptographic primitive; the
methods of this paper might still be useful for cover attacks on discrete logarithms
of other curves.

For the general problem of computing effectively in Jacobians, our results in this
article confirm the advantages of using the approach of [9, 10]. Even though we
write down polynomials in this article, our algorithms work mainly via linear alge-
bra in spaces of sections of line bundles, which we discuss here in the language of
Riemann–Roch spaces L(D) associated to appropriate divisors on C. We perform
almost no polynomial arithmetic, and instead use linear algebra on small matrices
(essentially, 3 × 5 and 8 × 10, both explicitly and implicitly) which are often fairly
structured. For example, our matrix may have two blocks that are almost in eche-
lon form; hence an intelligent approach to Gaussian elimination produces efficient
algorithms. We also optimise by hand any parts of the calculations that yield easily
to an ad hoc trick, or to more systematic approaches. We hope that some of these
methods can be useful elsewhere.
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2. Overview of our algorithms

Consider a C3,4 curve C of genus 3 over a large finite field K with q = pn

elements. We assume that p, the characteristic of K, is neither 2 nor 3 (similarly
to [2, 7]; those articles also exclude characteristic 5). Let P∞ ∈ C denote the
distinguished point at infinity and D a K-rational divisor on C. Write L(D) for the
Riemann–Roch space of rational functions on C with prescribed zeros and poles
at D:

L(D) = {F ∈ K(C) | (F ) � −D}.

Write R for the affine coordinate ring of C −{P∞}; hence R = ∪N�0L(NP∞). By
the definition of a C3,4 curve, R is generated as a K-algebra by two elements x, y
whose valuations vP∞ are given by

vP∞(x) = −3,

vP∞(y) = −4.

The only relation between x and y is a K-linear dependence f(x, y) = 0 between 1,
x, y, x2, xy, y2, x3, x2y, xy2, y3, x4 ∈ L(12P∞). Thus, the affine coordinate ring
of C − {P∞} is R = K[x, y]/(f(x, y)). After a change of variables of the form{

x �→ u1x + u2,

y �→ u3y + u4x + u5,
u1, . . . , u5 ∈ K, u1, u3 �= 0,

we can assume that the equation of the curve is

f(x, y) = y3 − x4 + p2x
2y + p1xy + p0y + q2x

2 + q1x + q0 = 0. (1)

We further write WN = L(NP∞); it is the subspace of R spanned by the monomials

{xiyj | 3i + 4j ≤ N},

subject to the relation (1). To obtain a basis of WN , we restrict ourselves to mono-
mials with exponent pairs (i, j) with j ≤ 2, or alternatively to pairs (i, j) with
i ≤ 3; this takes equation (1) into account. Note that

W 0 = W 1

= W 2 = K · 1 is 1-dimensional,
W 3 = K · 1 + K · x is 2-dimensional,
W 4 = W 5

= K · 1 + K · x + K · y is 3-dimensional,

and for N � 6, WN is (N − 2)-dimensional.
Let D be an effective K-rational divisor. Following the approach of [9, 10], we

represent D by the space WN
D defined by

WN
D = L(NP∞ − D) ⊂ WN

for some suitable positive integer N . If D is arbitrary of degree d, then we need to
consider N � d + 6 (here, 6 = 2g for g = 3, the genus of the curve, to ensure that
WN

D is base-point free). However, for a typical divisor D, we can take N = d + 4
(here, 4 = g+1). Indeed, standard results from the theory of linear series on curves
imply the following statement.
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Proposition 2.1. Let D be a typical effective K-rational divisor of degree d � 3
on C. In particular, P∞ does not belong to the support of D. Then

dim WN
D =

{
0 if N ≤ d + 2,

N − d − 2 if N � d + 2.

Furthermore, if N � d+4, then WN
D is base-point free, and there exist two elements

F ∈ W d+3
D and G ∈ W d+4

D −W d+3
D that form a basis for the 2-dimensional subspace

W d+4
D ⊂ WN

D , with the property that the only common vanishing of F and G occurs
at D. In other words,

(F ) = −(d + 3)P∞ + D + E,

(G) = −(d + 4)P∞ + D + E′,

where E and E′ are disjoint effective divisors.

Remark 2.2. Since F and G above vanish simultaneously only at D, we see that
our basis {F, G} for W d+4

D is in fact an ideal generating set (an IGS ) for D in the
terminology of [10]. Thus, the ideal 〈F, G〉 = RF +RG of the affine coordinate ring
R is the ideal of regular functions on C −{P∞} vanishing on D. The quotient A =
R/〈F, G〉 is a d-dimensional K-algebra describing the ‘values’ that a polynomial
can take at the points of D. This makes sense even if the points of D are not all
defined over K, so long as the divisor D itself is K-rational. Moreover, there is a
K-linear map

WN/WN
D → A

that is a bijection for N � d + 2, for typical D with d � 3.

Remark 2.3. As mentioned above, a ‘typical’ divisor D is one that does not be-
long to a specific proper (hence at most (d − 1)-dimensional) subvariety of the
d-dimensional symmetric power SymdC parametrising the degree d effective divi-
sors on C. For very large q = |K|, the probability for a divisor D to be non-typical
is O(1/q). For enormous q, we do not expect ever to chance upon a non-typical
divisor in our calculations. In case we do, it was already remarked in [2, 3] that we
can then use a slower algorithm that works for all divisors. For example, we can
use the larger space W d+6

D instead of W d+4
D , and adapt the algorithms accordingly.

We now discuss how we compute with typical elements of the Jacobian J of C.
An element ξ ∈ J(K) can be represented as the divisor class [D − 3P∞] for some
effective K-rational divisor D with deg D = 3. A typical class corresponds to a
typical divisor D in a unique way. In turn, we represent D by a basis {F, G} for
the 2-dimensional space W 7

D. We can choose F and G to have the form{
F = x2 + ay + bx + c ∈ W 6

D ⊂ W 7
D,

G = xy + dy + ex + f ∈ W 7
D − W 6

D.
(2)

Here a �= 0 for typical divisors, and, for technical reasons, we also store the inverse
a−1 along with the coefficients a, b, . . . , f ∈ K in order to represent ξ = [D − 3P∞].

Our addition algorithm begins with a typical pair ξ, ξ′ ∈ J(K) and computes
their sum ξ + ξ′. Our doubling algorithm corresponds to the special case ξ = ξ′, in
which case we compute 2ξ = ξ + ξ′. In both cases, we first compute ξ′′ = −(ξ + ξ′),
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the ‘addflip’ of the two elements in the terminology of [9, 10]. We then compute
ξ′′′ = −ξ′′. In practice, most of the use of Jacobian arithmetic will be to find a
multiple m · ξ with m ∈ Z. In that case, we can use the ‘base −2 expansion’ of [1]
and only find the addflips ξ′′ in the intermediate steps without any need for further
negations.

We thus start with ξ = [D − 3P∞] and ξ′ = [D′ − 3P∞], with bases {F, G} for
W 7

D and {F ′, G′} for W 7
D′ . In our first phase (Steps 1 and 2 below) we produce a

basis {F ′′, G′′} for W 7
D′′ , where [D + D′ + D′′ − 9P∞] = 0 in J(K). Thus F ′′, G′′

represent ξ′′ = [D′′ − 3P∞] = −(ξ + ξ′). In our second phase (Step 3 below), we
find a basis {F ′′′, G′′′} for W 7

D′′′ , where [D′′ + D′′′ − 6P∞] = 0 in J(K). At this
point, F ′′′, G′′′ represent ξ′′′ = [D′′′ − 3P∞] = −ξ′′. Along the way, we also obtain
the inverses (a′′)−1 and (a′′′)−1 of the analogous coefficients in F ′′ and F ′′′. Here
is a more detailed overview.

2.1. Step 1

This step comprises Sections 3–7 of this article. We first determine the space
W 10

D+D′ along with its subspace W 9
D+D′ . Since D + D′ is typical, we see that

dim W 9
D+D′ = 1 and dimW 10

D+D′ = 2. Thus, there exists a basis {s, t} for W 10
D+D′

of the form

s = x3 + s1y
2 + s2xy + s3x

2 + s4y + s5x + s6

= 0x2y + 1x3 + . . . ∈ W 9
D+D′ ⊂ W 10

D+D′ ,

t = x2y + t1y
2 + t2xy + t3x

2 + t4y + t5x + t6

= 1x2y + 0x3 + . . . ∈ W 10
D+D′ − W 9

D+D′ ,

(3)

with s1, . . . , s6, t1, . . . , t6 ∈ K. Our aim is thus to find s and t. Note that the principal
divisor (s) has the form (s) = D + D′ + D′′ − 9P∞ for some effective K-rational
divisor D′′ of degree 3. Hence, [D + D′ + D′′ − 9P∞] = 0, and ξ′′ = −(ξ + ξ′), as
desired.

Carrying out Step 1 depends on whether D �= D′ (corresponding to addition) or
D = D′ (corresponding to doubling).

2.1.1. Point addition
If D �= D′, then D and D′ typically have no point in common, in which case

W 10
D+D′ = W 10

D ∩ W 10
D′ .

We find this intersection by looking for those elements of W 10
D′ that map to zero in

the quotient ring A = R/〈F, G〉 (hence such elements also vanish at D). We set up
A in Section 3, compute how a basis for W 10

D′ maps to A in Section 4, and find the
kernel of the map (W 10

D′ → A) in Sections 6 and 7.

2.1.2. Point doubling
If D = D′, then we compute W 10

2D as the subspace of elements L ∈ W 10
D whose

differential dL also vanishes at D. This differs from the case of addition above
only in computing a map (W 10

D → A′) : L �→ dL ‘mod’ 〈F, G〉, where A′ is a 3-
dimensional K-vector space describing the ‘values’ that dL can take at the points
of D. We describe this in Section 5, the analogue of Section 4 with respect to
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point addition. Thereafter, the remaining calculations in Sections 6 and 7 proceed
similarly to the case of point addition.

2.2. Step 2
This step comprises Sections 8 and 9 below. At this stage, we have a basis {s, t}

for W 10
D+D′ as in (3), which is typically an IGS for D + D′ as in Remark 2.2. Thus,

(s) = D + D′ + D′′ − 9P∞,

(t) = D + D′ + E′′ − 10P∞,

with D′′ and E′′ disjoint. We note that sW 8 = W 17
D+D′+D′′ as in [9]. Taking a basis

of monomials for W 8, we see that the following is a basis for sW 8:

{s, xs, ys, x2s, xys, y2s}.

We next compute W 7
D′′ . It is the ‘quotient’, as in [10], of sW 8 = W 17

D+D′+D′′ by
the IGS {s, t} for D + D′:

W 7
D′′ = sW 8 ÷ {s, t}

= {� ∈ W 7 | s�, t� ∈ sW 8}
= {� ∈ W 7 | t� ∈ sW 8}.

(4)

Since W 7 has basis {1, x, y, x2, xy} and we have a basis for sW 8, the condition t� ∈
sW 8 amounts to finding a linear combination of t, xt, yt, x2t, and xyt that is also a
linear combination of s, xs, ys, x2s, xys, and y2s. Equivalently, we must determine
the intersection of the 5- and 6-dimensional subspaces tW 7 and sW 8 inside W 17.
This intersection will have a basis of the form {tF ′′, tG′′}, where {F ′′, G′′} are a
basis for the space W 7

D′′ of solutions for � in (4) above. Note that the intersection
appears to take place in the 15-dimensional space W 17 (where typical 5- and 6-
dimensional spaces do not intersect), but actually occurs inside the 9-dimensional
space W 17

D+D′ , which contains (in fact, is generated by) the two subspaces tW 7

and sW 8. This reduces the amount of linear algebra that we need to perform. We
formalise this in the following lemma.

Lemma 2.4. Let � ∈ W 7. Then t� ∈ sW 8 if and only if t� ∈ sW 8 + W 9. (This is
equivalent to saying that t� is congruent to an element of sW 8 in the quotient space
W 17/W 9.)

Proof. Trivially, t� ∈ sW 8 implies that t� ∈ sW 8 + W 9. To prove the converse,
suppose that t� = s�′ + �′′, with �′ ∈ W 8 and �′′ ∈ W 9. Note that t�, s�′ ∈ W 17

D+D′ .
Then, since �′′ ∈ W 9, we obtain

�′′ = t� − s�′ ∈ W 9
D+D′ = K · s,

and so we can write
t� − s�′ = αs, α ∈ K,

from which we have
t� = (�′ + α)s ∈ sW 8,

as required.
Note incidentally that sW 8∩W 9 = Ks, so dim(sW 8 +W 9) = 6+7−1 = 12.
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We conclude from the above discussion that we can obtain F ′′, G′′ ∈ W 7
D′′ as

follows.
1. Denote F ′′ or G′′ by � = d1 + d2x + d3y + d4x

2 + d5xy. Here {d4, d5} = {0, 1}
in some order, and we must solve for d1, d2, d3 such that t� ∈ sW 8 + W 9.

2. Find C1, . . . , C5, the images of t, xt, yt, x2t, xyt in the 3-dimensional quotient
space W 17/(sW 8 + W 9). (One can moreover see from Section 9 that a basis
for this quotient space is given by the images of x2y, xy2, and x2y2.)

3. The three resulting equations d1C1 + . . . + d5C5 = 0 allow us (in the typical
case) to express d1, d2, d3 in terms of d4, d5. We thus get a basis

{(c′′, b′′, a′′, 1, 0), (f ′′, e′′, d′′, 0, 1)}
for the space {(d1, . . . , d5) | d1C1 + . . . + d5C5 = 0}. This corresponds to
elements F ′′ = c′′ + b′′x + a′′y + x2 and G′′ = f ′′ + e′′x + d′′y + xy that form
a basis for W 7

D′′ . The structure of the system of linear equations allows us to
find (a′′)−1 along the way at minimal extra cost.

2.3. Step 3
This step comprises Section 10. At this point we have obtained our IGS {F ′′, G′′}

for the divisor D′′, where ξ′′ = [D′′ − 3P∞] = −(ξ + ξ′). We also know (a′′)−1. We
now discuss how to negate this to obtain ξ′′′ = −ξ′′ = ξ + ξ′. The divisor of F ′′ has
the form (F ′′) = D′′ + D′′′ − 6P∞ for some effective K-rational divisor D′′′, and it
follows that ξ′′′ = [D′′′ − 3P∞]. We thus seek the polynomials

F ′′′ = x2 + a′′′y + b′′′x + c′′′ ∈ W 6
D′′′ ,

G′′′ = xy + d′′′y + e′′′x + f ′′′ ∈ W 7
D′′′ ,

that represent D′′′ and hence ξ′′′. We easily observe that F ′′ = F ′′′, since W 6
D′′′ =

W 6
D′′ = W 6

D′′+D′′′ = K·F ′′. Hence a′′′ = a′′, so we trivially know the inverse (a′′′)−1.
It remains to find G′′′. Analogously to (4) and to Lemma 2.4, we have F ′′W 8 =

W 14
D′′+D′′′ , and so

W 7
D′′′ = F ′′W 8 ÷ {F ′′, G′′}

= {� ∈ W 7 | G′′� ∈ F ′′W 8}
= {� ∈ W 7 | G′′� ∈ F ′′W 8 + W 6}.

(5)

We thus have G′′G′′′ + F ′′H = 0 for some H ∈ W 8. We can in principle carry out
an analogous computation to Step 2, but this case is small enough that it is worth
our while to carry out the calculation directly and to hand-optimise it to find G′′′.
We also find an explicit expression for H, which is useful in a different context that
we encounter in Section 5.

3. Preliminary to both point addition and doubling

Consider the input F = x2 + ay + bx + c and G = xy + dy + ex + f ∈ W 7
D

representing a divisor D of degree 3. We know that 〈F, G〉 = RF +RG is the ideal
of regular functions on C−{P∞} vanishing at D. Our goal is to be able to compute
in the algebra of ‘values’ of polynomials at D, given by

A = R/〈F, G〉.
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Since deg D = 3, we have dimK A = 3. Given u ∈ R, the element u ∈ A denotes
the reduction of u modulo 〈F, G〉.
Lemma 3.1. A K-basis for A is {1, x, y}. Furthermore,

x2 = −ay − bx − c1, (6)

xy = −dy − ex − f1, (7)

y2 = −gy − hx − i1, (8)

where a, b, c, d, e and f are the coefficients of F and G, and

g = a−1 (c + d(d − b)) + e,

h = a−1(ed − f),

i = a−1 (ec + f(d − b)) .

(9)

Proof. Equations (6) and (7) reflect the fact that F, G ∈ 〈F, G〉. Equations (8) and
(9) come from expanding (y+e)F −(x+b−d)G ∈ 〈F, G〉. Equations (6), (7) and (8)
show that every element u ∈ A can be written as a K-linear combination of 1, x and
y. Since A is 3-dimensional, we obtain that 1, x and y are linearly independent.

Given u ∈ R, we represent its reduction u = α1 + βx + γy ∈ A by the column
vector

Bu =


 α

β
γ


 ∈ K

3.

We then have the following proposition.

Proposition 3.2. Assume given F and G, as well as the inverse a−1.
(i) For Bu defined as above, we have

Bxu = TxBu, Byu = TyBu,

where Tx and Ty are the matrices of multiplication by x and y on A, with
respect to the ordered basis {1, x, y}:

Tx =


 0 −c −f

1 −b −e
0 −a −d


 , Ty =


 0 −f −i

0 −e −h
1 −d −g


 .

(ii) We have the entries of Tx for free (that is, at a cost of 0M); multiplying Tx

by a vector Bu costs 6M .
(iii) We can compute the entries of Ty using 7M . Once we know Ty, multiplying

Ty · Bu to get Byu also costs 6M .
(iv) If we do not already know Ty, we can obtain Byu directly at a cost of 11M .

Proof. The proof of parts (i)–(iii) is immediate by inspecting (6)–(9) above. As for
part (iv), we need to compute the reduction modulo 〈F, G〉 of v = αy + βxy + γy2

in order to obtain Byu. Now v is congruent to w = v − γa−1(yF − xG), so we have

w = γa−1fx + (α − γa−1c)y + γa−1ex2 + [β − γa−1(b − d)]xy

= δx + εy + ζx2 + ηxy

where δ, ε, ζ, η can be calculated using 5M (first find γa−1).
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Then the reduction modulo 〈F, G〉 of v is w − ζF − ηG, whence

Byu =


 0

δ
ε


 − ζ


 c

b
a


 − η


 f

e
d


 ,

costing an additional 6M .

4. First stage of addition of two distinct divisor classes: setting up
a system of equations whose solution will determine W 10

D+D′

Our input is now the descriptions of two typical degree 3 divisors D, D′, given
by pairs F, G ∈ W 7

D and F ′, G′ ∈ W 7
D′ . In other words, we assume given the

coefficients a, . . . , f and a′, . . . , f ′ of F = x2 + ay + bx + c, G = xy + dy + ex + f ,
F ′ = x2+a′y+b′x+c′, and G′ = xy+d′y+e′x+f ′, along with the inverses a−1 and
(a′)−1. Our goal in this section is to determine a 3×5 matrix M whose five columns
are respectively BF ′ , BxF ′ , ByF ′ , BG′ and BxG′ , in the notation of Section 3. The
kernel of M will then correspond to W 10

D+D′ as follows: if v = (c1, c2, c3, c4, c5)T is
a (column) vector in K

5, then we identify it with the linear combination

L = (c1 + c2x + c3y)F ′ + (c4 + c5x)G′ ∈ 〈F ′, G′〉 ∩ W 10 = W 10
D′ .

Then Mv = 0 if and only if L = 0 in A, which is equivalent to

L ∈ 〈F, G〉 ∩ W 10
D′ = W 10

D+D′ ,

where the last equality follows from the fact that D and D′ are disjoint.

Proposition 4.1. Given F , G, F ′, G′ and a−1 as above, we can compute the
matrix M at a cost of 22M .

Proof. The first column BF ′ of M comes from

F ′ ≡ F ′ − F mod 〈F, G〉
= (a′ − a)y + (b′ − b)x + (c′ − c).

Hence we get the following result for free (that is, 0M):

BF ′ =


 c′ − c

b′ − b
a′ − a


 .

We similarly obtain the fourth column BG′ of M for free:

BG′ =


 f ′ − f

e′ − e
d′ − d


 .

We now compute the second and fifth columns BxF ′ and BxG′ by noting the block
matrix equation involving the matrix Tx of Proposition 3.2:

(BxF ′ | BxG′) = Tx (BF ′ | BG′) .

Since the first column of Tx is (0, 1, 0)T, its interaction with the first row of
(BF ′ | BG′) can be computed without any multiplication in K. We must then
multiply the 3× 2 submatrix consisting of the second and third columns of Tx with
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the 2 × 2 submatrix consisting of the second and third rows of (BF ′ | BG′). This
can be done at a cost of 11M using a Strassen’s type multiplication on a 2 × 2
sub-block, which saves one multiplication over the ‘naive’ method. Finally, we use
Proposition 3.2(iv) to compute the third column ByF ′ from BF ′ at a further cost
of 11M . This concludes the proof.

5. First stage of doubling a divisor class: setting up a system of equations
whose solution will determine W 10

2D

In this section, we take D′ = D, so our input consists of two polynomials F, G ∈
W 7

D, where D is a typical degree 3 divisor. As before, we write F = x2 +ay + bx+ c
and G = xy + dy + ex + f , so our input consists of the coefficients a, . . . , f , as
well as a−1. Analogously to Section 4, we will construct a 3 × 5 matrix, which we
also label as M , whose columns represent the ‘reductions modulo 〈F, G〉’ of the
differential forms dF, d(xF ), d(yF ), dG, d(xG). These differential forms are regular
on C − {P∞}, so we really want the columns of M to represent the ‘values’ of
dF, . . . , d(xG) at the points of D, much in the same way that elements of the
algebra A describe values at D.

As in Section 4, a column vector v = (c1, c2, c3, c4, c5)T ∈ K
5 represents

L = (c1 + c2x + c3y)F + (c4 + c5x)G ∈ 〈F, G〉 ∩ W 10 = W 10
D .

This time, Mv = 0 if and only if the differential form dL = c1 dF + c2 d(xF ) +
c3 d(yF ) + c4 dG + c5 d(xG) vanishes at D. Since generically the points of D are
distinct, this means that such an L vanishes to second order at the points of D,
so we obtain that Mv = 0 if and only if L ∈ W 10

2D. Since, for example, d(xF ) =
x dF +F dx, and F vanishes at D, we see that the value of d(xF ) at D is the same
as that of x dF , and so forth. Thus the columns of our matrix M can be taken to
represent suitable ‘reductions modulo 〈F, G〉’:

dF , x dF , y dF , dG, x dG,

which we now proceed to explain. We write dR for the R-module of differential
forms on C − {P∞}; then dR is generated by dx and dy, with the sole relation
df = 0 for f(x, y) the equation of the curve in (1).

Lemma 5.1. The R-module dR is free of rank 1, and is generated by a differential
form ω0 such that

dx = fyω0, dy = −fxω0, (10)

where fy = ∂f/∂y and fx = ∂f/∂x.

Proof. The relation df = 0 means that

fx dx + fy dy = 0. (11)

Since C is nonsingular, f , fx, and fy have no common zeros over the algebraic
closure K. We can therefore write

1 = r1fx + r2fy for some r1, r2 ∈ R, (12)

and we define
ω0 = r2 dx − r1 dy ∈ dR.
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Some algebra with (11) and (12) then implies equation (10). In particular, dx, dy ∈
Rω0 so that ω0 generates dR as an R-module. To see that the annihilator of ω0 is
0, one can argue directly from (11), (12) and the definition of ω0, or one can use
the fact that dR is a rank one projective module over the Dedekind domain R, and
is hence free, as it has a global generator ω0.

At this stage, we can state precisely what we mean by the reduction modulo
〈F, G〉 of the differential forms dF, . . . , x dG.

Corollary 5.2. Define the reduction of an element of dR to be its image in
A′ = dR/〈F, G〉dR. Then A′ is a free A-module of rank 1, generated by the
reduction ω0.

We can in fact choose any generator ω of A′, not just ω0. Our choice of ω below
was inspired by a careful reading of the formulae for doubling in [7]. This saves us
several multiplications over using the generator ω0.

Lemma 5.3. For a typical divisor D, the following hold.
(i) The reduction dF generates the A-module A′.
(ii) There exist G1 ∈ W 7, H1 ∈ W 8 such that FH1 + GG1 = 0, and G1 is a unit

in the ring A.
(iii) There exists a generator ω ∈ A′ such that

dF = G1ω, dG = −H1ω. (13)

Proof. The first assertion holds because F typically vanishes to order exactly one
at each point of D, so dF is nonzero at the points of D. The second assertion
comes from our results in Subsection 2.3 and Section 10 (replace {F ′′, G′′, G′′′, H}
there by {F, G, G1, H1}; no circular reasoning is involved). The divisor of F is
(F ) = D + D1 − 6P∞ for a ‘complementary’ divisor D1 of D, which is typically
disjoint from D. (In the original setting of Section 10, D′′′ was the complementary
divisor of D′′). Moreover, the only points where F and G1 simultaneously vanish
are typically those of D1, since {F, G1} are an IGS for D1 (indeed, they are a basis
for W 7

D1
). Thus G1 does not vanish at any point of D, so G1 is invertible in A, as

claimed. For the third assertion, the first part of equation (13) serves to define a
generator ω in light of parts (i) and (ii) above; the second part of (13) follows upon
expanding the equation d(FH1+GG1) = 0, reducing modulo 〈F, G〉, and cancelling
G1.

The upshot of the above discussion is that we can represent an element A′, of
the form uω with a unique u ∈ A, by the column vector Bu ∈ K

3. In particular, we
represent dF = G1ω by BG1 , and dG = −H1ω by B−H1 . Hence, we can take the
columns of our matrix M to be

BG1 , BxG1 , ByG1 , B−H1 , B−xH1 .

Proposition 5.4. Given F, G, a−1, the entries of the matrix M can be computed
at a cost of 34M .

Proof. We first compute G1 and H at a cost of 10M , by Proposition 10.1(ii) (recall
that we replace {F ′′, G′′, G′′′, H} there by {F, G, G1, H1}). For later use, we also

317https://doi.org/10.1112/S146115700000142X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000142X


fast jacobian group operations for C3,4 curves

compute the matrix Ty as in Proposition 3.2(iii). This costs us only a further 5M ,
since we have already computed the expression a−1(c+d(d−b)) as part of computing
G1, H1 (when we computed (a′′)−1� in the context of the proof of Proposition 10.1).
As a result, we now have g, h, and i.

Our next step is to reduce G1 and H1 modulo 〈F, G〉, so as to obtain BG1 and
BH1 ; the extra negation to get B−H1 costs nothing. We reduce G1 ≡ G1 − G
at no multiplicative cost, and since G1 − G ∈ K · 1 + K · x + K · y from our
formulae for G1 and G, we obtain BG1 for free. As for H1, our formulae give
H1 = −y2 + ax2 + (K-linear combination of 1, x, y); hence by (8)

H1 ≡ H1 + y2 + gy + hx + i − aF ∈ K · 1 + K · x + K · y
will be reduced. The only multiplication needed is to obtain aF , which costs 2M
to obtain a2, ac, since we have already found ab as part of finding G1, H1.

Finally, we multiply Tx by the 3 × 2 matrix (BG1 | B−H1) to obtain BxG1

and B−xH1 at a cost of 11M , as in the proof of Proposition 4.1; we also obtain
ByG1 = TyBG1 at a cost of 6M , by Proposition 3.2(iii).

6. Finding the kernel of M

To find W 10
D+D′ in the case of addition, and W 10

2D in the case of doubling, we must
now determine the kernel of our 3×5 matrix M from Sections 4 and 5, respectively.
A vector

v =




c1

...
c5




satisfying Mv = 0 corresponds in both cases to

L = c1F
′ + c2xF ′ + c3yF ′ + c4G

′ + c5xG′ ∈ W 10
D+D′ ,

since D = D′ in the case of doubling. Our later calculations will be significantly
simplified if we can find a basis {s, t} for W 10

D+D′ of the following special ‘monic’
form:

s = x3 + (K-linear combination of y2, xy, x2, y, x, 1)
= 0x2y + 1x3 + . . . ∈ W 9

D+D′ ,

t = x2y + (K-linear combination of y2, xy, x2, y, x, 1)
= 1x2y + 0x3 + . . . ∈ W 10

D+D′ .

To do this, we actually find the kernel of a modification M ′ of M : if M has columns
 K1 K2 K3 K4 K5


 ,

then M ′ has columns 
 K1 K4 K3 − K5 K2 K5


 .

Note that M ′ can be calculated from M without any field multiplications. In the
case of addition, the columns of M ′ correspond to
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 F ′ G′ yF ′ − xG′ xF ′ xG′


 ,

and a vector (c′1, . . . , c
′
5)

T ∈ ker M ′ corresponds to a combination

c′1F
′ + c′2G

′ + c′3(yF ′ − xG′) + c′4(xF ′) + c′5(xG′) ∈ W 10
D+D′ ;

an analogous statement holds in the case of doubling.
We shall see in Section 7 that the ‘monic’ element s comes from a kernel vector

with c′5 = 0, c′4 = 1, while t comes from a kernel vector with c′5 = 1, c′4 = 0. We thus
perform row reduction on M ′ so as to express the unknown cofficients c′1, c

′
2, c

′
3 in

terms of the free variables c′4 and c′5.
We write the entries of the modified matrix M ′ as:

M ′ =


 A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

A3 B3 C3 D3 E3


 ,

with rows Ri = (Ai Bi Ci Di Ei), i = 1, 2, 3.

Proposition 6.1. A basis for the kernel of M ′ can be obtained using 39M, 1I.

Proof. Apply row operations to the rows R1, R2, R3. This transforms M ′ into the
following echelon form with the same kernel:

 A1 B1 C1 D1 E1

0 D σ1 σ2 σ3

0 0 U σ4 σ5


 , (14)

where the new rows are R′
1 = R1, R′

2 = A1R2 − A2R1, R′
3 = ∆12R3 − ∆13R2 +

∆23R1. Here the quantities ∆ij are 2×2 minors coming from the first two columns
of M ′, as given by the formulae below. This requires us to compute the following
quantities at a cost of 21M :

D = ∆12 = A1B2 − A2B1 ,

∆13 = A1B3 − A3B1 ,

∆23 = A2B3 − A3B2 ,

σ1 = A1C2 − A2C1 ,

σ2 = A1D2 − A2D1 ,

σ3 = A1E2 − A2E1 ,

U = ∆12C3 − ∆13C2 + ∆23C1 ,

σ4 = ∆12D3 − ∆13D2 + ∆23D1 ,

σ5 = ∆12E3 − ∆13E2 + ∆23E1 .

To perform back substitution, we need to obtain

A−1
1 , D−1, and U−1. (15)

For this, we perform

Q1 = A1D, Q2 = Q1U, Q3 = Q−1
2 ,

U−1 = Q1Q3, Q4 = UQ3, D−1 = A1Q4, A−1
1 = DQ4,
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so the inverses in (15) above can all be produced using 6M, 1I. Back substitution
performed on the matrix in (14) now costs a further 6M + 6M = 12M to find the
two basis elements (α, β, γ, 1, 0)T and (δ, ε, ζ, 0, 1)T of the kernel, corresponding to
s and t. (Solve for γ, β, α, ζ, ε, δ in that order).

7. Finding s and t

At this point, we have obtained a basis {v′1, v′2} for the kernel of M ′ of the form

v′1 =




α
β
γ
1
0


 ,

corresponding to s, and

v′2 =




δ
ε
ζ
0
1


 ,

corresponding to t. The desired elements s and t are{
s = αF ′ + βG′ + γ(yF ′ − xG′) + xF ′,
t = δF ′ + εG′ + ζ(yF ′ − xG′) + xG′.

(This includes the case of doubling, for which F ′ = F and G′ = G.) We now have
the following.

Proposition 7.1. Given v′1 and v′2 as above, s and t can be obtained at a cost of
18M .

Proof. To calculate s and t using as few multiplications as possible, we illustrate
the following steps for s (those for t follow similarly). We have

s = (α + γy)F ′ + (β − γx)G′ + xF ′,

where

F ′ = x2 + a′y + b′x + c′,
G′ = xy + d′y + e′x + f ′.

We now wish to expand s as a linear combination of the monomials x3, y2, xy, x2,
y, x, and 1. Write

s = (α + γy)x2 + (β − γx)xy + xF ′ (I)
+ (α + γy)(a′y + b′x + c) + (β − γx)(d′y + e′x + f ′). (II)

The terms in (I) do not involve any multiplication in K (note that the leading
coefficient x3 comes from xF ′). The terms in (II) can be written as

(α + γy)b′x + (β − γx)d′y (III)
+ (α + γy)(a′y + c) + (β − γx)(e′x + f ′), (IV)
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where (III) requires 3M to form γ(b′−d′)xy +αb′x+βd′y and (IV) requires 6M in
total, using Karatsuba’s method for each of the two terms. The total cost is thus
9M to find s.

Finding t also requires 9M ; the only essential difference is that xF ′ becomes xG′

in the analogue of (I).
The total cost to find s and t is thus 18M . Note from the computation that s and

t are both monic in the sense that their ‘leading’ coefficient is 1, and that moreover
the coefficient of x3 in t is zero.

8. Calculating xt, yt, x2t, xyt and xs, ys, x2s, xys, y2s

We have now computed s, t ∈ W 10
D+D′ . We let s1, . . . , s6, t1, . . . , t6 be the coeffi-

cients of s and t, as in equation (3) above. As we saw in Subsection 2.2, we now
wish to find F ′′, G′′ ∈ W 7

D′′ via

KF ′′ + KG′′ = {� ∈ W 7 | �t ∈ sW 8 + W 9}.
Thus, � is a K-linear combination of the basis {t, xt, yt, x2t, xyt} for tW 7 that is
congruent to a K-linear combination of the basis {s, xs, ys, x2s, xys, y2s} for sW 8

in the quotient space W 17/W 9. We express these multiples of s and t in terms of
the following ordered basis for W 17:

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, x2y2, xy3, y4, x3y2}. (16)

To work in W 17/W 9, we need only the coefficients of the last eight monomials:

{x2y, xy2, y3, x3y, x2y2, xy3, y4, x3y2}. (17)

Lemma 8.1. Given s and t as above, producing the relevant coefficients of xt, yt,
x2t, xyt, xs, ys, x2s, xys, and y2s requires 2M .

Proof. Our choice of basis for W 17 means that we use the equation of the curve
(1) to eliminate all monomials xiyj with i � 4. Carrying this out for the multiples
of s and t above, we obtain the matrix N given by

N=




t6 0 0 t3q0 0 s6 q0 0 s3q0 0 0
t5 t6 0 t3q1 0 s5 s6+q1 0 q0+s3q1 0 0
t4 0 t6 q0+t3p0 0 s4 p0 s6 s3p0 q0 0
t3 t5 0 t6+t3q2 0 s3 s5+q2 0 s6+q1+s3q2 0 0
t2 t4 t5 q1+t3p1 t6 s2 s4+p1 s5 p0+s3p1 s6+q1 0
t1 0 t4 p0 0 s1 0 s4 0 p0 s6

0 t3 0 t5 0 1 s3 0 s5+q2 0 0
1 t2 t3 t4+q2+t3p2 t5 0 s2+p2 s3 s4+p1+s3p2 s5+q2 0
0 t1 t2 p1 t4 0 s1 s2 0 s4+p1 s5

0 0 t1 t3 0 0 1 s1 s3 0 s4

0 1 0 t2 t3 0 0 1 s2+p2 s3 0
0 0 1 t1+p2 t2 0 0 0 s1 s2+p2 s3

0 0 0 0 t1 0 0 0 1 s1 s2

0 0 0 1 0 0 0 0 0 1 s1

0 0 0 0 1 0 0 0 0 0 1




whose columns represent, in order, t, xt, yt, x2t, xyt, s, xs, ys, x2s, xys, and y2s
with respect to our full basis for W 17 given in (16) above. However, since we only
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need the last eight rows of N to indicate the values in W 17/W 9, we only need to
work with the matrix N ′ given by

N ′=




1 t2 t3 t4+q2+t3p2 t5 0 s2+p2 s3 s4+p1+s3p2 s5+q2 0
0 t1 t2 p1 t4 0 s1 s2 0 s4+p1 s5

0 0 t1 t3 0 0 1 s1 s3 0 s4

0 1 0 t2 t3 0 0 1 s2+p2 s3 0
0 0 1 t1+p2 t2 0 0 0 s1 s2+p2 s3

0 0 0 0 t1 0 0 0 1 s1 s2

0 0 0 1 0 0 0 0 0 1 s1

0 0 0 0 1 0 0 0 0 0 1




.

This shows that we only need to compute the multiples t3 · p2 and s3 · p2, thereby
proving our result.

9. Finding F ′′, G′′ that span the subspace W 7
D′′

We refer to the columns of N ′ above as

N ′ =
(

C1 C2 C3 . . . C11

)
.

We now need to find a linear combination of the first five columns C1, . . . , C5 of
N ′, corresponding to a basis for the image of tW 7 in W 17/W 9, which belongs to
the span of the last six columns C6, . . . , C11 of N ′, corresponding to the image of
sW 8 in W 17/W 9. Let V denote the 5-dimensional subspace of K

8 spanned by the
columns C6, . . . , C11 (of course, the zero column C6 is irrelevant), and let T denote
the set of columns {C1, . . . , C5}: we thus want to find combinations of columns
of T that map to zero in the 3-dimensional quotient K

8/V . This quotient can be
identified with the subspace V ′ ⊂ K

8 given by

V ′ =
{

(α, β, 0, 0, γ, 0, 0, 0)T | α, β, γ ∈ K

}
,

since V and V ′ are complementary subspaces. Our first goal is then to reduce the
columns of T modulo V , so as to obtain elements C1, . . . , C5 ∈ V ′ with

Ci ≡ Ci mod V, Ci =




αi

βi

0
0
γi

0
0
0




, i = 1, . . . , 5.

After that, we will need to determine the kernel of the 3 × 5 matrix

M ′′ =


 α1 α2 α3 α4 α5

β1 β2 β3 β4 β5

γ1 γ2 γ3 γ4 γ5




to obtain F ′′ and G′′.

Lemma 9.1. Given the matrix N ′, the columns of T can be reduced modulo V to
produce the columns of the matrix M ′′, at a total cost of 19M .
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Proof. As a preliminary calculation, we find elements D8, D10, and D11 of V ,
corresponding respectively to ys− s1xs = (y− s1x)s, x(y− s1x)s, and y(y− s1x)s.
This will aid us in reducing columns of T modulo V . We have:

D8 = C8 − s1C7 =




s3 − s1(s2 + p2)
s2 − s2

1

0
1
0
0
0
0




,

D10 = C10 − s1C9 =




s5 + q2 − s1(s4 + p1 + s3p2)
s4 + p1

−s1s3

s3 − s1(s2 + p2)
s2 + p2 − s2

1

0
1
0




,

D11 = C11 − s1C10 =




−s1(s5 + q2)
s5 − s1(s4 + p1)

s4

−s1s3

s3 − s1(s2 + p2)
s2 − s2

1

0
1




.

Calculating D8, D10 and D11 costs 6M , as we already know s3p2 from N ′, so it
suffices to calculate

s1(s2 + p2), s2
1, s1(s4 + p1 + s3p2), −s1s3, −s1(s5 + q2), −s1(s4 + p1).

It is clear that V is spanned by {C7, D8, C9, D10, D11}. We now compute the re-
duction of columns of T modulo V .

First, note that

C1 = C1 ∈ V ′

which comes at no cost, so we obtain
 α1

β1

γ1


 =


 1

0
0


 .

Second,

C2 = C2 − D8 ∈ V ′
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which also comes at no cost, so that
 α2

β2

γ2


 =


 t2 − s3 + s1(s2 + p2)

t1 − s2 + s2
1

0


 .

Third, we have

C3 = C3 − t1C7 ∈ V ′,

costing 2M to calculate t1C7, and hence
 α3

β3

γ3


 =


 t3 − t1(s2 + p2)

t2 − t1s1

1


 .

Fourth and fifth, note that

C4 − D10 =




m1

m2

m3

m4

m5

0
0
0




, with mi ∈ K, i = 1, . . . , 5,

C5 − D11 =




z1

z2

z3

z4

z5

z6

0
0




, with zi ∈ K, i = 1, . . . , 6,

so that

C5 − D11 − z6C9 =




�1
�2
�3
�4
�5
0
0
0




, with �i ∈ K, i = 1, . . . , 6.

Hence our desired reductions are

C4 = C4 − D10 − m4D8 − m3C7,

C5 = C5 − D11 − z6C9 − �4D8 − �3C7,

which ensures that C4 and C5 belong to V ′. We require 4M to find z6C9, which
allows us to calculate the vectors C4 − D10 and C5 − D11 − z6C9. The expressions
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m4D8 + m3C7 and �4D8 + �3C7 can now be obtained simultaneously as the matrix
product (

C7 D8

) (
m3 �3
m4 �4

)
.

The entries of C7 and D8 are mostly zeros and ones, and the only part of the
above matrix product that involves nontrivial multiplications in K is the top 2× 2
submatrix multiplication(

s2 + p2 s3 − s1(s2 + p2)
s1 s2 − s2

1

) (
m3 �3
m4 �4

)
. (18)

This costs 7M using Strassen’s technique. At this point we need no further multi-
plications to produce C4 and C5.

Adding up the costs to produce all of C1, . . . , C5 concludes the proof.

Lemma 9.2. Given s and t, the columns of T can be obtained and reduced modulo
V , thereby obtaining the matrix M ′′, at a total cost of 20M . (In other words, we
can save one multiplication compared to using Lemmas 8.1 and 9.1.)

Proof. We claim that the two multiplications t3p2 from Lemma 8.1 and
s1(s4 + p1 + s3p2) from Lemma 9.1 can be replaced with a single multiplication. To
see this, observe that these two multiplications are used only when we calculate the
first coefficient m1 in the column vector C4 −D10 = (m1, m2, m3, m4, m5, 0, 0, 0)T.
Now rearrange

m1 = t4 + q2 + t3p2 − s5 − q2 + s1(s4 + p1 + s3p2)
= t4 − s5 + s1(s4 + p1) + (t3 + s1s3)p2.

Since we have already computed s1(s4 + p1) and s1s3 during Lemma 9.1, we see
that we can replace the two multiplications t3p2 and s1(s4 +p1 +s3p2) by the single
multiplication (t3 + s1s3)p2. This concludes our proof.

The following proposition now allows us to find the desired polynomials

F ′′ = x2 + a′′y + b′′x + c′′,
G′′ = xy + d′′y + e′′x + f ′′.

Proposition 9.3. Given s and t, the polynomials F ′′ and G′′, as well as the inverse
(a′′)−1 , can be obtained using 31M, 1I.

Proof. Recall that the columns of M ′′ represent the reductions of each of t, xt,
yt, x2t and xyt modulo the multiples of s via the ‘reduction modulo V ’ described
above. Hence, by Lemma 9.2, the matrix M ′′ can be obtained using 20M , and has
the form

M ′′ =


 1 α2 α3 α4 α5

0 β2 β3 β4 β5

0 0 1 γ4 γ5


 .

In anticipation of our next step, we compute γ−1
4 and β−1

2 using 3M, 1I
(that is, we find β2 · γ4, invert it, and multiply the inverse separately with each
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of β2 and γ4). We can now find two vectors{
v′′1 = (c′′, b′′, a′′, 1, 0)T ,

v′′2 = (f ′′, e′′, d′′, 0, 1)T ,

that span the kernel of M ′′ using back substitution, requiring a further 8M . Those
give us the coefficients of the polynomials F ′′ and G′′. Note that a′′ = −γ4, and so
we know its inverse thanks to our previous anticipatory step.

10. Negating the final result, and an application to Section 5

As mentioned in Subsection 2.3, our final result representing ξ′′′ = −ξ′′ = ξ + ξ′

will be a pair {F ′′′, G′′′}, with F ′′′ = F ′′ and G′′′ = xy + d′′′y + e′′′x + f ′′′ ∈ W 7
D′′′

that satisfies G′′G′′′ + F ′′H = 0 for some H ∈ W 8. We can then in principle find
G′′′ by a procedure analogous to that in Sections 8 and 9, by working modulo W 6,
which is analogous to how we previously dropped some rows from the matrix N
to get N ′. If we furthermore need to find H, as is the case in Proposition 5.4, we
can do something similar by dropping one fewer row at the start, thereby working
modulo W 4. (We invite the reader to check that this extra ‘precision’ is required
exactly to obtain the constant term of H.)

We, however, preferred to find the following solution by a direct calculation:

G′′′ = xy + (b′′ − d′′)y − (�(a′′)−1 + m)x

+ [md′′ + (�(a′′)−1 + e′′)(d′′ − b′′) + a′′(a′′b′′ − p1) − f ′′],

H = −y2 + a′′x2 + �(a′′)−1y − a′′b′′x

+ [(�(a′′)−1 + m)e′′ + a′′(b′′2 − c′′ − q2)],

(19)

where

m = e′′ + a′′(a′′ + p2),
� = c′′ + (d′′ − b′′)d′′.

This can be verified without setting up a system of linear equations; instead, note
that our expressions for G′′′, H satisfy G′′G′′′ + F ′′H ∈ K · x + K · y + K · 1 = W 4

(taking into account equation (1) of our curve). However, any combination of F ′′

and G′′ vanishes at D′′, so G′′G′′′ + F ′′H ∈ W 4
D′′ = 0, since D′′ is typical.

Thus our result is as follows.

Proposition 10.1. Given F ′′, G′′ and (a′′)−1, let F ′′′, G′′′ represent the negative
in the Jacobian; then F ′′′ = F ′′, and we obtain (a′′)−1 = (a′′′)−1 for free.

(i) It costs 7M to compute G′′′ as given by the above formulae.
(ii) It costs 10M to compute both G′′′ and H, satisfying G′′G′′′ + F ′′H = 0.

Proof. First compute m and �, then compute �(a′′)−1 and a′′b′′, and then
compute the remaining coefficients of G′′′ (and of H, if needed) using the above
expressions.

11. Conclusion

We now assemble all the parts to obtain the main result of our paper.
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Theorem 11.1. In the Jacobian of a C3,4 curve defined over a large finite field K,
point addition can be performed on typical elements using 117 field multiplications
and 2 field inversions. Point doubling can be performed on typical elements using
129 field multiplications and 2 field inversions.

Proof. For point addition, add up the costs of Propositions 4.1, 6.1, 7.1, 9.3, and
10.1(i). For point doubling, add up the costs of Propositions 5.4, 6.1, 7.1, 9.3,
and 10.1(i).

In terms of the number of multiplications required, our results represent im-
provements of 19.3% for addition and 22.8% for doubling (compared to [7]), and
of 22% for addition and 25.8% for doubling (compared to [2]). All the algorithms
require two inversions in K per group operation in the Jacobian.

Appendix A. Implementation

We have included a complete implementation in Magma of our algorithms as
an appendix to this article. The files can be found at:

http://www.lms.ac.uk/jcm/10/lms2006-049/appendix-a/ .

The list of files is as follows.

• The file curve.magma contains the code for our algorithms, as well as a sample
set of values over the finite field K whose cardinality |K| is the first prime above
108. Larger values of |K| pose no problem, but then elements of K will appear
less legible in a printout. The sample set of values includes two data structures
FG and FG2 representing the divisors D and D′ of our algorithms.

• The file sample run output.txt contains a sample run of our addition and
doubling algorithms on the divisors D and D′ defined in curve.magma. We
verify that the results are correct using the built-in operations in Magma for
ideals in polynomial algebras.

• The file sample run input.magma is the input that was used to produce the
output above.
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