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1. Dual integral equations of the form

f " () du = f(x) (0 x < 1), )

0
J ® BTG du = g(x) (x> 1), @
[+]

where f(x) and g(x) are given and (x) is the unknown, have been increasingly studied in
recent years; the first solutions were given for the case g(x) = 0 by Titchmarsh [1] (for
0 < a < 2) and Busbridge [2] (for —2 < « < 0). An interesting and much simpler method of
solving the equations in the same case, g = 0, was given by Gordon [3]. He also showed that
the problem of solving the general equations (1) and (2) can be reduced to a problem in which
g = 0. He did not pursue this idea as far as finding and simplifying the solution of (1) and (2)
but this has been done recently (see [4]) and Noble [5] used a similar idea in treating the case
f=0.

What we wish to show here is that Gordon’s method of treating the case g = 0 can be
adapted to deal equally well with the case f = 0; since (1) and (2) are linear, the solution of (1)
and (2) can then be obtained by superposition of the solutions in these separate cases. This
has affinities with the work of Lowengrub and Sneddon [6], who showed that an elegant
method developed by Copson [7] for the case g = 0 can be adapted to treat the case f=0.

This superposition of solutions was first used by Noble [5]; he also [8] gave a direct but
lengthy solution of the general equations (1) and (2). As in most work on the subject the

analysis here is formal; for instance, no attempt is made to justify interchange of orders of
integration.

2. We now consider the equations

I ) )y du=0 ©<x<1), 3)

W]
f V@I, xu) du = g(x) (x> 1) @
0
The essential idea of the method is that of transforming the equations so that they involve the

same integrand: the solution can then be written down by the Hankel inversion theorem (see
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Sneddon [9]). The argument rests on two results both of which follow from the Weber-
Schaftheitlin discontinuous integral (Watson [10, p. 398]):

o o bT{#(u+v-1+1)}
.[0 J(a)J (br)t™* dt T 2% I+ DIE(A+p—v+ 1)}

X o Fi{3(u+v=2+1), 3(v=A-p+1); v+1; b%a®},  (5)

where 0 < b < a; a similar formula, with a and b, and u and v, interchanged, holds when
0 <a < b. The integral converges if

Re (u+v+1)>Re (1) > —1. )
It follows from (5) that
J v (and(btydt=0 (0<b<a), ©)]
1]
provided that v>u>—1 8)

and also that
0, if0O<b<xa,

° 174, _-1(@)J (b)) dt = { pvgv—r-1(p2 _ g2)t
L a-1(an)J (bt) b~"a (b a), ifo<a<b, ©
2’T(1+4)
provided that v > 4> —1; this implies, by the Hankel inversion theorem, that
f J (bbb —a®)* db = 2T (1 + Aa' ** 1217, _,_(ad), (10
provided thatt v>2+3> -3 (11)

On comparing (7) and (3), we see that a particular solution of (3) is the function
ub"v*1=a) (uy), with y > 1, v > > —1 and so, by superposition, we are led to the expression

Y = e f " VoW ) dy (> v> —1) (12)

1
Substituting (12) into (3), inverting the order of integration and using (9), we verify that (12)
satisfies (3).
But now the Hankel inversion theorem applied to (12) shows that

© - if y>1
vta—-p J d = ¢(y), iy ’ 13
L W R (), (uy) du {0, ok 13)
i.e., if Y (u) is given by (12), then (3) may be replaced by the equivalent equation

J wre M) (xu)du=0 (0Zx<1), (14)

0
provided that v> u > —1.
t This condition is discussed in §4.
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To transform (4) we replace x by xy, multiply both sides by y! ~"(y*>—1)*, integrate with
respect to y from 1 to co, and invert the order of integration on the left-hand side:

I i w(u){ f " 1 Geyuy (A =1y dy} du = r g Gy = 1) dy;

4] 1 1

hence, by (10),

0 iy _ xi.+1 ] 1=v¢ 2 _ 14
Lu w<u)Jv-A_l(xu)du—mfl doy =1 dy (x> 1), (15)

provided that v > 2A+1 > —3.

If now A and p are chosen so that v+a—pu= —A—1and p=v-1—1, i.e.

A=—1-ta, p=v+ia (16)

(these values satisfy (8) and (11), provided that « < 0, 2v+a+2 > 0 and 2v+ 20+ 3 > 0), then
(14) and (15) become

0 if0sx<l,
[]
u Y (U4 o) du = x‘*’z“*“r tmv2_ y-1- . (17)
T T2 ] gyt gy ifx > 1.
° | T(=1» ),

Hence, by the Hankel inversion theorem,

xl —«}azl +4a ffo

VO =T ),

u' "y vm(xu){r gluy)y' (- dy} du
1

xl—iaz«}a 0
r-4e)J,

W (o) a"_{r g(0)0! (v —u?)~ ¥ dv} du, (18)
u u

provided that & < 0, 2v+a+2 > 0, and 2v+ 2x+3 > 0, where we have put uy = v and written

(02 —u?) 4 = ()~} L (2w
du

3. To deal with the case « > 0, instead of choosing 4 and u as in (16), we let

A= -1, p=vi+ie—-1. (19)
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These values satisfy (8) and (11) provided that & < 2, 2v+a > 0 and 2v4-2a—1 > 0 and so this
time (14) and (15) become, respectively,

fw ul+*a'l’(“)~]v+ia—1(x“) du=0 (0=x<1), (20)

0

1~4ania

r o C) = E Tg(xwy**V(yZ—l)-*“dy x>1, @)

= F(x), say (x> 1). (22)

We now use the result (Watson [10, p. 18])

di{x”J..(xy)} = yx"J,— (x¥) (23)
X

to write J,; 4, (xu) = u"x'“'*“‘—;i {x**¥J , ;(xu)} in (20). Integrating with respect
x

to x from 0 to x, we find (using the fact that v+4a > 0) that

j Y@y pOu) du =0 (O < x < 1). 24)

0

Similarly, if we multiply (22) by x~*~***1 differentiate with respect to x and use the result
(Watson [10, p. 18])

‘—Id;{x‘"ln(xy)} = —yx"Jpsq(x), (25)
we find that
jw wdNY (U, 4 o(xu) du = —x" 41 ;;i {x""#*F(x)} (x> 1) (26)
0 x

Combining (24) and (26) and using the Hankel inversion theorem, as before, we obtain

Y(x) = —xl"*“'[m wrng s (xu) ‘% {u™""#**1F(u)} du, 27

1

which is easily seen to be identical with (18) if we use (22) and put uy = v in the inner integral.
Note that Gordon [3] gave the solution in different forms for the two cases « > 0 and « < 0.

Thus the solution of (3) and (4) is given by (18) in the two cases —2 < < 0,2v+a+2 >0,
v+20+3>0and O<a<2, 2v+a>0, 2v+2a—1 > 0. Therefore, if we combine (18)
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with Copson’s form [7] of the solution of (1) and (2) in the case g = 0, we obtain as the
solution of (1) and (2)

¥ (x)

S lu“"*"J (xu)i "f(u)v”'(uz—uz)*’du du
T(1+49) Jo AR | N

xl—i«z}a © 4 d © fmvr.2 e
- viaeg — Y - dvld 28
e R Y R IO T e R Y RO

under the conditions

—2<a<0, 2v+a+2>0, 2v+2a+3>0,} 29)

O<a<2, 2v+a>0, 2v+2a—-1>0.

4. It remains to discuss the restrictions on the parameters. Although equation (9) is
valid under the condition v > A > —1, equation (10) is valid under the more restrictive con-
dition (11). The reason is that the Hankel inversion theorem (see, e.g., [10, p. 456])

Fx) = r uF (u)J (xs) du, (30)

0

where F(x) = r wF(u)J (xu) du, G1)
0

is valid if F(y) is continuous at y = x and x*F(x) dx is absolutely convergent. Applying

0
the latter condition to the function F(£f) = ¢7*~'J,_,_ (a?), we find (see [11, pp. 71-72]) that
(10) is valid under the condition v > 2A+% > 4. However, direct examination shows that the
left-hand side of (10) converges when v > 2444 > —3 and therefore, by analytic continuation,
(10), and so also (15), is valid under the condition (11).

It should be noted that if (11) is replaced by the condition v > A > —1, then the con-
ditions for the validity of the solution turn out to be 0 < x < 2, 2v+a >0 and —2<a <0,
2v+a+2 > 0, i.e. precisely the conditions obtained by other methods (cf. [4], [6], [7]; this point
is discussed more fully in [4]). These conditions are less restrictive than the conditions (29)
when —2<a< —land whenO0<a< 1.

This suggests that in fact (15) is valid under the less restrictive condition v> 1> —1,
rather than (11), and raises the question of some other method of derivation, one avoiding the
Hankel inversion theorem. One such method is the use of Parseval Theorem (see [9, p. 59]):

J * XF(0)G(x) dx = j ® wF(u)G(u) du, (32)

1} 0

provided that | x*F(x) dx and | x*G(x) dx are absolutely convergent, where F and G are

0 0
the Hankel transforms of F(x) and G(x), respectively, given by (30). Applying (32) to (4) and
(9), we easily find (15); but with F(f) = t~*~'J,_,_,(a?) the condition of absolute convergence
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yields the condition v > 24+ 4 > 1, already mentioned, which is even more restrictive than (11).

It appears that, without a detailed discussion of the convergence of the integrals (as was
carried out by Busbridge [2]), the method presented abovet is simply a formal procedure for
obtaining the solution which cannot be relied upon to furnish the conditions for validity of this
solution. The same is true of Gordon’s original method [3], where the validity of a Hankel
inversion does not come into question until it applies to an expression involving an unknown
function (as in going from (17) above to (18)), and also of other methods of solution (as was
suggested in [7]). In all these methods a source of difficulty is the fact that conditions for the
order of integrations, or of integration and differentiation, to be inverted are assumed to be
satisfied (as was done above) but these conditions are not reflected in restrictions on the para-
meters.

T Related ideas have recently been used by Peters [12] and Sneddon [13].
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