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AN EASY PROOF FOR SOME CLASSICAL THEOREMS 
IN PLANE GEOMETRY 

C. THAS 

ABSTRACT. The main result of this paper is a theorem about three conies in the 
complex or the real complexified projective plane. Is this theorem new? We have never 
seen it anywhere before. But since the golden age of projective geometry so much has 
been published about conies that it is unlikely that no one noticed this result. On the other 
hand, why does it not appear in the literature? Anyway, it seems interesting to "repeat" 
this property, because several theorems in connection with straight lines and (or) conies 
in projective, affine or euclidean planes are in fact special cases of this theorem. We 
give a few classical examples: the theorems of Pappus-Pascal, Desargues, Pascal (or its 
converse), the Brocard points, the point of Miquel. Finally, we have never seen in the 
literature a proof of these theorems using the same short method {Çlb

aQ.acÇlc
b = /: see the 

proof of the main theorem). 

1. The main theorem !P is the notation for the complexified real projective plane 
or for the complex projective plane. "Complexified real" means that we also consider 
imaginary points in this plane; for instance, any real line, which is not a tangent line 
of a real conic, will intersect the conic in two points (real points or conjugate complex 
points). 

For points we use italics a, b, c , . . . and capitals for straight lines. The conic containing 
the five points a, b, c, d, e or tangent to the five lines A, B, C, D, E is denoted by K(abcde) 
or K(A B C DE), respectively. Moreover K(a bcdD), with d G D, is the conic through 
a, &, c, d and tangent to the line D at the point d, and so on. For instance, if we use later 
the notationK(s bcBC), and c G B,b G C then it is the conic through s, tangent to the 
line B at the point c and tangent to the line C at the point b. 

MAIN THEOREM (FIGURE A). Consider in <P three mutually different points a, b, 
c and through a three mutually different straight lines A\, A2, A3, through b three 
mutually different lines B\, B2, #3, through c three mutually different lines C\> C2, C3. 
PutAtHBi = ct, BiDCi = a^ C/PlA; = b(, i = 1, 2, 3. Then the three conies K(a\ a2a^bc), 
K(b\ b2 bi c a), K(c\ C2 C3 a b) have three points in common. 

PROOF. First consider the most general case: special cases, where for instance one 
or more conies are degenerate, are treated later on. Look at the following projectivities: 

ab
a : a(AuA2,A3j...) A b(BuB2,B3,...) 

Slc
b : b(BuB2,B3, • . . ) A c(Ci, C2, C3 , . . . ) 

Q? : c(Cu C2, C 3 , . . . ) A a(Au A2, A 3 , . . . ) . 
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The locus of the common points of corresponding lines of Q£, Q£, Çlb
a are the conies 

K(a\ a2 «3 b c), K(b\ b2 b3 c a) and K(c\ c2 c3 a b), respectively. But £lb
aÇl"Çlc

b is a 
projectivity with three mutually different invariant lines B\, B2, B3 and thus it is the 
identity transformation. As a corollary, any common point (^ a, b, c) of two of the three 
conies belongs also to the third conic and this completes the proof. 

FIGURE A FIGURE B 

Next, we give a kind of converse: 

PROPOSITION (FIGURE B). Consider n + 3 points a\,.. .1anis\1s2,s3, n > 3, in 
the projective plane <P and the conies K\2(s\ s2 £3 a\ a2), ^23(̂ 1 $2 3̂ #2 03)» • • •> 
Kn^x^n{s\s1s^an-\an), Kn\(s\s2s3ana\). F or any point p of K\% weputpa2nK23 = {a2,p2}, 

p2a3nK34 = {a3,p3}, .",Pn-2an-\nKn-l,n = {««-1 , Pn-\}, Pn-\dn^ Kn\ = {an,pn}. 

Then the pointspn, a\ andp are collinear. 

PROOF. Consider the following projectivities: 

£2f : a\(a\s\, axs2, a\s3l... ) A 02(02*1, «2*2, a2s3,. • • ) 
£l\ : a2(a2sua2s2,a2s3l...) A a3{a3s\, a3s2, a3s3,...) 

ft„_i : an-\(an-\S\,an-\S2,an-\Ss,...) A a„(a„s \,ans2,ans3,...) 
Q^ : an(ans\,anS2,ansi,. • •) A a\(a\S\,a\s2,a\s3,...). 

The conic ÂT12 (A^3, • • • ? ^«-i,n, ^«i> respectively) is the locus of the common points 
of corresponding lines of the projectivity £l\ (Q.^.. .,Q£_{,Çll, respectively) and 
Q.\Ql

nQ"_{ • • • ^2 ^s a n identity transformation. For the line a2p we have 

Q3 Q4 Q5 Q." Q] Q2 

dip —^ a3p2 —^ a4p3 —1+ ^ anpn-\ —^ ai/?„ —U a2p 

which means that/?„, a\ and /? are collinear. This completes the proof. 
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562 C. THAS 

In Figure b the four conies K\2, #23, ^34, K4{ have, apart from s\ two common 

imaginary (conjugate complex) points s2, ^3 (consider the same figure in the extended 

complexified real affine plane and s2, S3 are the common points at infinity of the four 

ellipses). 

2. Special cases in the projective plane Notations: ab- C,bc-A and ca - B. 

COROLLARY 1. Suppose that in the main theorem «3 = b^ = C3 = s. Then the conies 

K(a\ a2sb c), K(b\ b2 s c a) and K{c\ c2sab) have, apart from s, two common points. 

COROLLARY 2. Suppose that a2 = b2 - c2 = s\ and a?, = bi = C3 = s2. Then the 

conies K{a\ s\ s2 b c), K(b\ s\ s2 c a) and K(c\ s\ s2 a b) have, apart from s\ and s2, a 

common point. 

COROLLARY 3. Suppose that A3 = C, #3 = A and C3 = B. Then the conies 

K(a\ a2bc B), K{b\ b2caC) and K(c\ c2abA) have three common points. 

COROLLARY 4. Suppose that in Corollary 3 a\ - b\ - c\ = s\ and a2 = b2 = c2 = ^2-

Then the conies K(s\ s2bc B), K(s\ s2caQ and K(s\ s2abA) have, apart from s\ and 

s2, a common point. 

COROLLARY 5. Suppose that in the main theorem B2 = C3 = A, C2 = A3 = B and 

A2= B3 = C. Then the conies K(a\ bcBC), K{b\ caCA) and K(c\ abAB) have three 

common points. 

COROLLARY 6. Suppose that in Corollary 5 a\ = b\ = c\ = s. Then the conies 

K(s b cB C), K(s caCA) and K(s abAB) have, apart from s, two common points. 

Next we consider some cases where one or more of the conies are degenerate. 

FIGURE C FIGURE D 

COROLLARY 7 (FIGURE C). Suppose that in Corollary 2 s\ G ac (s\ ^ a, c) and 

s2 G ab(s2 ^ a, b). In this case the conies K(b\S\ s2ca) andK{c\ s\ s2ab) are degenerate. 
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The components are (ac,b\S2) and (ab,c\S{), respectively. The conic K(a\ si S2 b c) 
contains the fourth common point p (apart from s\, sit a) of the first two conies. Remark 
that this is the converse of the theorem of Pascal: denote the lines by 1, 2 , . . . , 6 as in 
Figure c and 1 Pi 4, 2D 5, 3H6 are collinear. 

COROLLARY 8 (FIGURE D). Suppose that in Corollary 7 the points s\ and si are such 
thatp G be. Then K(a\ s\ S2 b c) is also degenerate and s\, S2, a\ are collinear. This is 
the theorem of Pappus-Pascal. 

COROLLARY 9 (FIGURE E). Suppose that in the main theorem a, b, c are collinear and 
that A3 = #3 = C3 = abc. Then the three conies are degenerate and the common point 
a\a2^\b\b2 is also a point of c\C2- This is Desargues' theorem (if the corresponding sides 
of the triangles a\b\C\ and «2^2^ intersect on a straight line then the lines connecting 
corresponding vertices are concurrent). Recall that Desargues ' theorem and its converse 
are dual theorems. 

FIGURE E FIGURE F 

COROLLARY 10 (FIGURE F). Consider two conies K and K' which intersect at the 
points a, a', s\, S2 and consider two straight lines: A through a and A' through a' such 
that AH K= {a, cx}, AHK' = {a, b\}, A'HK = {a', b}, A'HK' = {a', c}. Then the lines 
s\S2, c\b and b\c are concurrent. 

PROOF. Put a\ = bc\ n cb\. The conic K(a\ s\ S2 b c) contains the fourth common 
point af of K = K(c\ s\ S2 a b) and K' = K(b\ s\ S2 a c). But a', b, c are collinear and 
therefore K(a\ s\ S2 b c) is degenerate, with components be and s\S2. Thus the line ̂ 1̂ 2 
must contain the point a\. 

The following theorem is not a special case of the main theorem, but a corollary (and 
also an extension) of Corollary 10. In the literature it is sometimes called the theorem of 
the three conies ([3]). 
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564 C. THAS 

THEOREM (FIGURE G). If three conies have two common points s\, S2 then the lines 
connecting the other common points of the conies (taken in pairs) are concurrent. 

PROOF. B2 (#3, respectively) is the line connecting the common points different from 
s\, 52 of the conies K\ and K3 (of K\ and #2, respectively). Put #2 H B3 = s. Consider a 
straight line 5i through^ such that S\nK\ = {p\,pi}. The Ymzp\S\ intersects K2 and K3 
in q\ and r\ respectively and the line/?2^2 intersects K2 and K3 in q2 and r2 respectively. 
Because of Corollary 10, the lines q\q2 and r\r2 both contain the points s and thus s is 
a point of the line B\ which connects the common point, different from s\ and 52, of K2 
and A3. This completes the proof. 

FIGURE G FIGURE H 

Remark that Corollary 10, Pascal's theorem and the theorem of Pappus-Pascal are 
special cases of the theorem of the three conies: one, two or the three conies are degen
erate. 

3. The dual theorems 

THE DUAL MAIN THEOREM. Consider in <P three distinct straight lines A, B, C and 
on A three distinct points a\, «2, «3, on B three distinct points b\, &2> b3, and on C three 
distinct points c\, C2, £3. Putatbt = C„ b\Ci - At andctat = Bt, i = 1,2, 3. Then the conies 
K(A\ A2 A3 B C), K(B\ B2 B3 CA) and K(C\ C2 C3 A B) have three common tangent lines. 

Of course any result of Section 2 has a dual, but we only give the "theorem of the 
three tangential conies": if three conies have two common tangent lines, then the other 
tangent lines of the conies, taken in pairs, intersect in collinear points (Figure h). This 
theorem is not a special case of the dual main theorem, but the special cases obtained 
from this theorem where one, two or the three tangential conies are degenerate actually 
are special cases of the dual main theorem. If two of these conies are degenerate, we 
get the theorem of Brianchon and if the three conies are degenerate, we find again the 
theorem of Pappus-Pascal. 
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4. Special cases in the affine and Euclidean plane We work in the extended real 
affine or Euclidean plane, i.e. we have a line at infinity. We also consider imaginary 
points in these planes: for instance all circles intersect the line at infinity in the same pair 
of conjugate complex points, the two circular points of the Euclidean plane. 

Through any point of the Euclidean plane not on the line at infinity there are two 
isotropic lines, the lines connecting the point with the circular points. 

COROLLARY 11. We consider two triangles abc and a'b'c' in the Euclidean plane 
such that a' G be, a' ^ b, c; b' G <?c, b' ^ a, c; c' G ab, c' ^ a, b. Then the circumscribed 
circles of the triangles ab'c'y be'a' and ca'b' have a point in common. Sometimes this is 
called the theorem ofMiquel. 

PROOF. This is Corollary 2 where s\, S2 are the circular points of the Euclidean plane. 

REMARK. This last result is often given as an application of the "theorem of the ninth 
point": all cubics through eight fixed points pass through a ninth fixed point. Consider 
the degenerate cubics (circle through a, b', c'\ straight line a'be), (circle through b, c1', a'\ 
straight line b'ca), (circle through c, a', b'\ straight line dab)', these curves have the six 
points a, b, c, a', b', c' and the two circular points in common, so they have another 
common point. 

Remark also that the theorem of the three conies has a very short proof if we use the 

theorem of the ninth point: consider in Figure g the degenerate cubics (K\, B\), (#2? #2)» 

(*3 ,S 3 ) , . . . . 

COROLLARY 12. Suppose that A, B, C, D are straight lines in the Euclidean planey 

different from the line at infinity, no three of which are concurrent and no two lines are 
parallel. Then the circumscribed circles of the triangles ABC\ ACD, BCD andABD have 
a common point. This is the point ofMiquel. 

PROOF. Consider Corollary 2 where s\, si are the circular points and where a, b, c 
are collinear. Use this corollary twice and you obtain this result at once. 

COROLLARY 13. Consider in the Euclidean plane a triangle abc. The circles through 
a and with tangent line A at b, through b and with tangent line B at c, through c and 
with tangent line C at a have a common point. This is one of the Brocard points of the 
triangle abc. The other Brocard point is the common point of the circle through a with 
tangent line A at c, the circle through b with tangent line B at a and the circle through c 
with tangent line C at b. 

PROOF. This is Corollary 4 where s\, si are the circular points of the plane. 

COROLLARY 14. Suppose that ABCD is a complete quadrilateral in the affine plane 
(i.e. A, B, C, D are lines no three of which are concurrent) and that A, By C, D are different 
from the line at infinity. The intersection points of the sides A, B, C, D are denoted as 
follows: AH C = a>AnB = b,BnC=f,BnD = e,CnD = d,DnA = c.We suppose 
that no two of the lines A, B, C, D are parallel. The diagonals are the lines ae, bd, cf. 
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Then the parabola with tangent lines ae, bd, A, D, the parabola with tangent lines bd, 

cf, A, C and the parabola with tangent lines cf, ae, A, B have a common tangent line 

(different from the line at infinity). 

PROOF. Use the dual of Corollary 2 in the affine plane. Consider the following 

projectivities: 

Q\ : line ae —> line bd; a-^b,e —> d, point at infinity of ae —> point at infinity of bd\ 

Q*2'. line bd —> line cf; b—+ c,d—+f, point at infinity of bd —• point at infinity of cf; 

Q3: line cf —> line ae\c—^ a,f -^ e, point at infinity of cf —> point at infinity of ae. 

Then Çl^^Qx is the identity transformation on ae and this gives at once the result. 

REMARK. The midpoints m\, mi, m^ of the diagonals ae, bd, cf of the complete 

quadrilateral are collinear: this gives the Newton-line of the quadrilateral. Let the points 

at infinity of ae, bd, cf be denoted by n\, ni, «3, respectively. We have (aem\n\) -

{bdm^ni) = (çfmyii) = — 1. This means that the common tangent line of the three 

parabolas in the foregoing corollary is precisely this Newton-line. But from this corollary 

it does not follow that m\, mi, m^ are collinear. Therefore we prove this now. Consider 

the point r at infinity of the parabola with tangent lines A, B, C, D. Because of the 

theorem of Desargues-Sturm we know that there is a second conic through r with tangent 

lines A, B, C, D and for the tangent line TV at r of this conic we have: (ra, re, N, line 

at infinity)=(rb, rd, N, line at infinity)=(rc, / / , N, line at infinity)= — 1. This means that 

N H ae = m\, N H bd = m2, N H cf = m^ or that N is the Newton-line. 

We conclude this section with a corollary of the dual of our proposition in the affine 

plane. 

COROLLARY 15. In the affine plane we consider two non-singular ellipses or hyper

bolas K\ and K2 , in general position. The common tangent lines of these conies are A, 

B, C, D andp is any point ofD, while P\, P2 are the second tangent lines ofK\ and K2 

through p. IfP[, P2 are the tangent lines of K\ and K2 which are parallel with P\, P2, 

then A, B, C, P[, P2 are tangent lines of a parabola. 

PROOF. The conic K(ABCP\P2) is denoted by K3. Consider the point P2nP'2 = q. 

This is a point at infinity. Through q we have a second tangent line P3 of K3 and we put 

PiC\P[ = r. Because of the dual of the proposition we know that the second tangent line 

of K\ through r is the tangent line P\, i.e. r is a point at infinity, which means that P 3 is 

the line at infinity and thus K3 is a parabola. This completes the proof. 

5. A combination of the main theorem and its dual Consider the most general 

case for the main theorem. This means that a, b, c (and <zi, 02, ^3; ^ b ^2, by, c\, Q , C3, 

respectively) are not collinear and that a, b, c, a\, ai, a3, b\, b2, £3, c\, c2, C3 are twelve 

mutually different points. It is easy to see that in this case the conies K(a\ «2 «3 b c), 

K{b\ Z?2 &3 c a) and K(c\ C2 C3 a b) are not degenerate. They have three common points 

s\,S2,S3 and we assume that these points are mutually different (i.e. they form a triangle). 

Remark that in Figure a the triangles a\a2a3 and b\b2b3 are in perspective. This is 

also the case for bfab^ and C1QC3 and for c\C2C3 and «i«2^3- We have: 
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THEOREM. Consider the configuration of the main theorem. The points a^C] b\b2, 

ajai P1&2&3 anda-x>a\ Db^bi are collinearon a line which is denoted by C. The analogous 

lines for the triangles b^bi and c\ C2C3, and the triangles c\ C2C3 anda^a^ are denoted 

by A' andB', respectively. Ifs\, S2, S3 are the common points of the conies K(a\ «2 a?>bc), 

K(b\ Z?2 bs c a) and K(c\ Q C3 a b) then S\S2, 2̂̂ 3? S3S\ are common tangent lines of the 

conies K(a\a2 «2^3 ^3^1 B' C'),K(b\b2 ^2^3 b^b\ C' A') andK{c\C2 C2C3 C3C1 A' B'). 

PROOF. The last three conies have of course three common tangent lines: this is the 

dual main theorem. We only have to prove that these tangent lines are the lines s\S2, 

S2S3, s^s\. But therefore we need a lemma. We first recall the following property: if two 

triangles are inscribed in a same non-degenerate conic then they are also circumscribed 

about a same conic. 

LEMMA. Consider two conies K\ and K2 which are not degenerate with mutually 

different common points s y t, s\, S2 and two triangles a\b\C\, «2^2Q sucn thata\, b\,c\ G 

A4 and «2, &27 C2 G K2. Moreover we suppose that a\a2, b\b2, c\C2 are concurrent with 

common points. Then the line ofperspectivity of the two triangles {theorem of Desargues) 

is the fourth common tangent line of the conies K[ and K'2 which have the sides of the 

triangles a\b\C\, ts\S2 anda2b2C2> ts\S2 as tangent lines. 

PROOF. Consider for instance the line a\sci2 and througha\ the two lines a\b\,a\C\\ 

through s the two lines sb\, sc\\ through #2 the two lines #2^2, «2Q- From a special 

case of the main theorem we have at once that the conies K\, K2 and K(a\ «2 t a\b\C\ 

«2^2 a\C\n (I2C2) have besides t two other common points, which are of course s\ and 

52. Thus the triangles with vertices t, s\, S2 and a\, a\b\ 002^2, a\C\ D ^ Q are inscribed 

in a conic and therefore also circumscribed about a conic. From this it follows that the 

line of perspectivity is a tangent line of K[. In the same way we find that this line is a 

tangent line of Kf
2. This completes the proof of the lemma. 

In order to complete the proof of the theorem it is clearly sufficient to use this lemma 

twice. 

We conclude this paper with a corollary in the Euclidean plane: 

COROLLARY 16. Consider in the Euclidean plane two circles K\ and K2 with common 

points s and t (different from the circular points). Suppose that aft^t is an inscribed 

triangle ofKt , / = 1,2, such that a\a2, b\b2, c\C2 contain the point s. The line through 

c' = a\b\C\ «2^2, a' = b\C\ D &2Q and b' = c\a\H ^2^2 is denoted by S. We have: 

1. The line S is the fourth common tangent line of the parabolas P\ and P2 which 

have both t as focal point and which respectively have the sides of the triangles 

a\b\C\, «2^2C2 as tangent lines (the three other common tangent lines are the line 

at infinity and the isotropic lines through t). 

2. The points a', b', c\, C2, t (b', cf, a\, ^2, t and cf, a', b\, b2> t, respectively) are 

points of a circle. 

3. The feet of the perpendicular lines through t onto the sides of the triangles a\b\C\ 

anda2b2C2 are points of straight lines which are denoted by S\ andS2, respectively 
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(lines of Simspon-Wallace). We have that S\ H S2 is the foot of the perpendicular 
line through t onto the line S. 

PROOF. 1. This is a special case of the lemma, where s\ and S2 are the circular points 
of the Euclidean plane. 

2. This is in fact a straightforward special case of the main theorem (see the proof of 
the lemma). 

3. Recall that the foot of the perpendicular line through the focal point of a parabola 
onto a tangent line of the parabola is a point of the tangent line at the top of the parabola. 
From this it follows that S\ and S2 are the tangent lines at the tops of the parabolas Pi 
and P2. This completes the proof. 

REMARK. It is easy to verify that if s = t, i.e. K\ and K2 are tangent, then the line S 
is the line at infinity, while the parabolas Pi and P2 have the same point at infinity. The 
lines S\ and £2 are parallel in this case and the perpendicular line through s = t on these 
lines is the common axis of Pi and P2. 
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