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DETECTION OF HAMILTONIAN CIRCUITS
IN A DIRECTED GRAPH
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Abstract

A simple algebraic method is presented to determine the necessary condition for the
existence of a Hamiltonian circuit in a directed graph of n vertices. A search procedure is
then introduced to identify any or all of the existing Hamiltonian circuits. The procedure
is based upon finding a set of edges which will then be candidates for being parts of
circuits of length n at any vertex of the graph.

1. Introduction

A circuit in a connected graph is said to be Hamiltonian if it includes every vertex
once. Hence a Hamiltonian circuit in a graph of n vertices consists of exactly n
edges. Because of its practical application the subject has generated renewed
interest in diverse fields of engineering sciences since it was first proposed by the
Irish mathematician Sir William Rowan Hamilton in 1895. A method for finding
whether a graph contains a Hamiltonian circuit or not has direct applications in
problems of sequencing or scheduling of operations. Equally important, however,
is the use of such a method as a basic step in algorithms for the solution of other
seemingly unrelated graph theory problems [3].

A Hamiltonian path [7] is closely related to a corresponding Hamiltonian
circuit and is obtained by removing one edge from the circuit. Thus every graph
that has a Hamiltonian circuit also has a Hamiltonian path; obviously the reverse
is not necessarily true.
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The problem of determining Hamiltonian circuits in a given graph has offered
an interesting challenge to the applied mathematicians and graph theorists. But in
spite of the various attempts so far no efficient algorithm has been developed to
characterize such a circuit in a graph. In fact it has been shown [4, 5] that the
problem for finding a Hamiltonian circuit in a graph is one of NP complete
problems. Consequently, attention has been directed to the development of
efficient algorithms for some special but useful cases. Some sufficient conditions
for the existence of a Hamiltonian circuit have been obtained in terms of degree
sequence of a graph [2]. Takamizawa et al. presented an O(n3) time algorithm for
finding a Hamiltonian circuit in a diconnected graph satisfying Meyniel's condi-
tion [6].

This paper considers a general case and presents a simple algorithm to
determine the necessary condition for the existence of any Hamiltonian circuits in
a directed graph. On the basis of the necessary condition a search procedure is
then developed to detect and identify all the existing Hamiltonian circuits in the
graph.

2. Terminology

Standard graph theory terminology has been used throughout. For the sake of
clarity, the following terms are repeated.

A graph G = (V, E) consists of a finite, nonempty set of vertices V and a set of
edges E. If the edges are ordered pairs (M, W) of vertices, then the graph is said to
be directed. The vertex u is called the tail and w the head of the edge (u, w). If the
edges are unordered pairs of distinct vertices then the graph is said to be
undirected. The graph G is assumed to have n vertices. The degree of a vertex w,
denoted by d(u), is the number of edges incident to u.

Adjacency matrix. The adjacency matrix A of a directed graph G is an n by n
matrix with an element atJ such that

_ i 1 if there is an edge from vertex / to vertex j ,
lJ 10 otherwise.

Connection matrix. The connection matrix C of the graph G is a square matrix
of order n with an element c,y and represents the simplified structure of G, that is,
Cjj — 0 if there is no edge from vertex i to vertex j . Otherwise, c > 0 and
indicates that there is at least one directed edge connecting vertex / to vertex j . c,,
is taken to be identically zero. That is, all the self loops in G are ignored.
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3. Symbols

In addition to the above, additional symbols are introduced for ease of
discussion. Ap is the/?th power of the adjacency matrix A and a\p) is an element
of the matrix Ap, p = 1,2,...,«. The matrix A\ is obtained by zeroing all the
diagonal elements of A. a^J is an element of Ax. The matrices Ak and Ak,
k = 2 ,3 , . . . , n, are defined recursively as follows:

The operation '*' is the same as the ordinary row by column multiplication in
matrix theory except that ' + ' operation is done according to the following table:

+
0
1

0

0
1

1

1
1

We define

A2 = Ai * At.

A2 is obtained by zeroing all the diagonal elements of A2. Similarly,

A3 = A2 * Ax.

A3 is obtained by zeroing all the diagonal elements of A3. Continuing the process
finally we get

Ak=Ak_x*A,. (1)

Let a,'*' be an element of Ak and a}*' be an element of Ak. Thus,

fl{J) = fl<*) for i * ; ,

a<*) = 0 for i=j.

Clearly, dj*' and aj** can assume values O's and l's only.

4. Development of the algorithm

Since any loop at any one of the vertices will contribute nothing to the final
determination of the Hamiltonian circuit, its effect is nullified by excluding it
from the adjacency matrix. Thus, the starting matrix is taken to be Ax not A.

Let any circuit of length < n at any one of the vertices be called a local circuit.
From the well known properties of the adjacency matrix [1], it is known that if
a\p) = q > 0 then the vertex v can be reached from vertex v, in p steps by q
different ways. Thus if a{,2) ^ 0, there will be a local circuit of length 2 at the
vertex vr The contribution of this local circuit in the next matrix multiplication is
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nullified by replacing A2 by A2. Again if a,(,3) ¥= 0, there will be a local circuit of
length 3 at the vertex u,. Its contribution in the next matrix multiplication is
avoided by replacing A3 by A3. Continuing this process by ordinary matrix
multiplication, define a detection matrix as:

Dn=An_{XC. (2)

Let dl} be an element of the matrix £>„. Clearly if any one of du = 0 for
/ = 1,2,... ,n, there cannot exist any circuit of length n at the vertex vr Thus the
necessary condition for the existence of any Hamiltonian circuit is that

dn =^0 for alii = l,2,...,w.

It is emphasized here that the multiplication of Ak by A, is equivalent to adding
an arc at the beginning of a path recorded by Ak. Thus even though du =£ 0, it
does not necessarily indicate the existence of any Hamiltonian circuit; it only
indicates that there is a circuit of length n. Thus the above zeroing method
succeeds only in eliminating paths that end with a loop. The objective of zeroing
the diagonal elements is to eliminate as many edges as possible which will not
contribute in the final identification of the existing Hamiltonian circuits. When
dti *= 0, from (2)

^i = cpi + cqi +•••+€„, ( 3 )

w h e r e p , q , r, etc. a r e a l l d i s t i n c t a n d 1 < p , q , - - -,r < n. T h e e d g e s cpi, cqi,...,cn

are all incident to the vertex u, and thus potential candidates for being parts of
any existing Hamiltonian circuits. Let the number of edges incident on vertex u,,
as obtained from (3), be denoted by /,. Thus /, can be viewed as the effective
degree of the vertex o,.

Now in order to trace the existing Hamiltonian circuits in the graph the
concept of reachability is introduced as follows:

From (3), the vertex v, can be reached in one step from each of the vertices
vp,vg,...,vr. The reachability of the vertex o, is given by

»/ - 2 J (4)

where j can only assume values p,q,...,r as obtained from (3) and t, is the
number of terms in the right hand side of (3).

Next pick up a vertex u, corresponding to minimum tr Write the reachability at
vertex cr This will generate a series of vertices. Again apply reachability from (4)
at each of the vertices. This process is repeated n times. If in the process of any
vertex is repeated, further processing at that vertex is discontinued. Hamiltonian
circuits can now easily be traced by noting the starting and ending vertices of the
circuit of length n.
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5. Illustrative examples

[si

The following three examples are presented to illustrate the technique.
Example 1. Consider the graph of Figure 1. Here

0 1 1 0 0"
0 0 0 1 0
1 1 0 0 0

C =

A =

0
0
C31

0
c

0
0
1
0
1

1
0
1
0
1

1
0
1
1
1

0
1
0
0
1

o"
0
0
1
0.

Ax -

51

c\2
0
C32

43

54

0
0
0
C45

0

0 0 1 0 1
1 1 1 1 0

0 1
1 0
1
1

1
0 1
1 0
1 1 0 0

1 1 1 1 0 .

Figure 1. Graph of Example 1.

From (2),
dn = c52,

~ c\3 + C43
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Since dti ^ 0 for all / = 1,2,..., 5, the necessary condition for the existence of
a Hamiltonian circuit is satisfied. In order to trace the circuit, the reachability at
each of the vertices is written from (4) as shown below.

u, ^ 3 + 5, «2<- 1 + 3 + 5,

v3 <- 1 + 4 + 5, u4 <- 2, v5 <- 4.

Now starting with the vertex v5 corresponding to min(?,) = 1, write succes-
sively the reachability at each of the vertices thus generated. The whole process is
shown in Figure 2. The following two circuits are detected.

(i) / -» 3 -» 1 -» 2 - 4 -» 5,

Figure 2. Detection of Hamiltonian circuits of Figure 1.
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Example 2. Consider the graph in Figure 3. Here 

Ai = 

0 1 0 0 
1 0 1 0 
0 1 0 1 
0 0 1 0 

0 1 0 1 
0 0 1 0 
0 1 0 0 
1 0 1 0 

0 C | 2 0 0 
C 2 1 0 C 2 3 0 
0 c 3 2 0 £34 

0 0 C 4 3 0 

Figure!. Graph of Example 2. 

From (2), 

d\\ — c 2 1 > ^ 2 2 — c 3 2 > 

^ 3 3 = ^ 2 3 . d ' 4 4 L 3 4 -

Since dit ¥^ 0 for all / = 1,2,... ,4, the necessary condition for the existence of 
a Hamiltonian circuit is satisfied. The reachability is given by 

2, t>2 «- 3, t?3 3. 

Since vertices 4 and 1 do not appear in the righthand side of the above 
reachability no Hamiltonian circuit is possible as shown in Figure 4. 
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Figure 4. N o Hamiltonian circuit exists in the graph of Figure 3. 

Example 3. Consider the graph of Figure 5. Here, 

A =Al 

0 1 0 0 
1 0 1 0 
1 1 0 1 

.0 0 0 0 . 
Since all the elements of Ax in the fourth row are 0's, no vertex can be reached 

from the vertex 4. Hence no Hamiltonian circuit can exist. 

Figure 5. Graph of Example 3. 
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6. Concluding remarks

A simple algorithm has been presented to find the necessary condition for the
existence of a Hamiltonian circuit in any planar directed graph. The algorithm is
based heavily on the properties of the adjacency matrix of the graph. Some
obvious conclusions can be made by examining the adjacency matrix itself. If all
the elements in a row or column are O's the graph is not connected and hence no
Hamiltonian circuit can exist. If all the elements are l's, the graph is complete
and hence a Hamiltonian circuit must be present. Since the elements of the
matrices generated can only be O's or l's, the matrix multiplication can be
obtained with relatively less effort by binary operation even for a matrix of large
order. It is easy to program on a digital computer and by storing only the nonzero
elements of the matrices computer storage can be greatly reduced. Since the
product of two Boolean n X n matrices can be completed in O(n28>) steps [1] and
the algorithm requires n matrix multiplications, the computational complexity of
the present algorithm will be in the range of O(n3S>). In practice the range will be
much smaller than O(n381) since in each matrix multiplication as soon as 1 has
been obtained in an element, the row by column computation will be stopped.
After obtaining the necessary condition, by applying the search procedure intro-
duced in the text the existing Hamiltonian circuits can easily be traced.
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