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Abstract

Any preorder P on a set X has an associated preorder P’, and hence an associate sequence of
preorders P, P’, P"", P'" .... The properties of this sequence are studied. When X is finite the
sequence is eventually periodic with period p = 1 or p = 2. If p = 1, the eventual constant
preorder is full. For p = 2 the possible forms which the eventual alternating order can take are
examined: first, the possible combinations of components are enumerated; second, the notion
of ramification at a caste is used to show that X may in a heuristic sense be of unbounded
complexity. If X is orderdense the periodicity starts at P’.
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1. Introduction

Let £ be a preorder on a set X. Then there exists another preorder on
X, called the associated order of < and denoted by <', defined thus: for
x,y € X,x £’ y means

(1) VMueX)u<x=>u<y) and (MteX)t>y=1>x).

For example, let X be R? and let < be the strong pointwise order: if
x = (x,x2)andy= (y1,y2) thenx < ymeans x; < y;and x < y;,andx {y
means X < y or x = y. Then the associated order <’ is the weak pointwise
order: x £’ y means x; £ y; and x; £ y,. The situation is the same for R”
and for partial orderings on spaces of functions. More generally, < could be
taken to be a hybrid pointwise order; again <’ is the weak pointwise order.

This construction has been used by the author to develop a class of groups
G which are partially-ordered groups with respect to one partial order <,
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and lattice-ordered groups with respect to the associated order </, and at
the same time topological groups and topological lattices with respect to the
open-interval topology of <, and where the positive cone of £’ is the closure
in that topology of the positive cone of <. The orders are all partial orders.
See [3], [5] and also [2], [4], [6].

In [1], some basic properties of the associated order on an arbitrary set are
described, and we return to that generality here: no structure is assumed for
X other than its order structure. Since the given order £ on X determines <’
uniquely, it generates a sequence of higher associated orders, which we call
the associate sequence,

(2)

(where £%) denotes (£*—1)"). This paper deals with the behaviour of the as-
sociate sequence. We prove that (2), unless its members are pairwise distinct,
is eventually periodic with period 1 or 2. If the period is 1 and X is finite,
then the eventual order must be full. If the period is 2, the position is much
more complicated. We examine in some detail the forms which the eventual
periodic preordered set (X, <) may take, showing by means of the process
of ramification at castes that there is no bound to the degree of complexity
of (X, £); however, we do not find a simple characterization for this case.
When (X, <) is orderdense, at most three of the orders in (2) are distinct.

The author is grateful to Drs Alicia Sterna-Karwat and Andrew Wirth for
helpful discussions. An application of the modified associate order defined
in Section 6, to decision theory, is presented in A. Wirth [9].

IIA
HA

I<II
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2. Definitions and basic properties

Take any set X with at least two elements. A preorder < on X is a reflexive
transitive relation on X. As usual we write x < y to mean that x £ y and
X #y. Also x 2 y means y < x. Thus it never happens that x < x. On the
other hand it can happen that x < y and y < x; if this is the case or x = y we
write x ~ y, defining thereby an equivalence relation on X. A partial order
on X is an antisymmetric preorder on X. The sets of all preorders on X, all
partial orders on X respectively, are written N(X), O(X). Note that if < is
in N(X)\O(X), then < is not transitive.

If £, and £, are two preorders on X we say that <, is contained in <, if
(Vx,y € X)(x £; y = x <, p). This can be shown as £,C<,. Then N(X) is
partially ordered by C; in fact it is a complete lattice, containing O(X) as a
decreasing subset.
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A partial order £ (and the partially ordered set X, with respect to <) is
called orderdense if for all x,y € X, if x < y then there exists z € X such
that x < z < y. The partial order is full if for every pair x,y € X exactly one
of x <y, x =y, y < x holds; it is trivial if for all x,y € X, x £ y implies
x =Y. A preorder £ is improper if x < y forall x,y € X.

When £ is a preorder, an element x € X is called minimal if a < x for
no a € X, pseudominimal if not minimal but ¢ < x implies a ~ x. The
terms maximal and pseudomaximal are defined dually. An element y covers
X, written x<y, if x <y, y £ x, and

(3) x <a<yimpliesx ~aora~y.

So when £ is partial, x<y means x < y and x < @ < y for no a. As usual
y £ x means not y < x. We sometimes write x||y to mean x ¢ y and y £ x;

x <!ytomean x <y and y ¢ x;

and we write
(a<)={xeX:a<x}, (@2)y={xeX:azx},

and so on.

Note: < is not transitive, < is not a preorder; <! is transitive and <!
(meaning <! or =) is a partial order. All these notations can be invoked for
other preorders as well. If x < y <!z then x <!z. If x <!y < z then x <!z.

Let £ be a preorder on X, and let £’ be the relation defined by (1); clearly
<’ is a preorder on X. Unfortunately, <’ need not be a partial order, even if
< is a partial order; we shall see finite instances of this presently.

The basic facts about the associated order are given in the following the-
orem.

THEOREM 1. Let < be any preorder on X and x,y € X.

(i) If x < y then either x <" y or x ~ y but not both.

@) Ifx <yandnoty < x, then x <"y and noty <’ x. That is, x <ly
implies x <'y.

(i11) £ is trivial if and only if £’ is improper.

(iv) ' is trivial if £ is improper. Conversely, if <' is trivial then any two
~-inequivalent elements are unrelated by <.

(v) £ is contained in <' if and only if < is a partial order.

(vi) If £’ is contained in < then <' is a partial order.

(vil) € and £' coincide if < is full, or if < is orderdense and <' is full.

(viii) If £ and £' coincide, then they are a partial order.
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ProoOF. The theorem follows from the definitions; we give proofs of a few
of the items, to indicate the flavour of the arguments.

(i) Let x <y. fu<xthenu<xand x £ysou<y. Supposeu=y.
Theny < x,sox ~y. Ifalsox <’ ythenu < x givesu <y,soy <y, a
contradiction.

Suppose instead x < y and not x ~ y. Then u < x implies ¥ < y. Similarly
t > y implies ¢t 2 x, that is, £ > x. Thus x <’ y.

(ii) If x < y and not y < x, then x <’ y by (i). Suppose also y <’ x: then
X <y gives x < x, contradiction.

(vii) The first statement follows from (i). Suppose instead that < is order-
dense and <’ is full, and for some pair a, b we have neither a < b nor b < a.
Let u < a. There exists v with 4 < v < a. Now either v <’ b or v 2’ b, and
the latter implies b < a, so in fact we must have v <’ b, whence ¥ < b. Thus
u < a implies u < b. Similarly ¢ > b implies ¢t > a. Therefor a £’ b. In the
same way, we prove b <’ a. Since £’ is a partial order, a = b. This shows
that < is full, and hence it coincides with <’.

3. The associate sequence

The first result is

THEOREM 2. Let < be any preorder on X.

(i) Forall x,y € X,x <y implies x <" y.

(ii) Suppose < is an orderdense partial order. Then also x <" y implies
x <' y; moreover the orders <*" n = 1,2,..., all coincide with <", and the
orders <2+ n = 1,2,..., all coincide with <', so there are at most three
distinct orders in the sequence (2).

ProoF. (i) Suppose x < y. To prove x <" y, we have to prove

(4) V) u<' x=u<'y)
and
(5) V)t >'y =t > x).

To prove (4), we assume u# <’ x and prove

(6) (Va)a<u=a<y)
and
(7 (Vb)(b >y = b >u).
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Proof of (6). Let a < u. Since u <’ x, we have a < x. But x < y,s0a < y.
If a < y, we are through. Suppose instead a = y. Then y < u; therefore
x Su If x <uthen x < x since u <’ x; if x = u then x <’ x; in either case
there is a contradiction. Thus a # y, and we have proved (6). The proof of
(7) is analogous. Thus (4) holds. In the same manner we prove (5).

(ii) Suppose x <” y. Let u < x; there exists v such that ¥ < v < x, and by
Theorem 1(i) we have v <’ x since £ is partial, so v <’ y; therefore u < y.
Thus 4 < x implies ¥ < y; and similarly ¢ > y implies ¢ > x. Therefore
x <'y.

We have now shown that x <y = x <" yand that x <" y = x <’ y. By
(i), x <"y = x <" y. We prove conversely that x <’ y = x <’ y, as follows.
Suppose x < y. Let u < x; there exist v, w such that ¥ < v < w < x. Then
w <" x by (i), so w <" y. Since v < w and £ is partial, v <’ w; therefore
v <’ y. Since u < v, we have ¥ < y. This proves half of (1), and the other
half is proved similarly; so x <’ y.

Thus <’ and £ coincide. Therefore <" and <(**2) coincide for all n =
1,2,.... This completes the proof.

A sequence ay, az, ... of relations on X is called eventually periodic if there
exist integers n 2 0 and p 2 1 such that ay = ay., for all k£ 2 n; then the
eventual period is the least p for which there exists an n. If p = 1 the sequence
is called eventually stationary; if p = 2 it is called eventually alternating.

In the associate sequence (2), either all orders are distinct or else the se-
quence is eventually periodic.

THEOREM 3. For any preorder < on any set X, the associate sequence (2),
if it is eventually periodic, is eventually stationary or eventually alternating.

ProoF. Forn=1,2,... write

x <M1y to mean x < y and not y < x,
x~M™ytomean x <™ yandy < x, orx =y,

and

Fy={(x,y) € X x X: x <y},
T, ={(x,y) €X x X: x ~" p},

Now Theorem 1(ii) applied to <(™ says that

(8) F,CF,, foralln=0,1,2,...
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and Theorem 2(i) shows that x ~( y implies x ~("+2) y_ so
9) T,C T, foralln=20,1,2,....

Suppose that sequence (2) is eventually periodic, with period p 2 1. Then
for all n = k, say,

(10) F, = Fn+p, T, = Tn+p-
Suppose p is odd. Since
(11) Iy CThy2 - C Tk+p+l =T 1 CThy3 S+ C Tk+p =Tk,

T, is constant for n > k. So is F,; therefore <(” is unchanging for n =
k,k+1,...,and hence p = 1.

Suppose instead that p is even. We find that 7,, = T,,, and F, = F,;, for
all n 2 k. Therefore p = 2.

A finite set X can carry only a finite number of preorders, so the sequence
(2) must be eventually periodic; thus

CoOROLLARY 4. For any preorder < on a finite set X, the sequence (2) is
eventually stationary or eventually alternating.

A necessary condition for (2) to be eventually stationary is given in [8].

4. Examples of the sequence (2)

In the following examples we use Hasse diagrams to illustrate the sequences
s, <,L”,. ... If £ is a partial order on X, then each large dot in the diagram
for (X, <) represents an element of X, and the dot for X is connected to
the dot for y by a rising line segment when x < y and x < z < y for no z
in X: that is, a single rising line segment denotes the cover relation, x<y.
Generally, x < y is indicated by the presence of a rising polygonal arc from
X to y. When X is infinite, these conventions become strained.

If < is a preorder and not partial, a single rising line segment from x to
y again means x<y, but with the modified interpretation in Section 2. To
indicate x ~ y we join the dots for x and y by a horizontal line segment. By a
lapse of notation we may omit some ‘cover’ line segments which are implied
by segments not omitted. The Hasse diagram is a (directed) 1-graph with no
loops, satisfying certain conditions, and having a required orientation on the

page.
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Given X and <, to determine £’ we can check if the two implications in
(1) hold, for each pair (x,y) € X x X in turn, there being n(n — 1) pairs to
check if card(X) = n; then <" is found from £’ in the same way, and so
on. However, Theorems 1 and 2 allow great simplifications. By 1(ii), x <!y
implies x <’ly. Thus a rising connection from x to y, once established in
the Hasse diagram for, say, <), remains present in diagrams for all higher
associated orders. Again, for distinct elements x and y, x ~' y is possible
only if x and y are unrelated by <; and if x ~’' y then x and y are unrelated
by £, but by 2(i), x ~'" y. Thus a horizontal connection, once established
for say <U), reappears in every second diagram thereafter, the two elements
being unrelated in the intervening diagrams. Also, if @ is minimal and b is
maximal for £, then a £’ b, by vacuous fulfilment of (1). Thusif (X,<)isa
finite partially ordered set and its Hasse diagram is not connected (see Section
7), then each component has a maximal element and a minimal element, and
consequently (X, £’} is connected.

In the following examples the diagrams describe successively <, </, <", ...

Ex. 1°. X is the union of two copies Z; and Z; of Z; < relativized to Z; is
the usual ordering on the integers, likewise for Z;; and a, b are unrelated if
a€,, bel, Thisis an example where < equals <’, so (2) is immediately
stationary, but < is not full.

Ex. 2°. X is the set N of natural numbers together with an extra element

a unrelated to any element in N. In this example all £U) are distinct, and all
are partial orders. (After M. Bertschi, private communication.)

5 5 H 5
4 4 4 a 4
ag 3 a 3 a 3 3
2 2 2 2
1 1 1 1
<l|l

A
A
HA

Ex. 3°.

' " L

A
WA
A
A
II/L
z

Here <) are all distinct, and <U) is partial only if j is even.
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<o <

Ex. 4°.

A
IIA

Here <" equals <; the associate sequence alternates immediately.
Ex. 5°.

IA
A
HA

Here <" equals <’; and £V is partial only if j = 0.

Ex. 6°.

® a O T o

IA o
IA

Here <’ is full, and hence < equals <'.

a b
c( »d
e f

Ex. 7°.

IAN o—eo—o—o—o—o
=T - Qa0 T O W

A
IA

All £U) are full, for j > 2.
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Ex. 8°.

3

2

1
<

Here <U) are distinct for j = 0,1,...,n; <( is full, and the associate
sequence is stationary thereafter.

Instead, take X as above, but with 2n — 1 elements in the chain instead of
2n. Then the <) are distinct for j = 0,1,...,n; £ equals £(*~1, and
the associate sequence alternates thereafter.

2n

o

n-1) <(n)

e

<| <ll

5. Stationary associate sequences

If the associate sequence <, </, <7, ... is eventually stationary, what forms
can the eventual preorder take? The associate sequence is eventually station-
ary when <) equals <%, for some k, so the question is equivalent to asking
for all preorders < for which £ equals £’. Let us call such a preorder station-
ary. A stationary preorder is necessarily a partial order, for if there exists an
equivalent pair x ~ y, x # y, then by Theorem 1(i) we have not x ~' y, so £
is not stationary. More generally, we find that every preorder in an eventually
stationary associate sequence is a partial order.

LEMMA 5. If X is finite and < is a stationary partial order, then X has a
least element.

Proor. Being finite, X has minimal elements. Suppose p, g are two dis-
tinct minimal elements. If (p<) = (g<)thent>p o t>g,andu<p o u<
g (vacuously), so p ~ ¢, contradiction. Suppose without loss of generality
that there exists ¢ such that p < ¢ and g £ ¢. Then the set

(12) S={teX:p<tandgq £t}
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is nonempty and has a maximal element, 7, say. We have
(13) q < t.

For u < g = u < ty vacuously; if v > o then v > p,so if v p g thenv € §,
contradicting the maximality of ¢y; thus v > ty = v > ¢g. This proves (13).
Since £ equals £/, we have g < tg, contradicting ¢, € S. Thus X has a unique
minimal element, which accordingly is the least element.

LEMMA 6. If X is finite and < is stationary, then the least element p has a
unique cover.

ProOOF. The element p has at least one cover (we assume Card(X) = 2).
If a, b are distinct covers of p we argue in much the same way as in the proof
of Lemma 35, to obtain a contradiction.

THEOREM 7. The only stationary partial orders on a finite set are the full
orders.

ProoF. The proof is by induction, starting from the positions described
in Lemmas 5 and 6. Suppose we know that

X = {pOapl,---:Pn} U Y

where
Do<DI<P2<---<p,<y forallyeY.

Then the same argument shows that (unless card(Y) = 1) Y contains a unique
cover of p,, call it p,,, such that

Po<PI<P2<-<pp<pnn1 <y forallyeY\{ppi}.

After finitely many steps we arrive at a full ordering of X by <.

If X is infinite, a stationary partial order need not be full: Section 4, 1°
is an example. It is even not the case that each component (see Section 7)
need be full; an example is obtained from Section 4, 1°, modified by adding
a single least element.

6. The modified associated order <*

In its original use with partially ordered groups (G, <), the associated or-
der was itself partial, and £’ and £” were equal in all cases of interest. It
could be argued, therefore, that the definition (1) is inappropriate because of
the special and awkward role played by nonsingleton equivalence classes in
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forming the associate sequence; and that a more natural definition is
(14) VueX)(u<!x=u<y) and (MteX)(t>ly=1>x).

Let property (14) be denoted by x <* y, and let x <* y mean x £* y and
x # y; the relation <* is called the modified associated order of <.
We first remark that (14) is equivalent to

(15) (Vue X)(u<!x=u<ly) and (Vte X)(t>ly=1t>!x);

indeed, it is easily verified that the first implication of (14) implies the first
of (15), and likewise for the second implications. Furthermore, the relation
<* is a preorder; and for all x,y € X,

(16) x < y implies x <* y,
17 x <!y implies x <*ly,
(18) x <’y implies x <* y;

and if < is partial then <’ and £* coincide.
By (16), the modified associate sequence

(19) S, 8057

is increasing, so either its members are all distinct or it is eventually station-
ary. If (2) is stationary, then necessarily (19) is stationary.

Suppose that < is stationary for the sequence (19), that is, that < equals
<*. First, since x <’ y = x <* y & x < y, Theorem 1(vi) shows that <’
is partial. If < is also partial then by Theorem 1(v), x <y = x <’ y, so
<, £, £* all coincide and sequence (2) is stationary. Assume that < is not

==

partial. Then

(20) x<y=sx<yex<y=>x<yex<y,
and it can also be verified that

(21) x<'*y=x<*y;

from (20) and (21) we conclude that £ equals <.
Thus the cases where < equals £* can be found among the cases where <
is stationary or alternating for (2), discussed previously.

Ex. 9°.

Here sequence (2) is alternating, but sequence (19) is stationary, <* is not
full.

HA
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Ex. 10°.

HA
A
*
A
*
»*

Here <2 equals <*( for all n; neither (2) nor (19) is eventually periodic.

Ex. 11°.

A

Here sequence (2) is alternating, (19) is stationary.

We use the preorder <* in Section 8, to elucidate the nature of alternating
associate sequences (2). Of particular interest are the ~* equivalence classes,
where x ~* y means either x <* y and y <* x, or x =y, that is,

(22) Vue XY (u<!x e u<ly) and (Vee X)(t>ly & t>Ix).

Such an equivalence class will be called a caste of (X, ).

7. Alternating associate sequences

What eventual forms can an eventually alternating associate sequence have?
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This is equivalent to asking for a description of all preorders < such that
(23) < equals £, < differs from <’

Let us call such a preorder alternating, like the associate sequence it starts.
We find some partial answers to this question. The set X is not assumed
finite.

Some further definitions are needed. Two distinct elements x,y of X are
said to be connected with respect to <, denoted xyy, if there exists a sequence
dg,4ay,...,am in X such that ¢y = x, a,, =y and

(24) aQopaipazp - - - pam,

where cpd means either ¢ < d or ¢ > d (or both); and (24) means agpa, and
apa; and .... We also write xyx for all x; then y is an equivalence relation,
and its equivalence classes are called the components of (X,<). A subset Y
of X is called connected if y yy, for all y;,y, € Y; the components are the
maximal connected subsets, and correspond to the connected components
of the Hasse diagram of (X, <) regarded as a directed graph. An element
x € X is called isolated if x is both maximal and minimal, that is, if the
singleton {x} is a component. A horizontal component H is a component of
more than one element such that x ~ y for all x,y € H; that is, H is also
a ~-equivalence class. A non-singleton, non-horizontal component will be
called a main component.

LEMMA 8. Let C be a main component of (X, <); then for all x,y € C there
exists a sequence by, by, ..., by, in X such that by = x, b, =y, and
(25) ' bop'byp\b2p! - - - p'by,
where cp'd means (by abuse of notation) either ¢ <\d or ¢ >\d.

ProOoOF. Let x,y € C, and x # y. There exists a sequence X = @g,4dy,...,am

= y with property (24). Suppose @y ~ a; ~ --- ~ a; <!a;,;. Then we have
that gy <!a;,, and the sequence can be contracted by omitting a,,a,,...,as,

and defining by = ag, b, = a,,,. This process leads to a sequence by, ..., b,
with property (25), unless we have started from ay ~a; ~ -+ ~ ap,.
Consider this case. If there exists no sequence x = by,...,b, = y with

property (25), then ag <'u for no u € X, for if ay <'u then we could write
a<lu>lag~a ~-~anm

and contract this to gy <!'u >!a,,. Similarly @y >!'u for no u € X. Thus
for all ¥ € X, either ap ~ u or ap)lu. Then we find that C consists of the
~-gquivalence class of ag, and is horizontal, a contradiction.

i
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In the following Lemmas 9 to 14, it is part of the premise that < is alternat-
ing, that is, that (23) holds. Note from Theorem 1 that when < is alternating
then for all x,y € X, x <!y if and only if x <! y; thus the Hasse diagrams for
< and £’ differ only in the occurrence of horizontal line segments. Moreover,
x ~ y implies x||'y. Of course, if < is alternating then so is £'.

Lemmas 9 to 14 deal mainly with minimal and maximal elements, and the
numbers of components of the three types which may occur.

LEMMA 9. Assume < is alternating. If p is minimal and q is maximal in
(X, Z) then either p < q, or p and q are both isolated.

ProOF. We have p <’ g; therefore either p <" g or p ~' q. If p <” g then
p <qby(23). If p~' g and p # g then g <’ p; then if p is not isolated there
exists a € X, p < a, and so g < a, contradiction; therefore p is isolated, and
similarly ¢ is isolated.

Thus if there exist in (X, £) a minimal element p and a maximal element
g, not both isolated, then they belong to the same component. Put another
way, if (X, <) has an isolated element, then all non-singleton components
have neither maximal nor minimal elements. A non-singleton component in
finite X having an isolated element must therefore have pseudomaximals and
pseudominimals.

The next three lemmas examine the changes in connectivity in passage
from (X, <) to (X, £').

LeMMA 10. Assume < is alternating. If a subset C is a main component
of (X, S), then C is a main component of (X,<'). Moreover, the restriction
<'|C is the associated order of <|C; thus £' on C can be calculated without
making reference to X\C.

PRrROOF. Let x,y € C. By Lemma 8, there exists in X a sequence x =
bo, by, ..., b, = y for which (25) holds. Then from Theorem 1(ii) it follows
immediately that

byo'b,o'bya! - - alb,.

(Here cod means ¢ <’ d or ¢ >' d or both, and co!d means ¢ <’!d or ¢ >'!d.)
Therefore x,y are connected in (X, £’), and lie in the same <'-component,
call it D; so C C D, and the same argument shows that D is contained in
some <”-component, which is however C. Thus C = D, a £'-component.
The statement about <’|C follows easily from definition (1) and the fact that
C is a component.
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LEMMA 11. Assume < is alternating. If H is a horizontal component of
(X,E) then each x in H is isolated in (X,<’). Thus again, <' |H is the
associated order of <|H.

PrOOF. If x,a € H and x # a, then x ~ a shows that x|'a. Suppose
instead xoa for some a € X\H, say x <’ a. There exists y € H, y # x;
now yl|la since H is a component. But y ~ x, so y < X,y < a, contradiction.
Thus for every a € X\H, x and a are unrelated by <’. Thus x|’z for every
z € X\{x}, showing that x is isolated in (X, <’).

LEMMA 12. Assume < is alternating. The set K of all the isolated elements
of X, if nonempty, constitutes a horizontal component of (X, <'), or a singleton
component if K is a singleton.

ProoF. Let x,y € K, x # y. By vacuous fulfilment of (1), x ~' y. Thus K
is connected in (X, £').

By Lemma 9 there are no maximal elements or minimal elements outside
of K. Let x € K, a € X\K. There must exist elements b,c € X with
b < a < c. We have a ¢’ x, since otherwise b < x, a contradiction; likewise
x ¢' a. Thus x,a are unrelated by <. If x, a are in the same <’-component
E of X, there exists a sequence ey, ey, ..., e, With

X = eyoleiolero!---ole, =a

where ¢ is as defined in the proof of Lemma 10. Here x <’le; or x >'le;; say
the former. But ¢, € X\K, for if e, were isolated then x ~' ¢, contradiction;
therefore x and e, are unrelated by £/, a contradiction. Thus a cannot be
in the same <’-component as x. This shows that K is a maximal connected
subset of (X, <').

LEMMA 13. Assume < is alternating. The preordered set (X,<) has at
most one horizontal component. If it has one horizontal component, then it
has either no isolated elements, or at least two isolated elements.

PRrROOF. Let A, B be two distinct horizontal components. By Lemma 11,
their elements are all isolated in (X, <’); by Lemma 12, AU B is contained in
a single horizontal component of (X, £”), which is (X, £), a contradiction. A
similar argument proves the impossibility of X having a single isolated point
together with a horizontal component.

LEMMA 14. Assume < is alternating. If p is minimal in (X, <) then it is
minimal or pseudominimal in (X,<'). If g is pseudominimal in (X, <) then
it is minimal in (X, <'). The dual statements hold for maximals.
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PROOF. Let p be minimal in (X, <'). If p is not minimal in (X, £') there
exists a <’ p. Since a <'!p would imply a <”!p and hence a < p, we must
have a ~' p. Thus p is pseudominimal. The statement about g is proved
similarly.

Let Min, Max, PMin, PMax denote the sets of minimal, maximal, pseudo-
minimal, pseudomaximal elements of (X, <) respectively, and Min',... the
corresponding sets for (X, £’). Since £’ is also alternating, Lemma 14 gives

(26) PMin C Min’, Min € Min’ UPMin/,
(27) PMin’ C Min, Min’ C Min UPMin,
and hence when < is alternating we have

(28) Min U PMin = Min’' U PMin’;

and dually for Max, PMax.

From these various lemmas we can put together an identikit picture of
possible forms which (X, £) may take, having regard to the combinations of
components. We confine attention to finite sets X, since here one knows that
any element dominates either a minimal or a pseudominimal element, and
dually.

THEOREM 15. Let X be finite and let < be alternating. Then one of the
Jollowing situations occurs.

(1) (X, £) has main components only, say n of them, and either (i) n = 1; or
(ii) Min = PMin’ # @&, PMax = Max’ # @, Max = &, PMin = &, Min’ = &,
PMax’' = @, n > 1; or (iii) the dual of (ii); or (iv) Min = PMin’,Max =
PMax’,Min’ = PMin,Max’ = PMax, all these sets are nonempty, n = 2,
Min U Max is contained in one component, and PMin U PMax in the other.

(2) (X, £) has one main component C, one horizontal component H, and
no singleton components, Min UMax C C, PMin = PMax = H.

(3) (X, £) has one main component C, no horizontal component, and two or
more singleton components. Min = Max = K, the set of singleton components;
PMin U PMax C C.

(4) (X,S) has no main components, one horizontal component, and m
singleton components with m =0 or m > 2.

(5) (X, 2) is a set of singleton components.

OUTLINE OF THE PROOF. Case (1), X has main components only. If Min =
@& = Max, then we must have n = 1. If Min # & and Max = &, then we
must have (1)(ii) or n = 1. If Min = & and Max # &, then (1)(iii) or n = 1.
If Min # & and Max # &, then (1)(iv) or n = 1.

If X has horizontal components, then it has precisely one, by Lemma 13;
moreover, it can then have no more than one main component. If X has one
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horizontal component and one main component, then it cannot have any
singleton components. This gives Case (2).

If X has no horizontal component but has » main components and m
singleton components, then we must have n = 1, m > 2. This gives Case (3).

Cases (4) and (5) are the remaining possibilities.

The details of the above argument use the preceding lemmas and equations
(26), (27).

It remains to describe the main components. We cannot give a single char-
acterization of the possible forms taken by main components for alternating
<, even for finite X. On the other hand, we shall exhibit in the next section
a means of building up progressively more elaborate alternating orders.

8. Alternating associate sequences; ramification

To examine the structure of a main component, for alternating <, we make
use of the notion of caste. The term was defined at (22) in Section 6.

By Lemma 10 it suffices, if C is a main component of (X, <), to treat
(C,£|C) as the preordered space, ignoring the rest of X. Equivalently, we
could confine attention to connected nonhorizontal sets X. However, we do
not need to make that assumption explicitly here.

In what follows, for any nonempty subset 4 of X the preorder < relativized
to A is written < |4, or simply < if no ambiguity is likely.

If A is a caste then the components of (A4, £ |A) are either singletons or
horizontal, for we cannot have a; <!a, when a,,a; € 4.

Let #(X, <) (briefly, &) be the set of castes of (X, ). For 4, B € & write
A < B to mean there exist a € 4, b € B with a <!b. It is easily seen that
A < B if and only if a <!b for all a € A, b € B. The notation 4 < B means
A< BorA=B.

LEMMA 16. (i) (%, X) is a partially ordered set; the associated order <' of
=< is also a partial order.

(ii) If £ is alternating then (X, <) and (X,<’) have the same castes, and
the partial order < is the same for the two preordered sets. Thus (% ,<) is the
caste poset for both (X, <) and (X, <').

The proof follows from the definitions and earlier results. The defining
property of <’ is of course that 4 <’ B means

(29) (VUe@)YU=<A=U=<B) and (VW e@&)V>B=>V>A.
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Result 16(i) shows that not every poset can be the poset of castes of a
preordered set.

For x € X let A(x) denote the caste containing x. Then 1: X — & is an
order-preserving map from (X, <) to (%, <) : a < b implies A(a) < A(b). In
general, A does not preserve order from (X, <’) or from (X, <*). But from
(18), a ~' b implies A(a) = A(b).

LEMMA 17. Let (X, <) be any preordered set, and let T be a caste of X.
Then the preorders <'|T and (S|T)' coincide. Thus <'|T can be calculated
without reference to X\T.

PrOOF. For x,y € T the statement x (£|7)'y means
(30) VueT)(u<x=>u<y) and Vel (v>y=>v>X)

whereas x <'|Ty means (1). Clearly (1) implies (30). Suppose x,y € T and
(30) holds. Let ue X,u < x. If u ~ x then u ~* x by (16),sou € T,u < y.
If u¢ T then u <!x, so u <!y since x,y € T and T is a caste. Thus, either
way, we deduce u < y, proving the first part of (1). Similarly we can prove
the second part, and (1) holds.

The next result shows that the behaviour of singleton and horizontal com-
ponents of castes is like that found for X in Section 7.

LEMMA 18. Let < be alternating, and let T be a caste of (X, ).

(1) If F is a horizontal component of (T, <) then each element of F is
isolated in (T,<'). (Cf Lemma 11.)

(i) The set J of all isolated elements of (T, <), if nonempty, constitutes a
horizontal component of (T,<'), or a singleton component. (Cf. Lemma 12.)

(iii) The preordered set (T,<) has at most one horizontal component. If
it has one, then it has either no isolated elements, or at least two isolated
elements. (Cf Lemma 13.)

PROOF. (i) is proved by the same argument as Lemma 12.

(i) Let x,ye Jand x #y. Letu < x. If u ~xthenu € T, so x
is not isolated in T, a contradiction. Therefore ¥ <!x, and hence u <!y
since x ~* y. This and a similar argument proves that x <’ y, and similarly
y <’ x. Thus J is connected in (7, <’), and horizontal. Since T is a union
of singleton components and horizontal components, (i) implies that J is in
fact maximal connected in (T, <’), and is therefore a horizontal component.

If J is a singleton, either T = J = {x} in which case the assertion follows,
or T has a horizontal component. In the latter case, suppose a <’ x and
aeT. Ifa<'lx then x <'!x since a ~* x, a contradiction. Therefore
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a ~' x. Now g belongs to some horizontal component G, say, and there
exists b € G\{a}. Then b ~ a so b ~ x, a contradiction. So x is isolated in
(T,2").

(iii) Let F, G be distinct horizontal components of (7, £). All elements of
F UG are isolated in (7,5'). Let xe F,y € G.

Suppose u € X,u <’ x. If u <'!x then u <!x since £ is alternating, hence
u<lysince x,y € T and T is a caste, and hence u <’!y. Assume instead that
u~'x. Then u € T since x is isolated in (7, <’). But for all a,b € X,

a<lu=a<lu< x=a<lx

and
b>x=b>x> u=b>W,

so u <* x; similarly x <* u. Therefore u ~* x,u € T, a contradiction.
Therefore u <’ x = u <’ y. Similarly t >’ y = t >’ x, whence x £" y, that
is, x < y. But this implies that x, y belong to the same component of (T, £),
a contradiction.

If (T,<) has exactly one isolated component F = {x} and horizontal
component G, a similar argument leads again to a contradiction, since FUG
is again a set of isolated elements in (X, £').

Ex. 12°.

IA
IA

(£,2)

Here < is alternating. Each of the four horizontal levels in the first diagram
is a caste, and likewise for the second diagram.

Ex. 13°.

IA
1A

(£:%)

https://doi.org/10.1017/51446788700035163 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035163

20 John Boris Miller [20]

Here £ is alternating. The five castes of (X, <) are shown circled: (%, <) is
partially ordered and not full. Note that (X, <) and (X, £'), although distinct,
are order isomorphic.

We shall now describe a method of building preordered sets of greater
and greater complexity from initially given preordered sets, which preserves
the property of being alternating. (We do not give a formal definition of
complexity.)

DEFINITION 19. Let (X, Sx) and (Y, <y) be preordered sets. (It is assumed
that X and Y are disjoint; the symbols <y and <y may be abbreviated as <.)
Let G be a caste of X. Write Z = (X\G)U Y and fora,b€ Z writea <z b
when either

(i) a,be X\Gand a <x b, or
(i) a,beY and a <y b, or

(iii) a€ X\G, b€ Y and a <x!g for all g € G, that is, A(a) < G, or

(iv) a€Y, be X\G and g <x!b for all g € G, that is, G < A(b).

Write a <z b to mean a <z b or a = b. Then (Z,<7) is the ramification of
(X,Sx) at G by (Y, =y).

It can be verified that <7 is a preorder in Z. Further, by enumeration of

cases one can prove:

LEMMA 20. If (Z, 2) is the ramification of (X, £) at caste G by (Y, ), then
the castes of (Z, <) consist of the castes of X other than G, and the castes of
Y. For A€ €(Y,<) and B € #(X,Z), B # G, we have A < B if and only if
G < B, and dually A > B if and only if G > B. In other cases A < B has the
meaning inherited from €(X, <) or €(Y,%).

Let <!, denote the associated order (Sz) of <z on Z. We have the fol-
lowing description of <’,.

LEMMA 21. Let X,Y,G,Z be as in Definition 19. Suppose that (G, < |G)
has no horizontal component, that is, the components of G are all isolated
points of G. Then for a,b € Z, a <%, b if and only if one of the following
conditions holds:

(i) a,b € X\G and a <y b;

(ii) a,be Y and a <y b;

(i) a€ X\ G, b€ Y and A(a) < G (and then a <’y g for all g € G);

(iv) a € X\G, b € Max(Y), A(a)||G and a <'y g for all g € G;

(vyae€Y, be X\G and G < A(b) (and then g <!y b for all g € G);

(vi) a e Min(Y), b € X\G, G||A(b) and g <y b for all g € G.
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ReEMARKS. In (iii) and (v) the statements in brackets are consequences of
the preceding conditions. In (iv) and (vi), A||B means A X B and B ¥ A.
Note that since the order conditions in (iii) do not mention b, we deduce the
statement

(30) If a € X\G, then A(a) < G implies a <, b for all b € Y.
Similarly, (iv) implies

31) If a € X\G, then A(a)||G and a <y g for all g € G together
imply a <% b for all b € Max(Y).

Dual comments apply to (v), (vi).
The proof of Lemma 21 is rather long, since it involves many cases. We
will give the outline, with details for some parts. Assume a <!, b, that is,

(32) (VueZ)Yu<za=u<zb)
and
(33) Vv eZ)v>zb=>v>za).

Recall that x <!y if and only if s <x!t for all s € A(x),t € A(y). We use
repeatedly the cases in Definition 19.

Cases (i) and (ii) are straightforward. Suppose a € X\G, b € Y. If
A(a) < G then we are in Case (iii). We cannot have G < A(a) (for otherwise
b <z a <!, b,s0 b <z b, a contradiction). This leaves the case

A(a)||G. Since we cannot have g <x a (g € G), (32) reduces to

(32), (VgeG)Vue X)(u<xa=u<yx'g).
Consider (33). This implies that fory € Y, y >y b = G > A(a). Thus we

have a contradiction unless b € Max(Y). Assume b € Max(Y); then (33)
reduces to

(33 (Vg € G)(Vv € X\G)(v >x!g = v >x a).

The premise can be weakened to v >x g. Moreover, although GJ||A(a),

(33), VgeGVWwelG)(v>y g=>v>xa)

holds, since v >x g is false because G has no horizontal component. To-

gether, (32),, (33), and (33); give a <y g for all g € G, and we are in Case
(iv).

Cases (v), (vi) are the duals of (iii), (iv) respectively. Thus a <}, b implies
that one of (i)-(vi) holds.

Conversk. If (i), (ii) or (iii) holds, then a <, b. Suppose instead (iv).
Suppose u€ Z, u <z a. Wecannot have ue Y,sou € X\G, u <y a<y g,
u <x'g for all g € G, and hence u <z b. This proves (32). Suppose v € Z,

https://doi.org/10.1017/51446788700035163 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700035163

22 John Boris Miller [22]

v >z b. We cannot have v € Y, so v >x!g > a forall g € G, v >x a. This
proves (33). Therefore a <), b. Cases (v), (vi) are similar. This concludes
the proof.

This brings us to the main result concerning ramifications.

THEOREM 22. Let X, Y, G,Z be as in Definition 19, so that Z is the rami-
fication of X &t G by Y. If <x and Zy are alternating, if G has no horizontal
component, and if Min'(Y) = Max'(Y) = @, then <7 is alternating.

ProoF. Noting Theorem 2(i), we have to show, for arbitrary a,b € Z, that
(34) a <% bimplies a <z b.
Assume a <Y b, that is,

(35) (Vue Z)(u<y a=u<’b),
(36) (Vv € Z)(v >% b= v >4 a).

CasE (i), a,b € X\G. Suppose u € X\G and u < a. Then u </, a, so
u <7 b by (35), that is u <’y b. Suppose instead u € G and u <y a. We
cannot have u ~' a, since this implies ¥ ~* a by (18), a € G. Thus u <'la,
so u <!a since <y is alternating. Therefore G < i(a), so by Lemma 21(v),
y<yaforallyeY. Since a £% b,y <, b. By 21(v), (vi), g <’y b for all
g € G, and hence u <y b. We have proved

(37) (Vue X)(u<ya=u<yb).

The dual implication is proved similarly, from (36), showing that a <% b.
Therefore a <x b. This says a Sz b. So (34) is proved in this case.

CasE (ii), a,b € Y. The proof of (34) is straightforward.

Cask (iii), a € X\G,b € Y. Since we assume that Max'(Y) = &, b cannot
be maximal with respect to </, so (36) implies that v >/, a for some v € Y.
By 21(iii), (iv), a <y g for all g € G. Now if a ~y g then a ~* g,A(a) = G,
a contradiction. So a <’;!g, whence a <x!g for all g € G. By 19(iii), this

says a <z b.
Cask (iv), a€ Y, b € X\G. The argument is the dual of that in (iii).

This concludes the verification of (34). Thus <7 is alternating or sta-
tionary. It must be the former, since it relativizes to <y on Y, and Sy is
alternating. This concludes the proof.

The conditions in Theorem 22 on G and Y are evidence of the need to
have no non-singleton ~-equivalence classes either in G or in the boundary of
the preordered set Y replacing G. Here by ‘boundary’ we mean the part of Y
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most immediate to X\ G, that is, Min(Y)UPMin(Y)uMax(Y)UPMax(Y). In
fact, by (26), (27) and their duals the condition on the alternating preordered
set (Y, <) implies that

Min(Y) = PMin'(Y), Max(Y)=PMax'(Y),

PMin(Y) = &, PMax(Y) = @.

The following examples show that the theorem fails if the conditions on G
or Y are omitted.

(37)

Ex. 14°.

c ]

(X%<) (v,<) (z,2)

Here <y, <y are alternating, G is the circled caste of X, Z is the ramifi-
cation of X at G by Y; G has no horizontal component, but Min'(Y) # @,
and < is not alternating.

Ex. 15°.

B

(%) (v,<) (u,<)

Here X is as in 14°, but we ramify at the caste H, which has (is) a hori-
zontal component, by ¥, for which Min’(V) = Max'(V) = @, to get U; <y
is not alternating.

Starting from simple examples and using Theorem 22, we can construct
successively more and more complicated alternating preordered sets. This
is the sense in which alternating preordered sets were asserted to have un-
bounded complexity.

Of course, it is also possible to reduce the cardinality of X by ramification,
and to simplify X to the extent of replacing a component G by a set Y consist-
ing of isolated elements, with card(Y) < card(G). But a proper examination
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of the process inverse to ramification involves identifying the subsets of an
alternating preordered set (Z, <) which can be said to have been created by
ramification. These ideas are pursued in [7)].
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