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0. Introduction. Let G be a group. The rth term LrG of the lower central series of
G is the subgroup generated by the r-fold commutators

TrG = { [x 0 , . . . , x j I Xj e G},

where [xo] = xo, [x0, X1] = XQ1X71X0XI, and for r > l ,

LXO, . . . , X,.J = |_L*0> • • • > -XT-I-I)
 XrJ-

Dark and Newell [1, Theorem 1] proved that if G is nilpotent and LrG is cyclic, then
LrG = FrG. In this paper, we generalize this and obtain:

THEOREM A. Suppose r ^ 2 . There exists a group G with LTG cyclic of order n and
LrG i= ( r rG)k if and only if n = p"'... p^-, where the pf are distinct primes and m & 2fc+1 - 1 .

The case r = 1 has been studied in great detail (see [3], [7] and [8]). For r = 1, the
condition m ^ 2 k + 1 - l must be replaced by a more complicated set of conditions (see [4,
Theorem 5]). In section 2, we show that if L,G = (a) with a e (TrG)k, then LrG = (rrG)fc+1.
Some results for L,G a rank 2 abelian p-group are given in section 3. In particular, an
example is constructed to show that for r > 2, this does not imply l^G = TrG.

1. Proof of Theorem A. We first consider an example. This is a generalization of
one of MacDonald [7].

EXAMPLE 1.1. Denote the nonempty subsets of { 1 , . . . , k} by au a2,..., as, where
s = 2 k - l . Let AU...,AS be nontrivial abelian groups. Then we can choose abelian
groups Bu ..., Bs so that

Ai={b*\beBi} (i = 1 s).

Let E = (xj, . . . , xk) be an elementary abelian group of order 2k. Consider G =
(Bt x . . . x BS)E (semidirect), where if b e B,, then

\b if ieaj,

[b if i^oty

It is easily seen that LrG = At x . . . x As. We claim that if r > 2 and 1 ̂  at e At for each j ,

( a 1 , . . . , a s ) e L r G - ( r r G ) k - \

To see this suppose c e (T2G)k~12 (FfG)11"1. It is straightforward to verify that this implies
k - l
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where b^eB; and yteE for i = 1, . . . , k - l . Let H be a hyperplane of E containing
(yi. • • •» yk-i)- Now each CE(B,) is a hyperplane and CE(Bj) i= CB(Bk) unless j = k. Thus
since there are s hyperplanes, H = CE(B,) for some /. Thus the /th component of c is 1,
proving the claim.

This proves the sufficiency of Theorem A by taking Af to be cyclic of order p?>. For
necessity, we need some preliminary results.

LEMMA 1.2. If A is an abelian normal subgroup of G, then [A, x 1 ; . . . , xJcI^G.

Proof. The map sending a —> [a, xu ..., xT] is an endomorphism of A. Hence its
image is [A, x 1 ; . . . , x,].

LEMMA 1.3. Suppose G is a finite group and xe(rrG)k. If x has order m and
(c, m) = l, then xe e (TrG)k.

Proof. Set

Clearly g e ( r r G ) k if and only if <f)(g)j=O. Also <f> is a class function. Hence

<t> = Z OyX,

where the sum runs over the irreducible complex characters of G. Gallagher [2, Equation
4] has shown that the ax are rational. Let 6 be a primitive mth root of 1 and a an
automorphism with <x(0) = 8e. Thus

= Z ^ ( x e )

= <t>(xe).
In particular, <Kx) = 0 if and only if <f>(xe) = O.

LEMMA 1.4. If L,G is finite, then there exist a finite group H and an isomorphism <p of
L,G and L,H such that <p{TsG) = TSH for all s > r.

Proof. By passing to a subgroup, we can assume G is finitely generated. Now G is
nilpotent-by-finite. Hence G has a torsion-free characteristic subgroup T of finite index
(cf. [9, p. 153]). Let H = G/T. If s>r, then

LSH = TLSGIT=LSGI(T n LSG) as LSG.

Clearly FSG and FSH correspond under this isomorphism.
We need one more lemma to obtain the result of Dark and Newell for L,G finite

cyclic.
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LEMMA 1.5. Let P be a p-group with I^P cyclic. Suppose P = (I). If xe L,P, there exist
t e G and tu ... ,trel such that (x) = <[(, tu..., t,]).

Proof. Since P = (7), there exist t0, . . . , ( , .€ / such that y = [t0,..., t j is a generator of
L,P. If xeL,+lP, the result follows by induction since iL^Pl^L,.?!. Otherwise

x = ye=[te
0,t1,...,tr](modLT+1P),

and so (x) = ([te
0,t1,...,tr]).

THEOREM 1.6 (Dark-Newell [1]). If G is nilpotent and LrG is a finite cyclic group, then

Proof. By Lemma 1.4, we can assume G is finite, and so we can take G a p-group.
The result now follows from Lemmas 1.3 and 1.5.

Dark and Newell [1] also proved the result for LrG infinite cyclic without assuming G
nilpotent. Rodney [8] proved the above results for r = l. The assumption that G is
nilpotent can be weakened. Set

L^G = Fl L,G.
i = l

THEOREM 1.7. If LrG is finite cyclic and L^G has order pe, then LrG = TrG.

Proof. By Lemma 1.4 and Theorem 1.6, we can assume G is finite and e s l . Let
PeSylp(G). Since H = LmG<^P, P is normal in G and thus has a complement T. Note
that K = LrGDP^H^l. As K is cyclic, UP^K^^K^H. So if xeL,G, then x = hu
with h<=H and uel^T. Since T is nilpotent, by Lemma 1.5, there exist teT and
tu ..., t, e T- Cr(H) so that (u) = <[(, tu..., t j) . Now since tt e T - Cr(H) and (|T|, p) =
1, [H, t j = H, and so [H, tu ..., tr] = H. Thus there exists y e H so that [y, f1;..., tr] = h.
Hence (hu) = ([ty, tly..., tr]), and so x = hu e TrG by Lemma 1.3.

One more result is needed for Theorem A. Set

[H,x;l] = [H,x] and [H, x; n] = [[H, x; n-1], x].
If |H| = p?'.. .pSr, set

LEMMA 1.8. Let A be a group acting on a nontrivial cyclic group H such that
[H, A] = H. Let r be a positive integer.

(a) There exists xeA such that €(H/[H, x;r])<€(H)/2.
(b) If €(H) < 2k - 3, there exists xeA such that €(HI[H, x; r]) < 2lc~1 - 3.

Proof. Without loss of generality, we can assume |H| is squarefree, and so [H, x; r] =
[H,x] and H = [H,X]©CH(JC). Choose x e A with ^([H,x]) maximal. By induction, there
exists yeA with <?([C, y])>€(C)/2, where C = CH(x). Hence,

, x, y]) + ^([C, y])

= €([H, x]) - €([H, y]) + 2A[C, y])•
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This yields
€(C) < 2<f([C, y]) £ A[H, y]) ̂  €{[H, x]) (*)

and proves (a).
To prove (b), it suffices to assume that ^(H) = 2 k - 3 and k>2 . Choose x and y as

above. By (a), €([H, x])>2f c-1- l . If €([H, x]) = 2k~1-l, then €(C) = 2k~'-2, and so
, y])>2k-2. Then (*) implies that

and the result follows.

Proof of Theorem A. Suppose LrG is cyclic of order n = p " 1 . . . p™m(m <2 k + 1 -1) . Set
/ / = £«>& First consider the case H = LrG. By Lemma 1.8(a), there exists x e G with

<f(H/[H,x;r])<m/2<2lc-l.

By induction and Lemma 1.1,

LrG = (TrG^'^H, x; r] £ (FrG)fc

as desired.
Now assume Hj=LrG. Since H is a summand of LrG, this implies ^ ( H ) ^ 2 k + 1 - 3 .

We now show that if €(H) < 2k+1 - 3, then (L.G) = (TrG)k. This follows from Theorem 1.7
for fc = 1. If k>2, by Lemma 1.8(b), there exists x e G with €(H/[H, x; r ] ) < 2 k - 3 . As
above, we obtain LrG = (TrG)k.

2. Generators of L,G. If LrG = (a) and a e TrG, then all generators of LrG are in
TrG by Lemma 1.3. However, this does not imply LrG = FrG. (See [3] for examples with
r = l.) Similar examples can be constructed for r > l . However, we do obtain:

THEOREM 2.1. IfLrG = (a) and ae{TrG)e, then LrG = (TrG)e+l.

Proof. If LrG is infinite, then LrG = TrG by [1, Theorem 4]. If r = 1, the result follows
by [4, Theorem 1]. Thus we can assume G is finite and r>2 . Let H = L^G. Thus

e

It follows easily since r > 2 that

Hence by Theorem 1.6, we have LrG = (TrG)H^(TrG)e+l.

If r = 1 and e>2, then in fact G ' ^ I ^ G ) 6 (sec [4, Theorem 1]). We do not know if
this is true for r>\.

3. Rank 2 Subgroups. By Example 1.1, if A is a finitely generated abelian group
with A = Aj x A2 x A3, there exists G with L,G = A and L.G^Y.G. This leaves open the
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case where L,G is a rank 2 p-group. Dark and Newell [1, Theorem 2] proved in this case
that if also L,.+1G = {1}, then LrG = YrG. (See [6] for the case r = l.) The author [5,
Theorem A] has shown that if PeSylp(G') is a rank 2 abelian p-group, then P^T^. We
give an example with p = 2 and r = 2 with I^G ̂  FrG.

EXAMPLE 3.1. Let G = (x, y, a, b) with relations

[x,y] = b, bx = b~\ b* = ba,

Now

Y2G c [G', x] U [G', y] U [G', xy] = <ft2) U (a) U <afe2).

Hence ab4eL2G, but afc4^F2G. Similar examples can be constructed for any r>2 .

Certain assumptions do guarantee that L,G = TrG.

THEOREM 3.2. Suppose LrG is a rank 2 abelian p-group. If any of the following hold,
then UG = I\G.

(i) r = l .
(ii) L r + 1G={1}.

(iii) G is not nilpotent.
(iv) LrG has exponent p.

Proof. As we remarked above, (i) and (ii) are known. We sketch the proof of (iii). So
assume H = La>Gi={\}. As usual, we take G finite. Let T be a complement of PeSylp(G).
We can choose teT with [H, t; r] = [H, t] = H (see [5, Lemma 2.6]). Then

LrG = {[ts0,...,tsr]\sieP}^TrG.

This follows by Theorem 1.6 and induction on G/[ZP, (]• Further, (iv) follows since if (ii)
and (iii) do not hold, then l^^G is cyclic and central. Hence L ^ G e l ^ G and if
x,y eLrG — Lr+1G, then <x) and (y) are conjugate. Hence I^GcI^G by Lemma 1.3.

We close with a conjecture.

CONJECTURE 3.3. There exists a finite set of primes O, (perhaps depending on r) such
that if p£CL and L,G is a rank 2 abelian p-group, then

For r = l and LXG = G' a rank 3 abelian p-group, we can take fl = {2, 3} (see [5,
Theorem B]).
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