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Abstract

An asymptotic formula is established for the number of representations of a large integer as the sum
of £th powers of natural numbers, in which each representation is counted with a homogeneous weight
that de-emphasises the large solutions. Such an asymptotic formula necessarily fails when this weight is
excessively light.
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1. Introduction

Investigations concerning the asymptotic formula in Waring's problem have played
a central role in the development of the circle method since its inception by Hardy
and Littlewood in the early part of the twentieth century. From this classical asymp-
totic relation, it is relatively straightforward to obtain a formula for the number of
representations of a natural number, as the sum of a fixed number of kth powers of
positive integers, in which each representation is counted with a weight that increases
with the size of the integers involved in the representation. In such heavy-weight
versions of Waring's problem, the larger, more typical, representations dominate, and
it is these representations that the circle method most readily detects. In contrast, the
light-weight versions of Waring's problem, in which representations are counted with a
weight that decreases with the size of the integers occurring in the representation, pose
some technical difficulties that have apparently deterred investigation. A particular
case of the light-weight problem plays a fundamental role in work of Van Vu [5], and
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is resolved in essence in recent work of the author [7]. Since this light-weight version
of Waring's problem lies well within the grasp of modern methods, our purpose in this
paper is to establish and promote the asymptotic formulae associated with this circle
of problems.

We begin with some notation. When s and k are positive integers, and w is a real
number, we define

(1.1) R,,k(n;a>)=

We write s(k) for the least positive integer s with the property that whenever u > s,
one has for each e > 0 the upper bound

(1.2) r e(axk)
\<X<P

da « £ p2«-*+*

where, as usual, we write e(z) for eln'z. We note for future reference that work of
Hua [3] and Heath-Brown [2], respectively, establishes that s(k) < 2k~x (k > 2) and
s(k) < ^ 2k (k > 6). By employing modern versions of Vinogradov's mean value
theorem (see Wooley [6]) together with work of Ford [1], moreover, one finds that for
larger k one has

s(k) < \k2(\ogk + log log it + 0(1)).

Finally, when 5 and it are natural numbers, we define the usual singular series <5S (n) =
6Sjc(n) associated with n by

oo q

(1.3) Sj,i(n) = 2_j /^j {q~xS{q,a)Ye(—nalq),
o=l a=\_^

where

(1.4)
r = l

On considering the diagonal contribution underlying the mean value in (1.2), it is
apparent that s(k) satisfies the lower bound s(k) > k. The methods of Chapters 2
and 4 of Vaughan [4] then show that whenever s > 2s(A:)+l,onehasO < ©*,*(«) <C 1.
Subject to the additional condition that, whenever it is a power of 2 with k > 4, then
one has 5 > 4k, moreover, the aforementioned methods show also that SiJt(n) » 1
uniformly in n.
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[3] A light-weight version of Waring's problem 305

THEOREM 1.1. Let s and k be natural numbers with s > 2s (k) + 1, and let S be
any real number with

s(s-l)J\2s(k)J'

Then there is a positive number r, depending at most on s, k and 8, such that whenever
co is a real number with co > — 1 + k/s — 8, one has

(1.5) Rsk(n;co) =
co

The special case of Theorem 1.1 in which co = 0 yields the classical asymptotic
formula in Waring's problem, namely

xi xseN
xf+- +x*=n

valid for j > 2s(k). Meanwhile, the case in which co = — 1 + k/s is that central to
the discussions of [5] and [7]. Here, again for s > 2s(k), one obtains the pleasingly
simple formula

J2 '*/ ,,t(n) + 0(1).

It is worth noting that the formula (1.5) is established by Theorem 1.1 even for
values of co with —1 + k/s > co > —1 + k/s — S, wherein Rs^(n;o>) x n^ with
<p = 1 — (1 -f- co)s/k > 0. When k is large, and ^ is large enough in terms of k, the
conclusion of Theorem 1.1 yields a permissible value for S given by

:i.6) 8~l = (l + o(l))sklogk.

Some sort of constraint on 8 is certainly necessary, for the obvious representation
)f the integer n = mk + s — 1 as the sum of s Jtth powers already yields the lower
jound Rsk(n;co) ;» nw/*, and this exceeds the main term in (1.5) whenever co <
[k — s)/(s — 1). It follows that the conclusion of Theorem 1.1 cannot be valid for all
latural numbers n whenever

8 >

hough, of course, a far wider range of validity may be anticipated for almost all
ntegers n. The latter constraint implies, for sufficiently large s, that any permissible
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value of S must satisfy S~l > (1 + o(l))s. If one is satisfied with a lower bound for
Rsjt (n; a;) of the order of magnitude predicted by Theorem 1.1, then the use of smooth
numbers leads to an acceptable value of S satisfying the relation 8~l = (l+o(l))s log it
in place of (1.6). We leave this as an exercise using the methods of [7]. Thus we see
that our methods fall short of the obvious constraints on S by a factor of k logfc, and
logfc, in these respective problems. On the other hand, the widely held conjecture
that (1.2) holds with u = k would yield S~l = (2 + o(l))s in place of (1.6), and this
would be close to best possible. Finally, on making the trivial observation that, when
s > t > 2s(k) + 1, the validity of the conclusion of Theorem 1.1 implies that

while at the same time

R,An;a>) > R,.k(n - (s - t)\to) » „<'+»>'/*-',

it is apparent that when co < — 1, then (1.5) fails for every sufficiently large integer n.
Our proof of Theorem 1.1 is based on a neoclassical application of the Hardy-

Littlewood method paralleling the argument underlying our treatment (see Wooley
[7]) of Vu's thin basis theorem in Waring's problem. In Section 2 we provide some
auxiliary mean value estimates required in our treatment of the minor arcs. Our
slightly unconventional generating functions may be analysed via partial summation,
and in this way the completion of the treatment of the minor arcs in Section 2 may be
reduced essentially to the familiar classical approach. The major arc treatment, which
we discuss in Section 3, is more or less routine, although the analysis of the singular
integral requires enough work to be deferred to Section 4. Here, for example, the
convergence properties of the singular series become rather delicate in the situations
wherein co < — 1 + k/s.

Throughout, the letter e will denote a sufficiently small positive number, and P
will be a large real number. We use «; and » to denote Vinogradov's notation. In
an effort to simplify our account, whenever E appears in a statement, we assert that
the statement holds for every positive number e. The 'value' of e may consequently
change from statement to statement.

2. The treatment of the minor arcs

In order to describe the application of the Hardy-Littlewood method that underlies
the proof of Theorem 1.1, we begin by recording some notation. Let s and k be
positive integers with s > 2s(/fc) -f 1, let v be a small positive number, and put

/j-2s(*)W k \
\ s(s - 1) ) \2s(k))
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Also, let co be a real number with to > - 1 + k/s - S. We put w = (1 + co)/k, and
consider the analogue of (1.1) provided by

The conclusion of Theorem 1.1 then follows from the asymptotic formula

R s . t ( n ; w ) ^ k e s , k ( n ) n + O ( n ) ,

valid for some positive number r = r(s, k), which we now seek to establish.
We consider a large natural number n, write P = nl/k and Pi = (n/s)l/k, and then

define the exponential sums

fw(a) = J2 x~l+kwe(axk) and gw(a) = £ x~l+kwe(ctxk).

Observe that whenever xk + • • • + xk = n, with x, 6 N (1 < i < s), then necessarily
one has

(2.1) maxx,•> (n/s)x/k = Px and maxx, < nyk = P.
\<i<s l<i£j

By orthogonality, it follows from (2.1) that

/ (*«,(«) -fw(a)Ye(~na)da = 0,
Jo

and likewise we see that

Rs,k(n;w)= gw(a)se(-na)da.
Jo

3n substituting the former relation into the latter, it follows that

2.2) Rs,k(n; w) = I {gw{ot)s - (gw(a) - / w ( a ) ) s ) e(-na)da
Jo

we write

2.3) &SJ (<8) = / / „ (a? gw (aY~j e(-na)da.
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For the task at hand it suffices to make use of a Hardy-Littlewood dissection that does
not yield the sharpest available error terms. It is convenient to put w = min{l/8, w/6),
and then to write L = Pw. Let 9Jt denote the union of the intervals

m(q, a) = [a e [0, 1) : \a - a/q\ < Ln'1},

with 0 < a < q < L and (a, q) = 1, and put m = [0, 1) \ 971. We begin with an
analogue of Weyl's inequality for the exponential sum fw(a). In this context, it is
convenient to write o(k) = 2l~kw.

LEMMA 2.1. For each positive number s, one has supaem \fw(a)\ «; pkw-°W+*.

PROOF. Write F{a\t) = £i<*</ e^Mxk)- Then an application of the classical
version of Weyl's inequality (see, for example, [4, Lemma 2.4]) shows that whenever
P\ — 1 5 t < P, one has

sup|F(er,r)| « r'^L"2'"* « t
l

Applying Riemann-Stieltjes integration followed by integration by parts, we find that

/„(«)=/" rl+kwdF(a-t)

fp

; p) _ p-*+k«>F(a; P i - ) + / (1 - kw)r2+kwF(a\t)dt.

It follows that whenever a e m, one has

p

\fw(0t)\
C
/

Jp,
and the conclusion of the lemma now follows immediately. •

Next we turn to mean value estimates relevant to the estimation of the minor arcs.
It is here that we make use of the hypothesis (1.2), which we may assume to be valid
for u > s(k).

LEMMA 2.2. Suppose that t > 2« > 2s{k) and e > 0. Then one has

f lfw(a)\'da<&n'w-'+£ and f \gw(a)\'da « n"»«l'—>.<«+*.
ô Jo
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PROOF. From orthogonality, it follows that the mean value f^ \fw(a)\2u da is equal
to the number of integral solutions of the equation

*? + • • • + * ; = *;+, + • • • + 4 , .
with P\ < Xi < P (I < i < 2M), and with each solution x being counted with weight

(x]X2---x2uy1+kw«(p2uri+kw.

Consequently, again employing orthogonality, it follows by considering the number
of solutions of the underlying diophantine equations that

f \fw(a)\2uda « (P2T>+kw [ \F{a;P)\2uda.
Jo Jo

Thus, on making use of the trivial estimate

\fw(a)I < 1/̂ (0)1 < J^ x~l+kw « Pkw,

we obtain the upper bound

f \fw(a)\'da « (Pkwy~2u(P2Tl+kw [ \F(a;P)\2uda.
Jo Jo

In view of (1.2) and the definition of s(k), therefore, we deduce that

\fw(a)\'da « (p*'«--2«)(p2»-*+«) « (/>*)'•»-!+«.

The first assertion of the lemma follows on recalling that P = nl/k.
Next write

hw(a;Q)=
Q/2<x<Q

Then by the same argument as in the previous paragraph, mutatis mutandis, one
obtains the upper bound

I \hw(a-Q)\'da«(Qk)'w-l+£.
Jo

But it is apparent that

2> <P
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and so it follows from Holder's inequality that

I \gw(a)\'da <£ (log P)' max [ \hw(a; Q)\' da

« ( l o g P ) ' mnx(Qk)'w-l+e.

The second conclusion of the lemma now follows immediately. •

At this point we record the minor arc estimate stemming from Lemmata 2.1 and 2.2.

LEMMA 2.3. Suppose that s > 2s(k) + 1. Then for 1 < j < s, one has

for some positive number x = r (5, k, v).

PROOF. For the sake of convenience, write u = s(k). Then on applying Holder's
inequality to (2.3), we obtain the upper bound

(2.4) #,j(m)< (J \fw(ot)I'daj (j \gw(cc)\sda\

It follows from Lemmata 2.1 and 2.2 that

(2.5) [ \fw(a)\sda <(sup \fw{ct)\) l\fw{a)\2uda
Jm \aem / Jo

^ / w-a(k)/ k+e\s-2u 2uw-\+e -, sw-\-a(k)/k+se

Meanwhile, the bound

(2.6) I \gw{a)\'da«.nimi'w-'im+'
Jo

is already immediate from Lemma 2.2. On substituting (2.5) and (2.6) into (2.4),
it follows that whenever w > 1/s one has &sJ(xn) «: w

su)-i-07*><'<*)/*+£) and this
establishes the desired conclusion in the case currently under consideration.

When i/s — S/k < w < l/s, meanwhile, we proceed differently. Note first that
our hypotheses on 5 ensure that

1 - (s - l)w < l/s + (5 - 1)5/* < 1/(2M),

where we again write u = s(k). Let 0 = 1 — (s — l)w. Then on applying Holder's
inequality once again to (2.3), we obtain on this occasion the upper bound

t \ \-2u6

(2.7) atJ (m) < (sup \fw(a)\ ) r»ru-uwr^-j)wt
\aem /
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where

T, = / \fw{a)\2uda, T2= [ \fw(a)\l/w da, T3 = f \gw(c*)\l/w da.
Jo Jo Jo

Now l/w > s > 2s(k), and so it follows from Lemma 2.2 that T2 <K rf and
T3 « ne. Similarly, one finds that Ti «; n

2uw-i+e. Then on recalling Lemma 2.1,
and assembling these estimates within (2.7), we find that

nw~e+<t'',

where 4> = e — (1 — 2uB)o(k)/k < 0. But w — 0 = sw — 1, and so we conclude
in this final case that 3?.Sj (m) <§; nsw~l~z, for some positive number r = T(J , &, y),
thereby completing the proof of the lemma. •

3. The major arc analysis

We are able to economise in our discussion of the major arcs by appealing to the
analysis of [7, Section 3]. In this context, when a e Z, q e N and /J e K, we define
S(q, a) via (1.4), and write

(3.1) uw(fi)=i y-]+kwe(Pyk)dy and vw{p) = / y-i+ku>e(Pyk) dy.
Jp, Jo

LEMMA 3.1. Suppose that w is a positive number. Then whenever a € Z, q € M
e R, owe Aai

/„ (£ + a/q) - q~xS(q, a)uw(fi) « qP-l+kw(l + I '

/8) « q p

PROOF. The first estimate of the lemma is essentially the conclusion of Lemma 3.5
af [7], while the second follows from the same methods. •

Next define the functions/^(a) and g*(a) fora e [0, 1) by putting

f*(a) = q-lS(q,a)uw(a-a/q) and g*w(a) = q~'S(q, a)vw(a -a/q),

vhen a e Wl(q, a) c 9JI, and by taking f*(a) = 0 and g*w{a) = 0 otherwise. We
hen write

3.2) STS. («8) = I f*(a)> g*w (a)s-j e(-na) da.
J<8
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LEMMA 3.2. For 1 < j < s, one has Sf.Sj (9JI) - @,*sj (M) « M ^ - i -* /* .

PROOF. It follows from Lemma 3.1 and the definition of VJl that, uniformly for
a 6 9Jl(q, a) c 9Jt, one has

/ « , ( « ) - / , » « LP~x+kw{\ + LPkn~l) « PkwL~\
and likewise

«„(«) - S » « L max, Q-i+kw(l + L Qkn~{)

« max{L2, PkwL-*) « PkwL~\

On making use of the trivial estimates fw(a) <3C Pkw and ^^(a) <C Pkw, therefore,
we may conclude that the estimate

a)J
gw(ctY-J - f - 4

holds uniformly for a e 971. But the measure of the set of arcs VJl is plainly O(L3n ' ) ,
and thus we deduce from (2.3) and (3.2) that

&,j (3H) - &*j (9K)

The conclusion of the lemma is now immediate. •

We recall at this point the natural estimates for the auxiliary functions defined
in (3.1).

LEMMA 3.3. For every real number ft, one has

uw(fi) « Pkw(l + Pk\P\rl and k k i l l K

PROOF. The claimed estimates follow by applying partial integration (compare the
proof of Lemma 3.8 of [7]). •

Define next the singular integral

(3.3) JSJ(n;w)= f uw(PY vw(Py~J e(~Pn)dp.
J-00

LEMMA 3.4. When 1 < j < s and w > l/s — 8/k, the singular integral Jsj (n; w)
is absolutely convergent, and satisfies the upper bound Jsj(n;w) <C nsxu~x. Moreover,
one has

(3.4) JsJ (n; w) - I uw(P)J vw(P)'~J e(-0n) dp « n
J\m<Ln-i

sw-\-w/(2k)
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PROOF. In view of the conclusion of Lemma 3.3, one has

/•OO /.OO

(3.5) / \uw(pyvw(py-j\dp <&(pkwy (i + pk\p\)-j-(s-J)m[n{lw]dp
J-OO J-OO

fOO

• n'w

o

It therefore follows from (3.3) that the singular integral Jsj (n; w) is absolutely con-
vergent, and satisfies 7VJ («; w) <g nsw~K In like manner, one finds that the expression
on the left-hand side of (3.4) is of order

(Pk f°°
y

JLn-

kwy I / i , M/q\-l-(f-l)min{l,u)) in // JUJ —1 j -(s-\)mm\\,w)

The final conclusion of the lemma therefore follows on recalling our hypothesis that
w>l/s-S/k. •

Notice in the above argument the critical role played by the removal of the range
0 < y < Pi from the variable implicit in uw(P). When w < l/s, the integral on the
right-hand side of (3.5) would otherwise be the divergent integral

I
JoJo

The next step in the analysis is the introduction of the truncated singular series

i

&An;Q)=

^s is familiar in the theory of Waring's problem, the truncated singular series &Jn; Q)
differs from the completed singular series, which we define via (1.3), by an amount
nconsequential to our argument. Thus, since we may suppose that s > 2s(k) + 1 >
Ik + I, the methods of Chapters 2 and 4 of [4] demonstrate that

(3.6) 6,(n) - Ss(n; L) « L~l/k « /T*^ ,

ind, furthermore, that 0 < S.,(n) <3C 1 uniformly in n. Moreover, unless k is a power
)f 2 exceeding 2, the condition s > 2s(k) + 1 suffices to ensure that &s(n) » 1
iniformly in n. When k = 2m with m > 2, meanwhile, the same conclusion holds
vhenever s > 4k, and also when 2s(k) + 1 < s < 4k provided that n = r (mod 4k)
or some integer r satisfying 1 < r < s.

LEMMA 3.5. One has &.*j (M) = 6 s (n ) / V J (n; w) + 0(nsw-l~mk2)).
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PROOF. On recalling (3.2) and the definitions of f*(a) and g* (a), one finds that

3ts] (OK) = 6s(n; L) [ uw(P)J vw(P)s-J e(-Pn) dp.

Consequently, on making use of (3.6) and the associated discussion, together with the
conclusion of Lemma 3.4, one obtains

and this suffices to establish the lemma. •

We summarise the discussion of this section and the last in the form of a lemma.
In preparation for this lemma, we define the combined singular integral

Js(n;w) =

LEMMA 3.6. Whenever w > \/s - S/k, one has

Rs,k(n\w) - e,(n)Js(n;w) +

for a positive number x = T(S, k, v).

PROOF. By combining Lemmata 2.3, 3.2 and 3.5, one finds that there is a positive
number x = x(s, k, v) such that, for 1 < j < s, one has

&sj ([0, 1)) = SlSj (m) + ®,j (JOT) = £!j

The desired conclusion now follows from (2.2) by summing over j with weight
(-iy+l(;). •

4. The singular integral

The marginal convergence of the singular integral in the situation w < 1/s forces
us to exercise more care than would be usual in our account. We begin by recalling that
the integral Jsj (n; w) is absolutely convergent, so that on writing @sj = (Pu Py x
(0, P)S~J, we see that

JsJ (n; u;) = lim / / (y, • • • ysr
l+kwe(P(yf + . . . + y* _ „)) dfi dy.

T-*OOJSS,J J-T
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[13] A light-weight version of Waring's problem 315

Consequently, by making the change of variables r\ = nfi and v, = y,k/n (1 < i < s),
we deduce that

(u, • • • v ^ e ^ i v , + • • • + vs - \))dr)dv,
j - t

where %j = (s~\ l)j x (0, l)s~J. Making the change of variable (vu ..., vs) —>
(vu ..., i;s_i, V), where V = v\ + • • • + vs, we thus obtain

TT(V-l)
where

<P(V) -L
and @sj(V) denotes the subset of KJ-1 constrained by the inequalities

s~l < v,• < 1 (1 < i < j), 0 < vi < 1 0' + 1 < ' < « - 1),

and

I V — 1 < Vi + • • • + u,_i < V, when j ^ s;

V — 1 < V\ + • • • + i>j_i < V — 1/s, when j = s.

Our hypothesis that w > l/s — 8/k, combined with the condition vt > s~\ ensures
that (p( V) is a function of bounded variation, and so it follows from Fourier's integral
theorem that

lim / <p{\

Consequently, we may conclude that

, , ^ , - s s W - l f , , B l , ,
JSj(n\ w) — k n I (vi • • • vs-\) (1 — V\ —

J s,,i\)

JsJ(n;w) =k~snsw-x / (u, • • • vs
** &s j

whence

where Ssj denotes the surface defined by v\ + • • • + vs = 1 subject to i; e (s ', l)J x
(0, 1)J";. It therefore follows that

Js(n;w) =
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where

w~l
V\ • • • Vs)

and ^denotes the surface defined by v{-\ \-vs = lsubjecttov e (0, l)s\(0, s'1)*.
But no point in (0, s"1)1 satisfies vi + • • • + vs = I, and thus we conclude that

=Let

"1where si denotes the subset of (0, I)1"1 subject to the constraint that whenever
(ui , . . . , vs-\) e si/, then one has 0 < v{ + • • • + vs-\ < 1. In this way, a familiar
inductive argument employing the Beta-function

B(p
Jo

provides the formula J? = Y(w)s/Y(sw). It is now apparent that

J s ( n \ w ) = k - s l \

and this, in combination with the conclusion of Lemma 3.6, yields the desired con-
clusion embodied in Theorem 1.1.
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