
14 

Deep-inelastic scattering 

In this chapter we will show how the operator-product expansion can be used 
to compute the cross-section for deep-inelastic scattering. Since the 
calculation is fairly straightforward, this process is one of the classic tests of 
quantum chromodynamics (QCD). 

The process is the scattering of a lepton of momentum I~' on a hadron of 
momentum p~', with the only observed particle in the final state being the 
lepton: 

I + N-+ I' + anything. (14.0.1) 

In practice one uses a beam of electrons, muons, or neutrinos, and the 
hadrons in the target are nucleons. There are a number of cases for which 
there are experimental data, the cases being distinguished by the types of 
lepton involved: 

e + N-+ e + anything, } 
11 + N-+ 11 + anything, 

v + N-+ v + anything, 

v + N-+ (e or /1) +anything. 

(14.0.2) 

The basic reason for measuring the cross-section for these processes is to 
study the fundamental constituents (quarks and gluons) of the hadron. 
Suppose we have a scattering of a lepton on a small-sized constituent, and 
that the momentum transfer is large, so that the scattering happens over a 
small time-scale. The weak and electromagnetic interactions have a small 
coupling, so to a good approximation the lepton does not interact again. 
Moreover the interactions that turn the fmal state, involving the struck quark, 
into hadrons happen on a much longer time-scale. So these interactions do 
not interfere with the basic Born graph. Hence, we should be able to calculate 
the cross-section for the process (14.0.1) rather simply in terms of the cross­
section for lepton-quark scattering (Fig. 14.0.1). The approximation in 
which final-state interactions ofthe hadrons are ignored is called the impulse 
approximation. We can use it because we choose to sum the cross-section 
over all hadronic final states. 
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X 

Fig. 14.0.1. Parton model for deep-inelastic scattering. 

A more mathematical formulation of the same idea is the part on model, 
explained in Section 14.2. There are, however, many weak points in the 
intuitive discussion just given, and we must remedy them. In the remainder of 
this chapter we will compute the cross-section from the theory of strong 
interactions (QCD). The parton model will in fact give a qualitatively correct 
approximation to the real cross-section. Our intuitive argument shows why 
deep-inelastic scattering is simple enough to permit calculations. 

Our treatment in this chapter is based on material to be found, among 
other places, in Gross (1976) and Treiman, Jackiw & Gross (1972). 

14.1 Kinematics, etc. 

We will compute the cross-section to lowest order in weak and electro­
magnetic interactions. Then the amplitudes contributing to the process 
(14.0.1) have the form of Fig. 14.1.1 where a boson is exchanged between the 
lepton and the hadron. The boson can be a photon, a W or a Z. At high enough 
energy, it is also necessary to include Higgs boson exchange. Higher-order 
weak and electromagnetic corrections do not need to be included, except for 
soft photon effects. We will ignore the soft photon corrections here, and will 
concentrate on understanding the strong-interaction corrections. 

Fig. 14.1.1. Amplitude for process contributing to deep-inelastic scattering. 

We first review the kinematics of the process. The two independent 
Lorentz invariants of the hadron system are chosen to be 

Q2 = -q~'ql', 

v =p·q, (14.1.1) 

where q~' is the momentum transfer from the leptons. The mass of the final 
hadron state X is then 

(14.1.2) 
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356 Deep-inelastic scattering 

In the laboratory frame, where the initial hadron is at rest, we can express Q2 

and v in terms of the initial and finallepton energies E and E', and of the lepton 
scattering angle 0: 

Q2 = 2EE'(l -cos 0). 

v = mrv(E- E'). (14.1.3) 

We have neglected lepton masses with respect to E and E'. The following 
inequalities hold 

(14.1.4) 

The region we will investigate is where both Q2 and mi- get large in a fixed 
ratio. We define the Bjorken scaling variable x = Q2 /(2v). Then we let Q2 get 
large with x fixed. This is called the Bjorken limit or the deep-inelastic region. 
In this region the missing mass mx is large: 

(14.1.5) 

(whereweneglectm~compared with Q2). Inorderthat mi be positive we must 
have 0:::;; x:::;; 1. The Bjorken limit applies only if xis not at its endpoints. An 
equivalent variable to x that is sometimes used is w = 1/x. 

The cross-section is given by 

da 1 da 
E'--=------

d3 p' 2nE' dE'd cos(} 

(14.1.6) 

Here j'ept and j~ad are the currents to which the exchanged vector boson 
'-

couples,gw is its coupling, and D'-v(q) is its propagator. The lepton tensor LK;, 

is easily computed in the tree approximation for 

LKi. = (/jj~ept(O)j/')(f'IJlcpt (O)j/) · (14.1.7) 

The hadron tensor is equal to 

wJlV(p,q) =-4
1 I (pjjlt(O)tjx><XIJ.(O)Ip)(2n)4 b(4 >(px- p~'- q~') 
1C X 

= 41nfd4yeiq Y(pjjlt(y)tjv(O)jp), (14.1.8) 

where the normalization is the standard convention. 
Deep-inelastic scattering is the region where Q gets large with x fixed. This 

is not the short-distance limit we treated in Chapter 10. There we took all 
components of q~' to infinity in a fixed ratio, so that Q--> oo with Q/p·q fixed, 
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i.e., xis proportional to Q. Thisisnotin the physical region 0::; x::; 1 for deep­
inelastic scattering. Luckily we can use a dispersion relation (Christ, 
Hasslacher & Mueller (1972)) to relate the deep-inelastic limit of W11 • to the 
short-distance limit of the time-ordered matrix element 

T"" = fd4yeiq·y<PI Tj"(y)tj.(O)IO). (14.1.9) 

We will perform this analysis in Section 14.3. 
Let us now decompose W11 • into tensors with scalar coefficients. We will 

assume that the hadron is unpolarized, i.e., that we average over its spin 
states. Then the most general form of w!'V is 

w!'V = w,(- g!'V + q!lq)q2 ) + Wz(P!l- q!lv/q2 )(p.- q.v/q2 ) 

-iW3e11vapPaqPj(2M2 )+ W4q~'q)M2 

+ W5(pl'q" + ql'p.)j(2M2)- i W 6(p 11q.- ql'p.)j(2M 2). (14.1.10) 

The scalar coefficients W;(Q 2 , v) are called the structure functions. The 
normalizations are such that they are dimensionless. A number of properties 
follow from symmetries and basic quantum mechanics (Treiman, Jackiw, & 
Gross (1972)): 

(1) Each W; is real. 
(2) Time reversal in variance of strong interactions implies that W6 = 0. 

In the case of a purely electromagnetic process, the current j~ad is 

conserved, so that qll w!'V = 0. Hence ·w4 = w5 = 0. Moreover the elec­
tromagnetic current is a pure vector, and strong interactions are parity 

invariant. So W3 = 0. 
In the case of neutrino scattering, the currents are only conserved if quark 

masses are zero. In thatcasetheonlynon-zero structurefuncdonsare W1, W2 

and W3 • It turns out that when the masses are non-zero the contributions of 
W4 and W 5 to the cross-section are suppressed by a factor of order m1mq/ Q2 , 

where m1 and mq are lepton and quark masses. We will discuss this further in 
Section 14.8. 

When we compute the structure functions in the Bjorken limit, Q2 --. oo, x 
fixed, we will find that they behave as a certain power of Q2 times logarithms. 

Thepoweris(Q2 ) 0 for W1, 1/Q2 for W 2 and W3 ,and 1/Q4 for W4 and W 5• So it 
is convenient to anticipate these results and define scaling structure functions 
Fi(x, Q2) which depend only logarithmically on Q2 . The standard de­
finitions are: 

F 1(x,Q2)= W 1(Q 2,v=Q2 j(2x)), } 

Fi(x, Q2) = vWJM2 , for i = 2 and 3, 

F;(x, Q2) = v2 WJ M 4 , for i = 4 and 5. 

(14.1.11) 
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358 Deep-inelastic scattering 

14.2 Parton model 

Before we discuss the true theoretical predictions for deep-inelastic 
scattering, let us discuss the part on model (Bjorken & Paschos ( 1969)). This is 
the simplest model for the process, and contains the essence of the correct 
physics. One considers the initial state hadron in the overall center-of-mass 
for the whole scattering. Now time dilation slows down processes in the 
hadron so that they typically occur on a rather long time-scale T of order 
Q/m~. Then the scattering happens on a much shorter time-scale T"' 1/Q. 
This implies that the hadron may be regarded as an assembly of non­
interacting point-likeconstituents. These are what were originally (Feynman 
(1972)) called partons. (We now identify them as quarks and gluons.) Since 
the hadron in this frame is ultra-relativistic, we must regard the partons as 
massless and as each moving parallel to the hadron with a certain fraction z of 
its momentum. 

The structure functions of the hadron are obtained by computing the 
partons' structure functions in tree approximation and by then summing 
over all partons weighted by their number density. 

Letfa;N(z)dz be the number of partons of type a in hadron N with fraction z 
to z + dz of its momentum. Then, for example, the electromagnetic structure 
functions are: 

2F~m(x) = x- 1 F~m(x) 

= Hfu;N(x) + fu/N(x) J + i L [fq;N(x) + fil/N(x)] 
q=d,s 

+ heavy quark terms. ( 14.2.1) 

The relation F 2 = 2xF 1 is characteristic of the spin-! of the quarks (Callan 
& Gross (1969)). Notice that F 1 and F 2 are independent of Q2 . This is the 
property known as scaling. Experimentally, F 1 and F 2 obey this property 
approximately. 

It is common in the literature to use the terms 'structure function' and 
'quark distribution' interchangeably, because of the parton model relation 
between them (14.2.1), which is also approximately true in QCD- see 
Section 14. 7. However, it is important to distinguish the two terms. Structure 
functions are coefficients of certain tensors in a current correlation function. 
They can be defined for other processes, e.g., the Drell-Yan process (Lam & 
Tung ( 1978) ). On the other hand the quark distribution functions are exactly 
what their name implies: probability distributions of quarks in a hadron. 

The parton model is correct in a super-renormalizable theory (Drell, Levy 
and Yan (1969, 1970a, b, c)). However, in a renormalizable theory like QCD, 
there are processes inside a hadron that happen significantly on all time scales 
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down to zero. Then the basic assumption of the part on model does not hold. 
However, the fact that it is short times that cause the problems allows the 
operator-product expansion to come into play to solve the problem. There 
are two approaches, essentially equivalent for deep-inelastic scattering: 

( 1) Use a dispersion relation to show that moments of the structure functions 
(i.e., 

F;,N(Qz) =I~ dxxN-1 F; (x, Q2)) (14.2.2) 

can be directly computed by the Wilson expansion. This approach was 
initiated by Christ, Hasslacher & Mueller (1972), and it is the one we will 
use. 

(2) One can generalize the derivation of the operator-product expansion 
(Amati, Petronzio & Veneziano (1978), Ellis et al. (1979), Libby & 
Sterman (1978), Stirling (1978) ). For deep-inelastic scattering, the result 
is equivalent to the first method without the taking of moments. 

14.3 Dispersion relations and moments 

Consider the time-ordered Green's function Til• defined by ( 14.1.9). It can be 
expanded in scalar structure functions T1 , T2 , T3 , T4 , T5 , T6 ,justlike Wll,. We 
will only need T1, T2 , and T3 • The operator-product expansion derived in 
Chapter 10 can be applied to Til• when Q2 and v get large with Q2 jv2 fixed. As 
we have seen, this is not the scaling region, for we have x-+ ro instead of x 

fixed. However, we will relate Til• to Wll• by a dispersion relation. Then we will 
see that information on Wll• in the physical region can be obtained from the 
operator-product expansion for Til,. 

If Q2 is fixed and positive then each T; is analytic in the v-plane. There are 
cuts going out to infinity from the thresholds v = ± Q2 /2. See Fig. 14.3.1. 
(This is a standard property. It can be proved by expressing 

Fig. 14.3.1. Analyticity of W~, and contour to derive (14.3.1). 
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360 Deep-inelastic scattering 

< N I Tj~'(y)j.(O) IN) in terms of w~'. and noting that W~'. is zero if I vI< Q2/2.) 
The discontinuities across the cut are: 

T~'.(p, q)~~~:: = 4n W~'.(p,q), (if v > 0). } 
( 14.3.1) 

T~'.(p, q)~~~:: = 4n W.~'(p, q), (if v < 0), 

where wll. is wll. with j replaced by its hermitian conjugate l: 

W~'.= 4~fd4yeiq·y<pjj~'(y)j.(O)tlp). (14.3.2) 

For the electromagnetic or neutral-current processes the current is 

hermitian, so that WI'• = W~' •. But if WI'• is for charged-current neutrino 
scattering then wll. gives the structure functions for antineutrino scattering. 

By Cauchy's theorem we have 

2 1 f dv' 2 , T;(Q ,v)=-2 . -,-T;(Q ,v ), 
m cV -v 

(14.3.3) 

where Cisanycontourenclosingv, as shown in Fig. 14.3.1. We will be able to 
compute the T;'s in the short-distance limit v/Q2-+ 0. So suppose we expand 
T;(Q 2 , v) in a power series in 1/x = 2v/Q2: 

ex, 

Tl = L Tl,n(Q2)x-•, 
n=O 

X• 

vTjM2 = L T;)Q 2 )x-• (i=2or3). (14.3.4) 
n=O 

(We expand vTj M2 (ifiis 2 or 3)in analogywith(l4.l.ll).)Then from (14.3.3) 

1 f dv' (Q2 )n T;.(Q2)=-2. -, -2' T;(Q2,v')(v'/M2)a', 
· m c v v 

( 14.3.5) 

where a;= 0 if i = 1 and a;= 1 if i = 2 or 3. If n is large enough to give 
convergence at I v' I = oo, then we can deform the contour and pick up only the 
contribution from the discontinuity ofT; across the cuts: 

(14.3.6) 

Finally we write the right-hand side in terms of the scaling functions 
F;(X, Q2 ): 

T;,.(Q2)= -2i{dx'x'"- 1 [F;(x',Q2)+( -1)n+a'F;(x',Q2)] 

= - 2i[F;,.(Q2) + ( -l)n+a;f';(Q2)]. (14.3.7) 
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This is the dispersion relation referred to earlier. It relates the power series 
expansion of Tl'• about v = 0 to the moments oft he F's, which are defined by 

F;,N(Q2) =I~ dxxN-1 F;(x, Q2). (14.3.8) 

The relation (14.3.7) only applies if the integral is convergent. For small 
enough values of nit diverges. If va' W; behaves like vP as v ....... oo, then we have 
convergence only if n is greater than p. Now the limit v ....... oo at fixed Q2 is a 

Regge limit (elastic scattering of a virtual boson off a hadron at energy mi ). So 
there is a standard expectation (Treiman, Jackiw & Gross (1972)) that p = 1 
fori= 1 or 3 andp = Ofor i = 2. ThisisequivalenttoF 1,F 2/x,F 3 all behaving 
like 1/x as x ....... 0. In the parton model this would correspond to a 1/x behavior 
for quark distributions, and is roughly what is measured experimentally. 

Our theoretical predictions will give all the terms in the series expansions of 
the T;'s, e.g. (14.3.4). Those coefficients for which (14.3. 7) does not apply will 

not have any direct implications for deep-inelastic cross-sections. 

14.4 Expansion for scalar current 

To explain without a slew of indices the method for computing moments of 
structure functions, let us first work out the case where j ~'- is replaced by a 
hermitian scalaroperatorj. For example,jmight be ZZmijiqi, appropriate to 
the coupling of a scalar boson to a particular flavor i of quark. We have a 
single scalar structure function: 

F(x, Q2 ) = W(v, Q2 ) = (l/4n) Jd4 yeiq·y(p/j(y)j(O)jp), (14.4.1) 

while the time-ordered function is: 

T(v, Q2 ) = fd 4 yeiq·y (pj Tj(y)j(O)jp ). (14.4.2) 

(Notice that we choose j to be a renormalized operator. As is the case for the 
¢ 2 operator for a scalar field, the renormalization factor for ijq is the same as 
themassrenormalizationfactor,so [ijq] = ZZmijq = Zmij0 q0 , whereq0 isthe 
bare quark field.) 

The dispersion-relation argument applied to the series 

00 

T(Q2 /(2x), Q2) = L Tn(Q)x-n (14.4.3) 
n=O 

gives 
(14.4.4) 
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Since the current is hermitian, we have F(x, Q) = F(x, Q), so that 

( ) = {- 4iFn(Q), if n is even, 
Tn Q 0, if n is odd. 

(14.4.5) 

Regge theory suggests T"' 1/x as x--> 0, so this equation is valid only if n is 
bigger than 1. 

We now apply the operator-product expansion. The results of Chapter 10 
apply in the limit Q2 --> oo with v2 j Q2 fixed, i.e., with x =constant times Q. 
Now 

(14.4.6) 

so that it would appear that all but then = 0 term are non -leading by a power 
of Q2 and that we only have a reliable prediction for n = 0. But the relation 
(14.4.5) is not expected to hold unless n > 1. 

Fig. 14.4.1. T(v, Q). 

To remedy this problem, we must find an object for which x -n Tn contains 
the leading-power behavior as Q--> oo. This is done by making a partial wave 
decomposition in the t-channel. That is, we treat T(v, Q) (Fig. 14.4.1) as we 
would treat a scattering amplitude, and decompose it in terms of angular 
momenta: 

00 

<PI Tj(y)j(O)IO> = L <PI VJIP>MAyq/q2 ). (14.4.7) 
J=O 

Here (pI V1 I p) is the reduced matrix element of some operator V1 ,m of spin J, 
and theM 1 are appropriate polynomials in y·qjq2 . (The operator V1 is not 
necessarily local.) 

Now we perform an operator-product expansion of Tj(y)j(O), keeping the 
leading-power behavior for each spin: 

(pi Tj(y)j(O)Ip)"'- 2i L (- i)1 (p~(!)~·.a·)·IJp)C1a(y2)yll 1 ... y~'J, 
J,a 

(14.4.8) 

Here the operator (9~7 ... 11J is a local operator of spin J. The label 'a' denotes 
different operators of the same spin. Only the symmetric part ofthe operator 
is relevant, and in order that it be of definite spin, it must be traceless. Since 
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the hadron is unpolarized the matrix element has the form 

<PIC9~7 ... ~',1P> = <PICDJalp)(p~'' .. . p~'J- traces), 

363 

(14.4.9) 

where <PICDJaiP) is the reduced matrix element- a scalar quantity. The 
normalizations in (14.4.8) have been adjusted for later convenience. 

The leading power of y as y--+ 0 is obtained by using operators of the 
minimum possible dimension. In QCD these are 

(9~~ .. ·~'.r = 21 -J ijy~',iDM ... iD~' 1 q, symmetrized minus traces, } 

mJg - 23 -JG "D "D Gv . d . 
<Yil 1 • .. ~'.r-- ~',vi # 2 ••• 1 ~'J-! ~'.r'symmetnze mmustraces. 

(14.4.10) 

In accordance with the result~ of Section 12.8 we have kept only gauge­
invariant operators. (We useD ll to denote the covariant derivative, and q to 
denote the field of a quark offlavor q. Sums over color indices are implicit in 
(14.4.10). Only hermitian operators are needed.) 

Our usual power-countingargumentsimply that the behavior of the scalar 
coefficient cJa(y2 ) in (14.4.8) is 

(y2 )- dim( C) times logarithms, 
with 

dim(C) = 2dim U)- dim (CD~~ ... ~',)+ J 

= 2dim(j)- dim [ <PICDJafp) !<PIP)]. (14.4.11) 

The dimension minus the spin of an operator is evidently the important 
quantity here; it is called the twist of the operator. The leading twist is two ,for 
the operators of (14.4.10), and for them C(y) ,..._ y- 4 modulo logarithms. 

Fourier transformation of (14.4.8) now gives 

T( v, Q2) = - 2i L <pI (9 Ja I p > cJa( Q)x- J +non-leading powers of Q, 
J,a 

(14.4.12) 
where we define 

(14.4.13) 

PerturbativecalculationsofT(v, Q2 )willgiveus cJain (14.4.13). We can then 
obtain moments of F(x, Q) from the dispersion relation: 

(14.4.14) 
a 

if J is greater than one. 
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14.5 Calculation of Wilson coefficients 

There are two parts to the calculations. The first part is to do low-order 
calculations of the Wilson coefficients 

(;Ja(g, Q//1), 

where we have now explicitly indicated the dependence on all parameters. 
Higher-order corrections have logarithms of Q//1, so the second part of the 
calculation is to compute the anomalous dimensions and then to do a 
renormalization-group transformation to set 11 to be of order Q. Thus we 
write 

2Fn(Q) = L (pi (9JaiP) (p)(;Ja' (g(Q), 1)M a,a'(g( Q), Q/ /1). (14.5.1) 
a,a' 

The subscript (/1) on the matrix element denotes renormalization with unit of 
mass 11· The matrix M is obtained by solving the renormalization group 
equation for C, and the (;Ja' (g( Q), 1) is well approximated by its lowest-order 
term in perturbation theory. Measurements of deep-inelastic scattering at 
one value of Q are enough to give (pi(9JaiP ), and then (14.5.1) predicts the 
moments of the structure functions at other values of Q. 

14.5.1 Lowest-order Wilson coefficients 

The Wilson coefficients are independent of the target, so we may calculate 
them with the hadron state replaced by a quark state. In tree approximation 
we have the expansion sketched in Fig. 14.5.1. The scalar 'current' j is the 
renormalized operator ZZmiiA; = [ ij;q;],for a particular quark flavor i. Since 
the Wilson coefficients are independent of mass, we set quark masses to zero. 
Then from the graphs of Fig. 14.5.1 we find 

T = itr [p(p + {f)] + i tr [p(p - {f) J 
2 (p + q)2 2 (p - q)2 

. 1/x2 

=-2I1-1/x2· (14.5.2) 

The factor t comes from averaging over the spin of the quark. For a quark of 
any other flavor than i, or for a gluon, we have T= 0 to this order. 

p+q p-q 

r\ + X- Ex-JcJ· x· 
Fig. 14.5.1. Wilson expansion of (0/Tjj/0) to lowest order. 
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To compute the Wilson coefficients we also need the matrix elements of the 
operators defined by (14.4.10). In a quark state with flavor i we have 

<vi I@~:· .. ·~<, I Pi) = fc5ii. tr(py ~'•P~<2 .. · P,.J) 

= 2c5;;·PI'1 •• • p,.J, (14.5.3) 

in tree approximation, with the label i' denoting a quark flavor or a gluon. For 
a gluon state and gluon operator 

<Pgi 0~~ ... JLJ iPg) = 2p~'• ... p~'J. (14.5.4) 

All other matrix elements are zero. Hence the non-zero reduced matrix 
elements are all equal to 2. 

Comparison of (14.5.2)-(14.5.4) with the operator-product expansion 
(14.4.12) shows that 

if J ;;::: 1 and is even, } 

i' =!= i, or if i' is a gluon. 

14.5.2 Anomalous dimensions 

The anomalous dimension of the operator ZZmqiqi is Ym: 

J1. d~ (ZZmqq) = Ym(g)ZZmqq, 

(14.5.5) 

(14.5.6) 

and we let y;!,.(g) be the anomalous dimension matrix of the (9 1a's: 

Jl.dd (9Ja = L Y aa•(g)(QJa'. 
J1. a' 

(14.5. 7) 

(Operators of different spin do not mix.) As shown in Section 10.5 in a simpler 
case, the Wilson expansion then implies a renormalization-group equation 
for the Wilson coefficients: 

(14.5.8) 

This equation would be trivial to solve were it not that it is a matrix equation. 
The lowest-order counterterms for the operators are generated by the 

graphs of Fig. 14.5.2. It is evident that the different operators mix. To solve 
the RG equation we must diagonalize the anomalous dimension matrix at 
order g2 • The first step is to recall that the counterterms are independent of 
quark masses. So the renormalizations respect the SU(nn) symmetry of the 
flavor space. Therefore let us now choose a new basis for the twist-2 
operators. 
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AAAAA 

Fig. 14.5.2. Lowest-order divergences of the operators in the Wilson expansion of 
(OjTjjjO). 

There is a multiplet of non-singlet operators: 
J- ...... <--+ 

(!JJ,NS,a = 21- ·'·y iD .. . iD ;_a.t, (14.5.9) 
'I' IJ.l J.l.2 Ji.J 'f'' 

where the ;.a•s are the nn x nn matrices that generate the flavor symmetry. 
There are two singlet operators: 

(!) 19, defined by (14.4.10),} 

(!) 18 = L {!}Ji, (14.5.10) 
flav,i 

The renormalizations are 

(14.5.11) 

[ (!)~] = L Zap(!J~.o• 
p 

from which the anomalous dimension matrix 

(14.5.12) 
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is obtained by 

a 
LYapZpy = /3--;-Zay· (14.5.13) 
p ug 

A calculation of the divergences of the graphs of Fig. 14.5.2 gives (Gross 
(1976)) 

J = J _jf_[1- 2 4 ~__!_] 
Yzz YNs - 6n2 1(1 + 1) + /::2 k , 

g2 [ 12 12 J 1 2 J 
Yit=8n2 1- 1(1-1)-(1+1)(1+2)+12~k+3nf1, 

J g2nn (12 + 1 + 2) 
Y2t =- 4n2 1(1 + 1)(1 + 2)' 

J g2 (12 +1+2) 
Y12 =- 3n2 1(]2 _ 1) (14.5.14) 

14.5.3 Solution of RG equation- non-singlet 

The Wilson coefficients of the non-singlet operators evolve very simply: 

(14.5.15) 

An approximate solution can be found by taking the one-loop approxi­
mation for the anomalous dimensions. This gives 

[
In (Q/ A) J[y~'i,J- r:0:']!(2A.J 

C~8(g(Jl), Q/ Jl) = C~8(g( Q), 1) In (Jl/ A) (14.5.16) 

where y~J.J andy~> denote the coefficients of g2 j4n2 in y~8 (g) and Ym(g), and 
- A1 isthecoefficientofg3 /(4n2)inf3(g). We may replace CJ,Ns(g(Q), 1)byits 
value in tree approximation. The accuracy of(14.5.16) may be systematically 
improved by taking more terms in the perturbation expansions of /3, YNs• Ym• 
and C. 

The singlet coefficients rna y be obtained by diagonalizing the 2 x 2 matrix 
of anomalous dimensions. Then there are two linear combinations of singlet 
coefficients that have simple behavior like (14.5.16). 

14.6 OPE for vector and axial currents 

We will now apply the operator-product expansion to the structure functions 
of T for a weak or electromagnetic current. The argument is a simple 
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generalization of the treatment in Sections 14.4 and 14.5 of deep-inelastic 
scattering with a scalar current. We have 

T~'v(p,q)"' - 2ifd4 yeiq·y L: <PilD~~ ····~<JIP )(- i)J x 
J,a 

(14.6.1) 

The derivatives acting on the Cfa's are arranged to be in combinations with 
zero divergence, to correspond to the condition q~'T~<v = 0. Fourier 
transformation as at (14.4.13), with suitable factors of Q2, gives 

J,a 

X { (- gi'V + ql'qvfq2)X- J c{a(Q) 

+ (1/v)(pl' - ql' v/q2)(pv- qv v/ q2)xl -J c~a( Q) 

- ie~<vapPaqP(1/2v)x-J C~a( Q)}. (14.6.2) 

The set of leading twist operators is the same as in Section 14.4, and we have 
arranged normalizations so that the C;'s are dimensionless in leading twist. 

Hence the moments of the structure functions satisfy 

F l,AQ) + (- 1)J F l,J(Q) = L c{a(Q)<PilDJaiP) +correction, 
a 

F 2,J-1 (Q) + (- 1)J F Z,J-1 (Q) = L c~a(Q)<PilDJaiP) +correction, 
a 

F 3,AQ) + (- 1)J +IF 3,J(Q) = L c~a(Q)<PilDJaiP) +correction. 
a 

(14.6.3) 

These equations are valid for J > 1, and the corrections are of order 1/Q2 

times logarithms. 

14.6.1 Wilson coefficients- electromagnetic case 

To compute the lowest-order Wilson coefficient we consider deep-inelastic 
scattering on a quark target. The graphs are the same as in the case of a scalar 
current, Fig. 14.5.1, except that the current operator is now the elec-
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tromagnetic current. We find 

T(lowestorder) = le2{tr["'y i(p + ~) Y J + tr[rly i(p- 9) Y ]} 
ILV 2 q I' ~'(p+qf v ,¥ v(p-q)2 I' 

2' 2{ 2 1jx2 
= leq (- g~'' + q~'q,/q )1/x2 -1 

I 2 2 1 2/x } 
+(pl'-ql'v q )(pv-qvv/q )~1/x2-1 . 

Expanding about 1/x = 0 gives 
00 

T 1 = - 2ie; I (1/x)2n+ 2 + O(g2 ), 

n=O 

00 

v T2 / M 2 = - 4ie; I (1/x)2n+ 1 + O(g2 ). 

n=O 

The Wilson coefficients are therefore 

(;Jq = e2 /2 + O(g2)} 
- ~ ~ 2 if J is even and ~ 2, 
C 2 q = e q + O(g ) 

C3 =0, 

C{9 = 0 + O(g2 ). 

(14.6.4) 

(14.6.5) 

(14.6.6) 

The relation C 2 = 2C 1 corresponds to the Callan-Gross relation F 2 = 2xF 1 

in the parton model. Since the renormalization-group equation is the same 
for both (;~a and c~a, the Callan-Gross relation is true in QCD with 
corrections of O(g(Q)2). These corrections are from the Wilson coefficient, 
and have been calculated. See Buras(1981 )for an up-to-date list of references. 

The renormalization-group equations are the same as in the scalar case, 
except that y m is replaced by zero since the anomalous dimension of a 
conservedcurrent is zero. 

14.7 Parton interpretation of Wilson expansion 

The use of moments in comparing theory and experiment is not very 
convenient, since cross-sections are needed outside the range in which they 
are measured. A more convenient form can be derived in which an expansion 
is obtained for the structure functions themselves. We will just summarize the 
results. More details can again be found in Buras (1981). 

It is sufficient to examine the case of a scalar current for which the 
expansion is 

J1 dz 
F(x, Q) =I - fa;N(z, p)Ca(z/x; Q/J1, g(Jl)). 

a x Z 
(14.7.1) 
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370 Deep-inelastic scattering 

The sum is over all species ofparton, i.e., flavors of quark and anti quark, and 
gluon. The generalized Wilson coefficient C a is effectively a structure function 
for deep-inelastic scattering of a part on state, while fa;N(z, JJ.) is a parton 
distribution. Lowest-order calculations reproduce the parton-model result, 
so that 

Cq = Cif= e/t>(z/x- 1)/2, 

Cg=O. 

The renormalization group equation for f has the form 

f.J.dd fa;N(X,f.J.) = L I1 
dz Yba(z/x,g)fb;N(Z,f.J.). 

/). b X Z 

(14. 7.2) 

(14.7.3) 

This is called the Altarelli-Parisi (1977) equation- it was first derived by 
these authors in leading logarithmic approximation from an heuristic 
argument. Later derivations (Collins & Soper (1982a), and Curci, Furmanski 
& Petronzio (1980)) are more complete. 

Integro-differential equations like (14.7.3) are not particularly easy to 
work with. One mathematical simplification that can be made is to take 
moments, with the result that the operator-product expansion of 
Sections 14.5 and 14.6 is recovered. This will enable us to see that the two 
methods are essentially equivalent. However, the mathematically more 
complicated method using convolutions, as in (14.7.3), gives more physical 
insight, can be extended to other processes (Buras (1981)), and can be used 
without knowing structure functions at small x. 

To see the equivalence of the two methods, let us define the following 
moments: 

~~~~(f.,l) =I~ dz z"- 1 fa;N(z, f.J.), 

C~"l= L d(xjz)(x/z)"- 1Ca(z,x;Q/f.,l,g(JJ.)), 

yl,';] =I~ d(x/z)(xjz)"- 1 yba(z,x;g(JJ.)). (14.7.4) 

Then (14.7.1) implies 

(14.7.5) 
a 

This expansion has the same form as (14.4.14). In fact, moments ofthej's are 
the same as the matrix elements of the twist-2 operators: 

<Nj@1ajN) =I~ dxx1 - 1 [fa1N(x) + fa;N(x)], (14.7.6) 
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where there is a contribution from each type of parton and antiparton. This 
equation can be proved (Collins & Soper (1982a), and Curci, Furmanski & 
Petronzio (1980)) provided only that the same renormalization prescription 
(e.g., minimal subtraction) is used for both the operators and for the parton 
distributions. 

14.8 W4 and W5 

So far we have ignored F 4 and F 5. They are zero if the currentj" in W"v is 
conserved. But the weak-interaction currents are not conserved if quark 
masses are non-zero: 

a,Nrr"(1 - YsMat/1) =~Vi([ m, ;.a]- Ys{m, ;.a} )t/1 

= i!Y'/2. (14.8.1) 

Herem is the quark mass matrix.lt follows that W4 and W5 are non-zero in 
neutrino scattering. However, we should regard the ratio m/Q as setting the 
scale for their effect on the cross-section (Jaffe & Llewellyn-Smith (1973) and 
Llewellyn-Smith (1972)). They therefore give a small contribution to the 
deep-inelastic cross-section. Since W4 and W5 are therefore non-leading in 
the Bjorken limit, they are difficult to compute directly. 

A convenient technique to compute W4 and W5 is to consider 

q"W~tv = (q 2 W4 + p·qW5 j2)q)M2 + q2 p.W5j2M2• 

We have the operator formula 

q"W~tv = Jd 4 yeiq·y<pjj.(y)D(O)jp), 

(14.8.2) 

(14.8.3) 

sowecancompute W4 and W5 bymakinganoperator-productexpansionfor 
j "(y)D(O). Since there is an explicit factor of quark mass min the expression for 
D, this operator behaves as a dimension 3 rather than a dimension 4 operator. 
This suppresses the Wilson coefficients for W4 and W 5 by a power of Q2 • 

Since,in(14.1.10), the tensors multiplying W4 and W 5 haveaq" or q)n them, a 
similar suppression occurs because the lepton masses are much less than Q, as 
is seen bycontractingq" or q. with the lepton tensor (14.1.7). Theresultis that 
W4 and W5 make a negligible contribution to the cross-section at large Q. 

A detailed treatment of W4 and W5 within QCD can be made but has not 
yet been published. It generalizes the results of Jaffe & Llewellyn-Smith 
(1973), who worked within the parton model. 
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