GENERATION OF THE LOWER CENTRAL SERIES
by ROBERT M. GURALNICK
(Received 12 September, 1980)

0. Introduction. Let G be a group. The rth term L,G of the lower central series of
G is the subgroup generated by the r-fold commutators

I,G={xo...,%]|xeG},
where [xo]= xo, [x0, X1]= x5 x7*x0x,, and for r>1,

[xo, ..., % 01=1[[x05 ..., % -1], x,].

Dark and Newell [1, Theorem 1] proved that if G is nilpotent and LG is cyclic, then
L.G =T,G. In this paper, we generalize this and obtain:

THEOREM A. Suppose r=2. There exists a group G with L G cyclic of order n and
L.G# (,G) if and only if n = p%: ... p%, where the p; are distinct primes and m =2**1—1.

The case r=1 has been studied in great detail (see [3], [7] and [8]). For r=1, the
condition m =2*!'—1 must be replaced by a more complicated set of conditions (see [4,
Theorem 5]). In section 2, we show that if LG =(a) with a € (T,G)*, then L,G = (I',G)***.
Some results for L,G a rank 2 abelian p-group are given in section 3. In particular, an
example is constructed to show that for r =2, this does not imply L G=T',G.

1. Proof of Theorem A. We first consider an example. This is a generalization of
one of MacDonald [7].

ExampLE 1.1. Denote the nonempty subsets of {1,..., k} by ay, a,, ..., a, where
s=2-1. Let A,,..., A, be nontrivial abelian groups. Then we can choose abelian
groups B,, ..., B, so that

A, ={b%|beB} (i=1,...,s).

Let E=(xy,...,%) be an elementary abelian group of order 2*. Consider G =
(B, %...XB,)E (semldlrect) where if be B, then

b if ie Qa;,
x;bx; = . .
b~' if i¢a

It is easily seen that LG = A, X...XA,. We claim that if r=2 and 1+# q; € A; for each i,
then

(a]a LR as)e LrG_(FrG)k—1~
To see this suppose ¢ € ([,G) ™' 2(I,G)**. It is straightforward to verify that this implies

cC= I_:[l [(bila s bis)a yi],
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where b;eB; and y,eE for i=1,...,k—1. Let H be a hyperplane of E containing
(Y1, - -+, Yx-1)- Now each Cg(B;) is a hyperplane and Cg(B;) # Cg(B,) unless j = k. Thus
since there are s hyperplanes, H = Cz(B;) for some j. Thus the jth component of ¢ is 1,
proving the claim.

This proves the sufficiency of Theorem A by taking A; to be cyclic of order p{. For
necessity, we need some preliminary resuits.

Lemma 1.2. If A is an abelian normal subgroup of G, then [A, x,,...,x]<T,G.

Proof. The map sending a —[a, x,,..., x,] is an endomorphism of A. Hence its
image is (A, xq,..., x,].

Lemma 1.3. Suppose G is a finite group and xe(T,G)*. If x has order m and
(e, m)=1, then x¢ € (I',G)~.

Proof. Set N
s |{@)15=1T1s..... 2]}

Clearly ge (I,G)* if and only if ¢(g)#0. Also ¢ is a class function. Hence

¢=Zaxx,

where the sum runs over the irreducible complex characters of G. Gallagher [2, Equation
4] has shown that the a, are rational. Let § be a primitive mth root of 1 and o an
automorphism with ¢(6) = 6°. Thus

é(x) = o($(x))
=Y a,(ox(x)

=2 ax(x°)
=¢(x°).
In particular, ¢(x)=0 if and only if ¢(x*)=0.

LemMa 1.4, If LG is finite, then there exist a finite group H and an isomorphism ¢ of
L.G and L .H such that (' ,G)=T,H for all s=r.

Proof. By passing to a subgroup, we can assume G is finitely generated. Now G is
nilpotent-by-finite. Hence G has a torsion-free characteristic subgroup T of finite index
(cf. [9, p. 153]). Let H=G/T. If s=r, then

LH=TLG/T=LG(TNLG)=LG.

Clearly I';G and I';H correspond under this isomorphism.
We need one more lemma to obtain the result of Dark and Newell for L.G finite
cyclic.
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Lemma 1.5. Let P be a p-group with L P cyclic. Suppose P={I). If x € L P, there exist
teGandty,...,t.el such that (x)={t t;,...,t].

Proof. Since P =(I), there exist t,, ..., t €I such that y=[t, ..., t]is a generator of
L.P. If xeL P, the result follows by induction since |L,,,P|<|L,P|. Otherwise

X = ye E[t(e)’ tl: LI | tr](mOd L‘r+1P)’
and so (x)={[t5, ts, ..., £]).
THEOREM 1.6 (Dark-Newell [1]). If G is nilpotent and L,G is a finite cyclic group, then
LG=T,G.

Proof. By Lemma 1.4, we can assume G is finite, and so we can take G a p-group.
The result now follows from Lemmas 1.3 and 1.5.

Dark and Newell [1] also proved the result for L,G infinite cyclic without assuming G
nilpotent. Rodney [8] proved the above results for r=1. The assumption that G is
nilpotent can be weakened. Set

LmG = ﬂ LiG.
i=1

Tueorem 1.7. If LG is finite cyclic and L,G has order p°, then L,G =T,G.

Proof. By Lemma 1.4 and Theorem 1.6, we can assume G is finite and e=1. Let
PeSyl,(G). Since H=L,G<P, P is normal in G and thus has a complement T. Note
that K=L GNP>H#1. As K is cyclic, LLP< K=[T,K]=H. So if xe L,G, then x=hu
with he H and ueL,T. Since T is nilpotent, by Lemma 1.5, there exist te T and
ti, ..., , € T—Cr(H) so that (u)={[t, ty,...,t]). Now since ;€ T— Cr(H) and (|T|, p)=
1, [H,t]=H, and so [H, t;,...,t]=H. Thus there exists ye H so that [y, t,,...,t]=h.
Hence (hu)={[ty,t;,...,t]), and so x =huecI,G by Lemma 1.3.

One more result is needed for Theorem A. Set
[H,x;1]=[H,x] and [H, x;n]=[[H, x;n-1],x].
If |[H|=p$r...p5r, set €(H)=m.
LemmA 1.8. Let A be a group acting on a nontrivial cyclic group H such that
[H, A]l=H. Let r be a positive integer.

(a) There exists x € A such that ¢(H/[H, x; r]) < ¢(H)/2.
(b) If €(H)=<2*—3, there exists x € A such that ¢(H/[H, x; r])<2%"1-3.

Proof. Without loss of generality, we can assume |H| is squarefree, and so [H, x; r]=
[H, x] and H=[H, x]® Cg(x). Choose x € A with €([H, x]) maximal. By induction, there
exists ye A with €([C, y])> €(C)/2, where C = Cy(x). Hence,

¢((H, x])=€((H, xy))
=€¢(H, x])—¢(H, x, y)+£€(C, y])
=¢(H, xD—¢(H, yD+2¢(C, y).
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This yields
¢(C)<2¢([C, yD=€(H, yD=<¢(H, x]) (*)

and proves (a).

To prove (b), it suffices to assume that #(H)=2*—3 and k=2. Choose x and y as
above. By (a), ¢(H,x])=2*"'—-1. If ¢(H,x]))=2"-1, then €(C)=2*"1-2, and so
€([C, y])=2""2 Then (*) implies that

¢([H, x)=2€(C, y)=2""",
and the result follows.

Proof of Theorem A. Suppose LG is cyclic of order n =p$> ... pSr(m <2¢*1—1). Set
H = L.G. First consider the case H=L G. By Lemma 1.8(a), there exists x € G with

¢(HI[H, x; r)<mf2=2%-1.
By induction and Lemma 1.1,
LG=(,G)'[H,x;r]=(T,G)"

as desired.

Now assume H# L,G. Since H is a summand of L,G, this implies ¢(H)=<2**'-3.
We now show that if ¢(H)=2**"'-3, then (L,G)=(I',G)*. This follows from Theorem 1.7
for k=1. If k=2, by Lemma 1.8(b), there exists x¢ G with ¢(H/[H, x;r)=2*-3. As
above, we obtain L,G = (I',G)~.

2. Generators of L.G. If L G =(a) and a€I,G, then all generators of L,G are in
I',G by Lemma 1.3. However, this does not imply L,G =T',G. (See [3] for examples with
r=1.) Similar examples can be constructed for r>1. However, we do obtain:

Tueorem 2.1, If L,G ={a) and a € (T,G)¢, then L,G =(,G)**".

Proof. If L,G is infinite, then L,G =T,G by [1, Theorem 4]. If r = 1, the result follows
by [4, Theorem 1]. Thus we can assume G is finite and r=2. Let H=L.G. Thus

a=[Tlt ... 1)
i=1
It follows easily since r=2 that
H=]{H, )= [I[H, t; =TG-
i=1 i=1

Hence by Theorem 1.6, we have L,G =(I',G)H < (I',G)**".

If r=1 and e=2, then in fact G'=(I';G)° (see [4, Theorem 1]). We do not know if
this is true for r>1.

3. Rank 2 Subgroups. By Example 1.1, if A is a finitely generated abelian group
with A = A; X A, X A;, there exists G with L,G = A and L,G#TI,G. This leaves open the
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case where L,G is a rank 2 p-group. Dark and Newell [1, Theorem 2] proved in this case
that if also L,,,G={1}, then L,G=T,G. (See [6] for the case r=1.) The author [5,
Theorem A] has shown that if P e Syl,(G’) is a rank 2 abelian p-group, then P<TI',G. We
give an example with p=2 and r=2 with L,.G#T,G.

ExampLE 3.1. Let G =(x, v, a, b) with relations
[x, y]=b, b*=p"1, bY =ba,
b®=a*=[x, a]l=[y, a]=[b,a]l=1.
Now
I,G<[G, x]U[G', yYJU[G', xy]={(bHHU{a)U{ab?.
Hence ab*e L,G, but ab*¢T',G. Similar examples can be constructed for any r=2.
Certain assumptions do guarantee that L.G =T,G.

THeOREM 3.2. Suppose L,G is a rank 2 abelian p-group. If any of the following hold,
then L,G=T,G.
i) r=1. .
(i) L,+,G={1}.
(ili) G is not nilpotent.
(iv) L,G has exponent p.

Proof. As we remarked above, (i) and (ii) are known. We sketch the proof of (iii). So
assume H = L,G #{1}. As usual, we take G finite. Let T be a complement of P € Syl,(G).
We can choose te T with [H, t; r]=[H, t]= H (see [5, Lemma 2.6]). Then

LG={1so,...,15]|s,e P<I,G.

This follows by Theorem 1.6 and induction on G/[ZP, t]. Further, (iv) follows since if (ii)
and (iii) do not hold, then L .,G is cyclic and central. Hence L,,.,G<TI,G and if
x,ye LLG—L,.,G, then {(x) and (y) are conjugate. Hence L G <TI',G by Lemma 1.3.

We close with a conjecture.

ConiecTURE 3.3. There exists a finite set of primes Q (perhaps depending on r) such
that if p¢ Q and LG is a rank 2 abelian p-group, then L,G =T ,G.

For r=1 and L,G =G’ a rank 3 abelian p-group, we can take Q={2, 3} (see [5,
Theorem B]).
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