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Neuropsychiatric symptoms predict rate of change in executive
function in Alzheimer’s disease and related dementias
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Abstract

Objective: Neuropsychiatric symptoms (NPS) are considered diagnostic and prognostic indicators of dementia and are attributable to
neurodegenerative processes. Little is known about the prognostic value of early NPS on executive functioning (EF) decline in Alzheimer’s disease
and related dementias (ADRD).We examined whether baseline NPS predicted the rate of executive function (EF) decline among older adults with
ADRD.Method:Older adults (n= 1625) with cognitive impairment were selected from theNational Alzheimer’s Coordinating Center database. EF
was estimated with a latent factor indicated by scores on Number Span Backward, Letter Fluency, and Trail Making-Part B. A curve of factors
(CUFF) latent growth curve model was estimated to examine rate of change over four years. Baseline NPS severity was entered as a predictor in the
model to examine its influence on the rate of change in EF over time. Results: The CUFF models exhibited good fit. EF significantly declined over
four waves (slope=−.16, p< .001). Initial visit NPS severity predicted decline in EF (slope= .013, p< .001), such that those with greater baseline
NPS severity demonstrated a more rapid decline in EF performance over time. Presence of 2 NPS significantly predicted EF decline, and those with
medium total NPS severity (NPS score of 2–4) at baseline exhibited a sharper decline in EF. Conclusions: Findings underscore the importance of
targeting NPS early across ADRD syndromes to minimize EF decline, offering novel insights into how early NPS treatment may alter cognitive
trajectories. We provide an innovative, user-friendly web-based application that may be helpful for personalized treatment planning.
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Introduction

Alzheimer’s disease and related dementias (ADRD) are neurode-
generative disorders characterized by declines inmemory, thinking
skills, and day-to-day functioning. Alzheimer’s disease (AD) is the
most common cause of dementia, followed by vascular, Lewy body
(DLB), and frontotemporal dementias (Goodman et al., 2017).
Approximately 5 million people in the United States age 85 years
and older have ADRD, and this prevalence is expected to more
than double by 2025 (Office of the Assistant Secretary for Planning
and Evaluation, n.d.). As of 2019, the global economic burden of
ADRD was $2.8 trillion, and this is expected to increase to $16.9
trillion by 2050 (Nandi et al., 2022). This looming societal health
and economic burden provides the impetus for research on
sensitive, patient-specific methods of early disease identification
and monitoring.

There has been increased attention on executive functioning
(EF) decline and neuropsychiatric symptoms (NPS) in ADRD,
given their importance for differential diagnosis (Guarino et al.,
2019; Pakzad et al., 2018), and functional decline (Cahn-Weiner
et al., 2003; Farias et al., 2003; Gallo et al., 2008; Razani et al., 2007),
and conversion from MCI to dementia (Acosta et al., 2018; David

et al., 2016; Edwards et al., 2009; Jung et al., 2020; Teng et al., 2007).
EF represents “higher-order” cognitive processes (e.g., inhibitory
control, working memory, initiation, cognitive flexibility, problem
solving, decision-making, emotion regulation) (Diamond, 2013;
Suchy, 2015) that subserve complex, goal-directed tasks and
behaviors (e.g., preparing food, managing medications and finances,
etc.) (Gauthier & Gauthier, 1990; Lezak, 2012). NPS (e.g., apathy,
depression, aggression/agitation, anxiety, and irritability) (Devanand
et al., 2022; Zhao et al., 2016) are common among ADRD
syndromes, and presence and severity of NPS predict decreased
quality of life (Kwon & Lee, 2021; Lyketsos et al., 2000; Martin &
Velayudhan, 2020; Sadak et al., 2014). Executive dysfunction (Allain
et al., 2013; Carlson et al., 2009; Duarte-Abritta et al., 2021; Guarino
et al., 2019; Harrington et al., 2013) and NPS (Apostolova &
Cummings, 2008; Diniz et al., 2013; Gallagher et al., 2017; Kwon &
Lee, 2021; Leoutsakos et al., 2015) are evident in pre-clinical ADRD
and throughout disease progression, and can be considered relevant
cross-diagnostic features across ADRD syndromes (Johns et al.,
2009; Kwon & Lee, 2021; Ramirez-Gomez et al., 2017).

Shared neurobiological and clinical mechanisms may provide
opportunities for development of generalizable, transdiagnostic
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interventions in ADRD (Zeng et al., 2023). EF and NPS are both
considered frontally mediated processes, implying overlapping
pathology in ADRD (Bruen et al., 2008; J. Cummings, 2020; J. L.
Cummings, 1993; J. Cummings & Mega, 2003; Godefroy, 2003).
Cross-sectional research examining the association between NPS
and EF in ADRD further highlights overlapping clinical
mechanisms (Chen et al., 1992; García-Alberca et al., 2011). For
example, agitation and disinhibition were associated with deficits
in planning, organization, inhibitory control, and selective and
divided attention (De Lucia et al., 2023). However, there is limited
research on the predictive role of NPS on the longitudinal
trajectory of EF, which hinders our understanding of how these
factors interact over time.

Recent longitudinal studies have shown mixed findings on the
predictive role of NPS on EF over time. Two studies have shown
that NPS predict more rapid cognitive decline over time in
cognitively normal older adults (Burhanullah et al., 2020; Krell-
Roesch et al., 2021). One study found that higher baseline NPS
severity predicted steeper decline on EF tasks over time in patients
with MCI due to probable Lewy body disease and Parkinson’s
disease (Wright et al., 2023). In contrast, baseline NPS had no effect
on cognitive functioning over time in patients with subjective
cognitive decline, MCI, or probable AD (Eikelboom et al., 2021).

Mixed findings may be the result of the measurement and
modeling approaches used in these studies. First, EF was
operationalized using only one test (Burhanullah et al., 2020) or
with a composite score derived from a global cognitive screening
measure (e.g., the Mini-Mental State Examination) (Eikelboom
et al., 2021; Wright et al., 2023); neither approach captures the full
range and extent of EF abilities. Further, manifest variables—those
that are directly observed—do not account for measurement error
(e.g., variability in task administration) or the interaction among
measures (e.g., association between two EF tasks). Second, linear
mixed effects modeling does not offer as much flexibility or nuance
compared to other approaches, as it assumes both linear change
over time and a linear relationship between domains of interest.
In other words, this approach assumes that 1) EF is a static
construct that declines at a steady rate, and 2) the relationship
between NPS and EF is consistent over time. Thus, important
information about dynamic, nonlinear associations between NPS
and EF decline might be missed (McNeish & Matta, 2018).

Latent growth curve modeling (LGCM) is considered the gold
standard approach for modeling growth and decline over time in
developmental psychology (Nesselroade, 1991) and cognitive
aging research (McArdle et al., 2004, 2009; Ng et al., 2023) because
it provides precise estimates of intra- and inter-individual change.
This model suggests that a single trajectory underlies growth or
decline over time, allowing for strong and reliable estimates of 1)
how things change over time and 2) what factors are associated
with those changes (Ferrer et al., 2008; Liu & Chang, 2010;
McArdle, 2009). LGCM also allows for flexible estimation of
nonlinear change (e.g., differences in rate of change in EF over
time) (Grimm et al., 2011; McNeish & Matta, 2018). For example,
one study used LGCM to examine the relationship among
cognitive domains over time among cognitively normal older
adults. Findings showed subtle declines in EF/attention and
processing speed, while language and memory scores improved
over time. Additionally, lower EF at baseline predicted decline in
memory over time, suggesting that intact baseline EF is important
for preserving memory functioning throughout aging (MacAulay
et al., 2018). A separate study used LGCM to model longitudinal
change in neuropsychological performance in MCI and found that

EF declined more rapidly than all other neurocognitive domains,
suggesting intra-individual variability in cognitive decline
(Johnson et al., 2012). Therefore, LGCM may offer a more robust
approach to estimating within- and between-person differences in
the association between baseline NPS and longitudinal EF.

The present study

Precise research is needed to clarify the trajectory of EF decline in
ADRD as well as the predictive role of early NPS on EF decline.
Evaluation of NPS effects on EF decline over time among patients
with ADRD may provide novel insights into the prognostic value
of NPS and elucidate shared frontally mediated symptom
presentations. Such insights are essential for advancing prognostic
accuracy and identifying critical time points for targeted
intervention. This study used the National Alzheimer’s
Coordinating Center (NACC) Uniform Data Set (UDS) to
examine whether baseline NPS severity predicts rate of decline
in EF in older adults with ADRD over four years. We modeled
inter- and intra-individual patterns of EF change over time using
second-order latent growth curve modeling. We expected that
those with higher baseline NPS severity would exhibit more
accelerated decline in EF.

Method

The NACC UDS provides a comprehensive data repository for
research on neurodegenerative disorders. While the primary
disorder of interest is Alzheimer’s disease, several other neurode-
generative conditions are included in the database and patients
with ADRD are followed over time. TheUDS contains longitudinal
data that have been collected since 2005 at NIA-funded
Alzheimer’s Disease Research Centers (ADRCs) across the
United States. Data elements and collection methods have been
described previously (Beekly et al., 2004, 2007; Besser et al., 2018;
Morris et al., 2006). The NACC UDS includes neuropsychological,
behavioral, medical, and health history data in order to accurately
diagnose neurodegenerative disease and track its course (Morris
et al., 2006). Participants and study partners enrolled at each
ADRC provide written consent as part of the IRB-approved
protocol at that site. This consent covers both the data collection
procedures required by the respective center as well as the
inclusion of the participant’s data in the larger NACC UDS
database.

Participants

Participants were selected from the NACC UDS (v3-v3.2) data set
(https://naccdata.org/). Patient evaluations were completed at
funded ADRCs during the period between March 2015 and the
freeze date of June 2023. Patient demographic variables and
diagnostic status were used to identify the sample for analysis
(Supplementary Figure 1). Data were included from four study
visits: baseline (wave 0), 1 year (wave 1), 2 years (wave 2), and 3
years (wave 3). The following inclusionary criteria were applied for
sample identification: participants aged 50 years or older;
participants completed a baseline evaluation during UDS v3 or
v3.2; and participants completed evaluations across the four
consecutive waves (n= 3,770 after initial selection criteria).
Participants were excluded if their cognitive status was “normal
cognition” at all waves (excluded n= 1,844), if they were diagnosed
as cognitively impaired due to a non-neurodegenerative etiology
(i.e., “cognitively impaired, not MCI”; excluded n= 293), and if
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their cognitive data were considered invalid according to clinician
report (excluded n= 8).

Measures

Race and ethnicity

In order to examine participant race and ethnicity, a new variable
was calculated that combined data from the NACC-derived race
variable for the six main census race groups and the UDS ethnicity
variable for Hispanic/Latino ethnicity. Five new racial/ethnic
groups were created from these data: non-Hispanic white,
Hispanic white, non-Hispanic Black, Hispanic Black, and all other
categories.

Cognitive status and dementia etiology

Cognitive status and etiologic diagnosis for each patient was
determined through a formal process at each ADRC using the 2011
National Institute on Aging-Alzheimer’s Association (NIA-AA)
guidelines (Albert et al., 2011; Besser et al., 2018). Diagnoses are
assigned by either a consensus panel of experts or by the single
physician conducting the examination, and this varies by center.
Cognitive impairment includes the following categories: 1) normal
cognition, 2) impaired-not-MCI (subjects who are cognitively
impaired due to non-neurodegenerative etiology), 3) MCI
(subjects with either amnestic or non-amnestic MCI), and
4) dementia (subjects who have a diagnosis of dementia)
(Petersen & Morris, 2005). We excluded from our analytic sample
all those with an “impaired-not-MCI” diagnosis. Participants were
also excluded if their diagnostic severity was rated “normal
cognition” across all four waves. Etiology of impairment includes
the following categories, which are available for each of the
neurodegenerative disorders (AD, DLB, Vascular, frontotemporal
lobar degeneration [FTLD]): 1) primary (e.g., AD is the primary
cause of observed cognitive impairment) and 2) contributing (e.g.,
AD is a contributing cause of observed cognitive impairment
(Morris et al., 2006). See Supplementary Figure 1 for a detailed
description of sample selection.

Characterization variables

The Geriatric Depression Scale (GDS) is a self-report measure of
depression symptoms (Yesavage & Sheikh, 1986). Patients rate
whether they experienced 15 depression symptoms over the last
week (0=No, 1= Yes). Scores are summed with scores of 9–11
indicating moderate depression and scores of 12–15 indicating
severe depression. The Clinical Dementia Rating (CDR®)
Dementia Staging Instrument is a 5-point scale that characterizes
six domains of cognitive and functional abilities (Morris, 1993).
Information is obtained through semi-structured interview of
the patient and informant, and clinicians rate the patient’s level
of overall impairment (0.0=No impairment–3.0= Severe
Impairment).

Model variables

Neuropsychiatric symptoms
The NPI-Q is a widely used measure to assess neuropsychiatric
symptoms among clinical populations (Kaufer et al., 2000). The
NPI-Q relies on a caregiver/informant report of the presence and
severity of 12 neuropsychiatric symptoms evident within the past
month. Assessed symptoms include delusions, hallucinations,
agitation/aggression, depression/dysphoria, anxiety, elation/

euphoria, apathy/indifference, disinhibition, irritability/lability,
motor disturbance, nighttime behaviors, and appetite/eating
problems (Kaufer et al., 2000). Informants endorsed the presence
(0 =No, 1= Yes) and severity (1=Mild, 2=Moderate, 3= Severe)
of each symptom. The total NPI-Q symptom severity score is
calculated by summing the severity score for each symptom (range
0–36). The NPI-Q has adequate psychometric properties,
including acceptable test–retest reliability and convergent validity
(Kaufer et al., 2000).

Executive functioning
Three measures in the NACC UDS v.3 neuropsychological battery
provide distinct values of EF (e.g., phonemic fluency, working
memory, set-shifting/cognitive flexibility) and were used to
estimate a single EF factor. Phonemic Fluency (2-letter version)
is a measure of speeded word generation in response to phonemic
cues. Participants are asked to name items that begin with a certain
letter, and the number of unique correct responses are scored.
Possible scores range from 0 to 80 points (Besser et al., 2018).
Number Span Backward is a measure of working memory.
Numbers are presented orally and participants are asked to recall
the numbers in reverse order; item difficulty increases in ascending
order. We use the number of correct trials as a total score in the
model, which ranges from 0 to 14 (Besser et al., 2018). TrailMaking
Test Part B (TMT-B) is a measure of set-shifting and cognitive
flexibility. Participants are asked to draw lines in number and letter
order while shifting between numbers and letters. Total time to
complete the task is scored with possible scores ranging from 0 to
300 s (Reitan & Wolfson, 1993).

Analyses

Statistical analyses were conducted in R version 4.0.3 using the
lavaan package (Roseel, 2012). NPI-Q severity scores and TMT-B
scores were reverse scored so that higher scores indicated better
functioning across all measures. Analyses were conducted in three
stages. First, confirmatory factor analysis (CFA) was used to model
EF from the three EF measures, and measurement invariance was
examined across waves. Second, a curve-of-factors (CUFF) latent
growth curve model was then used to examine rate of change in the
EF factor across waves. Third, structural regression was used to
examine whether NPS severity at W0 predicted rate of change in
the EF factor over four waves (Ferrer et al., 2008).

Measurement invariance of executive functioning

CFA was used to estimate the executive function factor from
Number Span Backward, Letter Fluency, and TMT-B (Staffaroni
et al., 2021). Full information maximum-likelihood (FIML)
estimation and maximum likelihood with robust standard errors
(MLR) estimation were used as they are robust to missingness and
non-normality, respectively (Enders & Bandalos, 2001). Four
nested models were compared to test measurement invariance
across the four waves: configural invariance model (establishes
model specification equivalence), metric invariance model
(establishes equivalence of factor loadings), scalar invariance
model (establishes equivalence of intercepts), and strict invariance
model (establishes equivalence of residuals). Models are consid-
ered invariant if there is no significant reduction in model fit at any
step. The configural model had the following identification
constraints: all factor loadings and intercepts were freely estimated;
the mean and variance of all factors were set to 0 and 1,
respectively, (creating a standardized latent factor). Correlations
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were permitted between factors at each time point, and temporal
correlations were permitted between like indicators at each wave.
In the nested metric model, factor loadings were set to be
equivalent across time, and constraints on the factor variances
were removed for wave 1 through wave 3. In the nested scalar
model, indicator intercepts were set to be equivalent across time,
and constraints on the factor means were removed for wave 1
through wave 3. In the nested strict model, indicator residual
variances were set to be equivalent across time.

Overall model fit was determined using χ2 goodness-of-fit test,
comparative fit index (CFI), and root mean square error of
approximation (RMSEA). A nonsignificant p value suggests
adequate model fit for the χ2 test; however, this test is affected
by large sample sizes (Cheung & Rensvold, 2002; Hu & Bentler,
1999). Fit indices were considered satisfactory when CFI> .95 and
RMSEA < .06 (Hu & Bentler, 1999). Model comparisons were
analyzed using change in chi-square (Δχ2) and change in CFI
(ΔCFI) (Cheung & Rensvold, 2002).

Longitudinal change in EF predicted by NPS

Longitudinal change in EF was assessed using a second-order
growth model, or curve-of-factors (CUFF) LGCM (Ferrer et al.,
2008; Tisak & Meredith, 1990), in which change is modeled at the
latent level over time. The CUFF model is an extension of the
LGCM; while the LGCM estimates change of observed variables
(e.g., raw scores or composite scores) over time, the CUFF model
measures change at the latent level over time. Differently stated, the
CUFF model fits a growth curve to factor scores (hence “curve-of-
factors”) and estimates longitudinal change of the latent factors
(Ferrer et al., 2008). First, the strict temporal invariance CFA
model was estimated, which consisted of four factors: Wave 0 EF,
Wave 1 EF, Wave 2 EF, andWave 3 EF, with added constraints for
identification purposes. Letter Fluency and TMT-B were rescaled
(Letter Fluency/10; TMT-B/1000) to help with residual variance
estimation. We then fit a growth curve to these four factors.
Growth parameters were estimated to examine the intercept and
slope (i.e., rate of change in EF), and the association between
intercept and slope at the latent level. The intercept factor loadings
were constrained to be constant across waves with loadings of 1 for
all time points. The slope factor loadings had fixed coefficients of 0,
1, 2, and 3 to reflect each visit. Latent EF factor means were
constrained to be 0 to model change in EF with the intercept and
slope factors. The intercept factor mean and variance were
constrained to be 0 and 1, respectively, for identification purposes.
This specification is consistent with fixing the latent EF mean and
variance at baseline to 0 and 1 to establish a standardized latent
factor at baseline. The slope factor mean and variance were freely
estimated. The intercept and slope latent factors were regressed on
baseline NPI-Q total symptom severity scores to estimate the
predictive value of baseline NPS total severity on EF decline.

Results

The final sample (n= 1,625) consisted of older adults
(MW0age= 71.3, SDW0age= 8.18; 46.7% female, Meducation= 16
years, SDeducation= 2.91 years) who predominantly identified as
non-Hispanic white (79.4% non-Hispanic white, 9.5% non-
Hispanic Black, 5.6% Hispanic white, 5.1% other, 4% Hispanic
Black). The majority of the sample met criteria for MCI at W0
(48%), and a large percentage of the sample met criteria for
dementia at waves 1–3 (W1: 44.9%; W2: 50.7%; W3: 55.8%). AD
was the presumed primary etiology for cognitive impairment for

themajority of the sample across all waves followed by FTLD, Lewy
body disease, and cerebrovascular disease (Table 1). On average,
1 or more symptoms were endorsed on the NPI-Q at W0 (median
number of symptoms= 2, min = 0, max= 11). Among those who
endorsed symptoms at W0, total NPS severity was low overall
(median total symptom severity= 3, min = 1, max = 26). Themost
frequently endorsed symptom at W0 was anxiety (31.44%),
followed by irritability/lability (31.35%), and depression/dysphoria
(30.32%). Hallucinations were the least frequently endorsed
symptom at W0 (3.94%). See Table 2 for additional characteri-
zation of NPS severity at W0.

Cognitive variables met assumptions for normal distribution
(skewness < |1.0|; 2 > kurtosis < 4 ) for all variables across all time
points, and NPI-Q at W0 did not meet assumptions for normality
(skewness = 2.02; kurtosis= 7.93) (Field, 2013) (Table 3). Thus,
FIML with MLR was used in all models, and robust fit statistics are
reported. Results from the three structural equation models are
discussed separately, below.

Measurement invariance over time

Table 4 provides the model fit for the measurement invariance
models. Strict measurement invariance was established at all

Table 1. Participant demographics stratified by time point

Sample Characteristics by Wave (n= 1,625 people)

Wave 0 Wave 1 Wave 2 Wave 3
Age [M(SD)] 71.3

(8.18)
72.5
(8.18)

73.6
(8.18)

74.8
(8.20)

Sex (N)
Male 866 — — —

Female 759 — — —

Education Years [M(SD)] 16
(2.91)

— — —

Ethnic Racial Group (%)
non-Hispanic white 79.4% — — —

non-Hispanic Black 9.5% — — —

Hispanic white 5.6% — — —

Hispanic Black 4.0% — — —

Other 5.1% — — —

Cognitive Status at Visit (%)
Normal Cognition 233

(14.3%)
220

(13.5%)
209

(12.9%)
181

(11.1%)
MCI 780

(48%)
676

(41.6%)
592

(36.4%)
537

(33.0%)
Dementia 612

(37.7%)
729

(44.9%)
824

(50.7%)
907

(55.8%)
Alzheimer’s Disease Etiology (N)
Primary 965 974 961 969
Contributing 36 30 39 55

Lewy Body Disease Etiology (N)
Primary 94 100 110 113
Contributing 15 21 25 30

FTLD Disease Etiology (N)
Primary 104 105 105 103
Contributing 11 12 8 9

Vascular Disease Etiology (N)
Primary 56 58 58 65
Contributing 70 75 90 96

Note: Etiology variables may not add up to 1,625 as 1) there may be overlapping etiologies,
2) etiology diagnosis might change over time, and 3) there are other classifications that are
not included here. All totals are relative to a given etiology category. M=mean,
SD= standard deviation, MCI=mild cognitive impairment, FTLD= frontotemporal lobar
degeneration. Disease etiology derived from clinician diagnosis of cause of observed
cognitive impairment due to Alzheimer’s disease, Lewy Body Disease, FTLD, or vascular
diseases. Other* ethnoracial group includes those identifying as Asian, American Indian/
Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, and Unknown.
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four stages, suggesting that the EF factor is time-invariant
(see Supplementary Figure 2). The largest ΔCFI was .008, which
suggests imposing measurement invariance constraints do not
substantially worsen model fit.

Decline in EF over time

We initially attempted to freely estimate the latent EF factor
variances, but we encountered a Heywood case (i.e., negative
variance estimate). We fit alternative specifications that fixed
variances to 0, equated variance estimates across waves
(i.e., equivalent residual EF variance at each wave), or constrained
the variances for the Heywood case (i.e., EF W0) to be positive

(Supplementary Table 1). All models are included in the
supplemental materials, and all models imply the same substantive
conclusions. We focus here on the best fitting model without a
Heywood case, a model in which we fixed EF factor variance
estimates at W0 to be greater than 0.

Using the strict invariance model, a CUFFmodel was estimated
to examine rate of change in EF over time (see Supplementary
Figure 3). The CUFF model exhibited good fit (χ2[57] = 195.44,
p< .001; CFI = .98, RMSEA = .04). EF declined at a rate of .16 SDs
per wave (p< .001). Differently stated, participants with average
EF at baseline (standardizedMEF at W0= 0) would be expected to
decline .48 SDs by W3 (Table 5). EF intercept and slope were
positively correlated (r= .25), such that the higher initial EF scores

Table 2. Frequency of neuropsychiatric symptom severity ratings at wave 0 by symptom and overall total

Wave 0 Frequencies of Neuropsychiatric Symptom Severity Levels

Symptom Symptoms Not Present Mild Moderate Severe
Delusions 94.51% 3.10% 1.87% 0.52%
Hallucinations 96.06% 3.10% 0.58% 0.26%
Agitation/Aggression 79.99% 12.07% 6.97% 0.97%
Depression/Dysphoria 69.73% 21.93% 7.18% 1.16%
Anxiety 68.61% 20.45% 9.58% 1.36%
Elation/Euphoria 95.41% 3.30% 1.10% 0.19%
Apathy/Indifference 75.02% 15.86% 6.67% 2.46%
Disinhibition 85.70% 9.13% 4.01% 1.17%
Irritability/Lability 68.74% 20.71% 8.74% 1.81%
Motor Disturbance 89.39% 6.08% 3.30% 1.23%
Nighttime Behaviors 78.60% 11.95% 7.88% 1.58%
Appetite/Eating Problems 82.32% 11.33% 5.12% 1.23%

Absent Symptoms (0) Low Total Severity (1) Medium Total Severity (2-4) High Total Severity (>4)
Total Symptom Severity 33.80% 15.00% 27.70% 23.50%

Note:Neuropsychiatric symptom ratings derived from the NPI-Q. Item-level ratings: symptomnot present= 0, mild= 1, moderate= 2, severe= 3. Total Symptom Severity score takes the sumof
each of the 12 symptom severity scores. Total Symptom Severity Score range= 0-26. Based on quantiles, the following item-level ratings were applied to the Total Symptom Severity score: no
symptoms reported on any items (“absent symptoms”) = 0, “low severity” overall= 1, “medium severity” overall= 2-4, and “high severity” overall > 4.

Table 3. Cognitive & neuropsychiatric characteristics stratified by time point for overall sample

Descriptive Statistics by Wave (n= 1,625)

Wave 0 Wave 1 Wave 2 Wave 3
CDR Global Impairment Rating (%)
None (0.0) 270 (16.6%) 227 (14%) 213 (13.1%) 204 (12.6%)
Questionable (0.5) 1054 (64.9%) 941 (57.9%) 801 (49.3%) 688 (42.3%)
Mild (1.0) 248 (15.3%) 328 (20.2%) 387 (23.8%) 344 (21.2%)
Moderate (2.0) 43 (2.6%) 94 (5.8%) 163 (10.0%) 234 (14.4%)
Severe (3.0) 10 (.6%) 35 (2.2%) 61 (3.8%) 155 (9.5%)

Depression Total Score[M(SD)] 2.18 (2.31) 2.11 (2.20) 2.15 (2.21) 2.30 (2.35)
NPS Severity [M(SD)] 2.91 (3.80) 3.24 (4.00) 3.82 (4.53) 4.26 (4.83)
Min-Max 0–26 0–28 0–26 0–30
Skewness 2.02 1.93 1.78 1.63
Kurtosis 7.93 7.92 6.67 6.15

Trail Making Test Part B [M(SD)] 133 (76.9) 137 (78.4) 143 (81.2) 147 (85.2)
Min-Max 17–300 24–300 29–300 37–300
Skewness 1.13 1.02 0.87 0.81
Kurtosis 3.1 2.83 2.45 2.25

Numbers Backward [M(SD)] 5.52 (2.25) 5.48 (2.31) 5.44 (2.25) 5.48 (2.39)
Min-Max 0–13 0–14 0–14 0–14
Skewness 0.16 0.18 0.06 0.19
Kurtosis 3.01 3.16 3.13 3.07

Letter Fluency [M(SD)] 22.9 (9.13) 22.8 (9.20) 22.6 (9.05) 22.5 (9.21)
Min-Max 0–55 0–55 0–56 0–58
Skewness 0.17 0.07 0.11 0.1
Kurtosis 2.79 2.79 2.97 2.83

Note: M=mean, SD= standard deviation, Min = minimum, Max = maximum, CDR= clinical dementia rating, NPS= neuropsychiatric symptoms. CDR impairment ratings derived from the
Clinical Dementia Rating Global Impairment score. Depression derived fromGeriatric Depression Scale total score. NPS derived fromNeuropsychiatric Symptom Inventory Questionnaire (NPIQ)
total severity score. Descriptive statistics are based on raw variables.
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were, the less decline in EF over time. The slope variance estimate
(slope variance = .05, p< .001) suggests that people slightly differ
in their rate of EF decline (i.e., some people decline at a faster rate
than others).

NPS Predicting EF Decline over time

Baseline NPI-Q total symptom severity score was entered as a
predictor in the CUFF model to determine the predictive value of
baseline NPS on EF rate of decline. The model exhibited good fit
(χ2[67]= 198.93, p< .001; CFI = .98, RMSEA= .04). NPS total
symptom severity at W0 predicted decline in EF (p< .001), such
that those with greater total NPS severity at W0 decreased more
rapidly in EF over time (Figure 1). For every point increase in total
NPS severity, participants declined in EF by an additional .013 SD
(small effect) per year (Supplementary Figure 4). For example, for
participants with W0 NPS severity at the median (total NPS
severity = 2), they would decline an additional −.56 SDs in EF by
W3. For participants with the highest level of symptom severity at
W0 (total NPS severity = 26), they would decline an additional
−1.49 SDs in EF by W3 (Table 5). Like the EF CUFF model, the
slope variance estimate (slope variance= .05, p< .001) suggests
that people slightly differ in their rate of EF decline (i.e., some
people decline at a faster rate than others). Model-implied indices
were used to develop an open access, interactive, web-based
application [available at: https://gracejgoodwin.shinyapps.io/
GrowthCurveEFapp/] allowing users to observe EF trajectories
as a function of baseline NPS severity (Supplementary Figure 5).

Post hoc robustness check

We performed two checks to determine the robustness of our
findings. First, we tested whether extreme NPI-Q outliers were
driving effects in the CUFF model. We Winsorized NPI-Q total
symptom severity scores that were greater than three standard
deviations from the mean to the next highest value (Wilcox, 1993).
We used the Winsorized NPI-Q total symptom severity score in

the predicted CUFF model to determine whether effects were
consistent without extreme cases. There was a statistically
significant effect of total NPS severity on rate of decline suggesting
that outliers were not exclusively driving effects.

Second, we tested whether the association between total NPS
severity and EF decline was linear. We created quantiles for theW0
NPI-Q severity variable (median= 2), which equally split the data
into 4 categories: “absent symptoms” (NPI-Q total symptom
severity= 0), “low severity” (NPI-Q total symptom severity= 1),
“medium severity” (NPI-Q total symptom severity = 2–4), “high
severity” (NPI-Q total symptom severity > 4). The absent
symptom and low severity groups were roughly equivalent to one
another, implying that NPS does not have a sizeable impact on EF
levels or trajectories at lower levels. However, for participants
scoring above the median, NPS was associated with lower EF levels
(in an approximately linear manner) and quicker rate of EF
decline. The rate of EF decline was similar for themedium and high
groups, implying that above a medium baseline NPS severity
threshold, EF deficits magnify over time. Given that the NPI-Q
total score is used clinically, we chose to retain the continuous
variable in our final CUFF model. However, future work with
larger samples would be required to more precisely identify the
baseline severity threshold for detrimental EF prognosis
(Supplementary Table 2).

Discussion

The present study examined whether initial visit NPS severity
predicted rate of EF decline over time in ADRD. We used second-
order LGCM to identify inter- and intra-individual differences in
the association betweenNPS at initial visit and rate of change in EF.
Consistent with expectations, those with greater total NPS severity
at baseline exhibited a more rapid rate of EF decline over
four years.

Prevalence of neuropsychiatric symptoms at initial visit

The majority of our sample met criteria for MCI at W0 and there
was a higher prevalence of dementia at each subsequent wave.
Much of our sample remained in the same diagnostic category
across sequential visits, though we observed disease conversion, as
seen through the shifting sample proportions between MCI and
dementia over 4 years. NPS burden atW0 was generally low, which
is representative of early clinical presentations of MCI (Edwards
et al., 2009; Lyketsos et al., 2002). A median of 2 NPS items were
endorsed at W0, and of those who reported symptoms, the
majority endorsed mild symptom severity. Consistent with
previous research, the most frequently endorsed NPS were
irritability/lability, anxiety, and depression/dysphoria, while
psychotic symptoms were less common (Lyketsos et al., 2002;
Martin & Velayudhan, 2020). Though symptom burden was
generally low at W0 for the overall sample, presence of at least one
symptom and low NPS severity at early stages has been shown to
increase risk for conversion to dementia (Peters et al., 2013). In
particular, irritability and depression predict conversion fromMCI
to dementia (AD and non-AD dementias) independent of age,
education, cognitive screener score, and apolipoprotein E status
(Mourao et al., 2016; Roberto et al., 2021).

Change in EF over time

Latent growth curve analysis showed that participants significantly
declined in EF over time within a sample of participants with

Table 4. Measurement invariance analysis results

Model χ2 (df) Δχ2 CFI ΔCFI RMSEA

Configural 76.31(30)* 0.99 0.03
Metric 84.85(36)** 8.54 0.99 0a 0.029
Scalar 152.51(42)** 67.7** 0.986 −0.008a 0.04
Strict 189.53(51)** 37.0** 0.982 −0.004a 0.04

Note: Robust fit statistics are reported. Δχ2 = change in χ2. CFI= comparative fit index.
ΔCFI= change in CFI. RMSEA= root mean-square error of approximation. *p< .05.
**p< .001. aThis step was determined to be invariant.

Table 5. Model implied decline in EF based on baseline NPS severity

Decline in EF (SDs)

Baseline NPS Severity W0 to W1 W1 to W2 W2 to W3

Absent NPS −0.16 −0.32 −0.48
Median NPS Severity (NPS = 2) −0.19 −0.37 −0.56
Severe NPS (NPS= 10) −0.29 −0.58 −0.87
Highest NPS Severity (NPS= 26) −0.50 −1.00 −1.49

Note: Values represent decline in EF from wave to wave based on baseline NPS severity.
Values are in standard deviation (SD) units. Model-implied intercept (slope when
NPS= 0)=−.16. Model-implied slope (when NPS >0)= .013.
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mixed ADRD etiologies. There were inter-individual differences in
the rate of EF change, such that higher EF scores at initial visit were
associated with less EF decline over time. There was also intra-
individual variability in the rate of change, such that the level of EF
decline varied from wave to wave. In contrast, raw score means of
EF measures remained stable (Number Span Backward, Letter
Fluency) or slightly declined (TMT-B) over the four waves,
obscuringmore nuanced trends in susceptibility and rate of decline
and showcasing the added information gained from a latent
growth curve approach. Findings are consistent with studies using
latent growth curves to model change in EF over time in MCI: EF
declines over time in AD and there is significant variability in rate
of decline in EF over time (Gustavson et al., 2021; Johnson et al.,
2012).While we did not compare EF with other cognitive domains,
previous literature suggests that EF may decline earlier than
memory, highlighting the importance of tracking non-memory
cognitive domains for early detection and timely intervention.
Some studies have shown inconsistent patterns of EF change over
time in ADRD, likely due to measurement error and variable
sensitivity across EF scales (Eikelboom et al., 2021; Guarino et al.,
2019). Our robust approach allows for examination of nuanced
inter- and intra-individual variability in rate of decline in EF
over time.

NPS as a prognostic marker for executive function decline

As expected, NPS severity at initial visit predicted rate of change in
EF, such that those who had greater NPS severity at their initial

visit hadmore rapid decline in EF over time.While the influence of
NPS on the slope of EF decline is small, the longitudinal effect on
EF is notable and clinically meaningful. While NPS burden was
generally low at W0, those with only two symptoms at initial visit
still showed more rapid decline in EF over four years relative to
those without symptoms. Moreover, compared to absent symp-
toms and low symptom severity, those with medium levels of NPS
severity at initial visit (NPS= 2–4) demonstrated a sharper decline
in EF. This pattern was evident within a sample of mixed
neurodegenerative etiologies, supporting the generalizability of
findings. Similar to our results, other investigations of NPS severity
have revealed those with moderate NPS burden at early stages may
be at greater risk for executive dysfunction and associated
functional decline (Gallo et al., 2008; Razani et al., 2007). Our
findings are also consistent with previous work that showed
baseline NPS were associated with more rapid decline in non-
executive cognitive tasks, including word list memory, animal
fluency, and praxis recall (Burhanullah et al., 2020). Specific NPS
have also been shown to predict accelerated decline across
cognitive domains (Zainal & Newman, 2023). For example, among
community dwelling cognitively normal older adults or adults with
MCI, mild NPS have also been shown to predict more accelerated
decline across several cognitive domains (e.g., memory, attention,
language, and visuospatial skills). This work also identified specific
NPS (i.e., apathy, depression, nighttime behaviors) that were
responsible for greater decline across domains, pointing to their
use as prognostic markers (Krell–Roesch et al., 2021). While
examining the association between specific NPS and rate of EF

Figure 1. Model-implied trajectory of executive
function decline by NPS severity. Note: Main
Graph: depicts model-implied differences in EF
decline by NPS severity group. EF= executive
functioning. NPS = neuropsychiatric symptoms.
X-axis represents time points that correspond to
annual visits (0 =wave 0, 1 =wave 1, 2 =wave 2,
3 = wave 3). Y-axis represents model-implied EF
score. Mild NPS group refers to people with NPS
at −1.5 standard deviations below the raw NPS
mean. Moderate NPS refers to people with NPS
at the NPS mean. Severe NPS refers to people
with NPS scores at 1.5 standard deviations above
the NPS mean. These labels do not correspond
to item ratings with similar labels. Inset Graph:
depicts the magnitude of the difference in EF
decline between groups over time. X-axis repre-
sents time points; Y-axis represents expected gap
between mild and severe NPS on EF. W0 gap
between EF performance between mild NPS and
severe NPS= .148 intercept-SDs; W1 gap = .188;
W2 gap = .228; W3 gap = .268. The gap in EF
performance nearly doubles between mild and
severe NPS by W3.
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decline was beyond the scope of the present work, it is an
important future direction that will pinpoint specific symptoms
that may be responsible for this pattern.

Limitations and future directions

There are several limitations to the present study. While we
included a diverse sample representing several ADRD syndromes,
the majority of participants were diagnosed with AD. While our
sample is consistent with disease base-rates (i.e., AD is more
common than other related dementias) (Goodman et al., 2017),
future research sampling a more balanced and representative
group of ADRD syndromes will identify disease-specific associ-
ations between NPS and EF. Additionally, as is true of the overall
trends with the NACC sample, our analysis consisted of
predominantly highly educated, non-Hispanic white participants,
which limits the generalizability of our findings to diverse groups.
Future research with minoritized samples is essential to identify
differences in the association between EF and NPS and to improve
access to individualized care. Relatedly, the NPI-Q symptom
descriptions may be susceptible to cultural bias or strongly
associated with other comorbid conditions among different
ethnoracial groups. These interpretative differences can influence
symptom endorsement patterns (Babulal et al., 2023).
Additionally, the NPI-Q does not include information about
frequency of experienced symptoms (e.g., once per week, several
times per week), which limits interpretation of NPS burden.
Examining the association between NPS symptom frequency and
EF may provide additional prognostic clarity. Measurement of EF
was limited to three neurocognitive subtests, which do not capture
all aspects of EF. Modeling EF using a variety of measures tapping
several subdomains of EF (e.g., planning, decision-making) is
necessary for improving ecological validity of findings. Finally,
while total NPS severity scores were used as a first step in our
analyses, future research examining the role of individual NPS will
allow for development of precise and targeted interventions.

Conclusions

In summary, older adults with ADRD exhibit significant decline in
EF over four years, and this decline becomes more accelerated with
higher NPS severity at early stages. Further, we identified
thresholds of NPS severity that may be prognostic of anticipated
cognitive change. Our results suggest that early assessment of NPS
is important for predicting EF decline in MCI and dementia. Early
evaluation of NPS may allow for identification of patients who are
at higher risk for cognitive decline and offer the opportunity for
early symptom management and intervention. Early treatment of
NPS, regardless of the level of severity, should be prioritized to
minimize EF decline and associated declines in independence.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S1355617724000730.
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