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The zeta function of a quasi-ordinary singularity

Lee J. McEwan and András Némethi

Abstract

We prove that the zeta function of an irreducible hypersurface quasi-ordinary singular-
ity f equals the zeta function of a plane curve singularity g. If the local coordinates
(x1, . . . , xd+1) of f are ‘nice’, then g = f(x1, 0, . . . , 0, xd+1). Moreover, the Puiseux pairs
of g can also be recovered from (any set of) distinguished tuples of f .

1. Introduction

We consider the germ of an irreducible quasi-ordinary singularity f : (Cd+1, 0) → (C, 0). The
quasi-ordinary assumption means that, in some local coordinates, the reduced discriminant of the
projection pr : (F, 0) := ({f = 0}, 0) → (Cd, 0), induced by (x, xd+1) �→ x (x = (x1, . . . , xd) ∈ Cd),
is included in ({x1 · · · xd = 0}, 0).

The main goal of this note is the computation of the zeta function of f . This is defined as follows.
For any germ f : (Cd+1, 0) → (C, 0), we fix a sufficiently small closed ball Br in Cd+1 of radius r,

then Fε := f−1(ε) ∩ Br (0 < ε � r) is called the Milnor fiber of f . In fact, by a theorem of Milnor
[Mil68], f−1({|w| = ε}) ∩ Br → {|w| = ε} is a fibration with fiber Fε. Let mq ∈ AutHq(Fε, R)
(q � 0) be the algebraic monodromy operators of this fibration. Then the zeta function of f is
defined by the following rational function:

ζ(f)(t) :=
∏
q�0

det(I − tmq)(−1)q
.

In general, ζ(f) is not computed by this expression. The most efficient way to determine ζ(f) is
by A’Campo’s formula ([A’C75], see also § 4) via the embedded resolution of f . Hence, in the case of
those families of singularities whose embedded resolution is well understood, one gets ζ(f). This is
the case for plane curve singularities (see e.g. [EN85]) and isolated singularities with non-degenerate
Newton boundary ([Var76], see also [MO70]). For non-isolated singularities, the methods of series of
singularities, provide partial results (see e.g. [Sie90, Sch90, Ném93]) provided that the singular locus
is one-dimensional. But, in general, for non-isolated singularities there is no nice, explicit formula
of ζ(f).

We recall that in general the singular locus of quasi-ordinary singularities is large. Our main
result for these singularities is the following.

Theorem A. Assume that f : (Cd+1, 0) → (C, 0) (d � 2) is an irreducible quasi-ordinary singularity.
For convenience, we assume that the coordinates are ordered (cf. § 2.2). Then ζ(f) = ζ(f |xd=0).
In fact, by induction

ζ(f) = ζ(f |xd=···=x2=0),
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hence ζ(f) can be computed as the zeta function of the plane curve singularity (x1, xd+1) �→
f(x1, 0, . . . , 0, xd+1).

Here some comments are in order. First, this type of result is rather surprising. In general,
for germs f with one-dimensional singular locus and generic hyperplane section xd, an identity
ζ(f) = ζ(f |xd=0) holds if the corresponding polar curve is empty. Our germ and hyperplane section
are more complicated, but still the above theorem suggests the vanishing of some polar obstruction.
This is a remarkable property of quasi-ordinary germs; the details will appear elsewhere.

We recall also that the quasi-ordinary singularities are generalizations of the plane curve singular-
ities. For any (d-dimensional) irreducible quasi-ordinary singularity f , one can define the general-
ization of the Puiseux pairs: they are called the normalized distinguished tuples {λi}g

i=1 of f .
(For details, see [Lip65, Lip83, Lip88].) Using Zariski’s result on saturation of local rings, one can
prove that these pairs determine the embedded topological type of f (cf. [Zar68] and [Lip88], or
[Oh93] for a different proof). They suffice as well to determine an embedded resolution (see [BMc00]
and [GP00]). In addition, by [BMcN02] (cf. also with [LDT73] and [Tei74]), one has that, for any
reduced hypersurface singularity, the zeta function depends only on the embedded topological type
of the singularity. Therefore, it is natural to ask for explicit formulae for ζ(f) in terms of the
distinguished tuples of f .

In the next section we reformulate Theorem A. This second version provides this explicit formula
as well. It is remarkable that not all the data of the distinguished pairs are needed.

Theorem A is the consequence of Theorem B.

Theorem B. Let λ1 be the first distinguished tuple of f . For any α ∈ Zd
�0 set I(α) := {i | αi > 0}.

Assume that 0 �= β ∈ Zd
�0 satisfies #I(β + λ1) � 2. Then

ζ(xβf)(t) = 1.

The precise definition of the distinguished tuples will be given in § 2. As a general reference, see
[Lip65, Lip83, Lip88]. The general properties of the Milnor fibration and smoothing invariants, in
particular, of the zeta function, can be found in the books [Mil68], [EN85] and [AGV88].

The proof of Theorem B occupies all of §§§ 3, 4 and 5.
In § 3 we recall some results from the thesis of González Pérez [GP00], namely the construction

of a toric modification π(Σ) associated with the first distinguished tuple λ1 of f . Moreover, we add
some new facts which will be important in our proof. For general facts about toric geometry, we
recommend e.g. the books [Oda88] and [Ful93]. For the properties of the toric modification π(Σ)
see also [GT00].

In § 4 we will consider a generalization of the classical A’Campo theorem [A’C75]. Using this
we prove a ‘splitting property’ for the invariant ζ, which is one of the key arguments in the proof
of Theorem B; moreover, Theorem A is the consequence exactly of this property. At the end of this
section we also recall the main result of [GLM97], which provides a formula for the zeta function in
the presence of a partial embedded resolution. We will apply this result in the case of π(Σ).

Section 5 contains the proof of the theorems collecting all the information from the previous
sections.

Theorems A and B were conjectured in the article [BMcN02], where the authors proved the
corresponding results for d = 2 and the invariant χ(Fε) = deg(ζ(f)) (instead of ζ(f)).

Finally, we note that in the literature the notation for the parametrization of a quasi-ordinary
singularity is ζ, and for the zeta function of a hypersurface singularity it is ζ(f). Even if these
notations are almost identical, we do not modify them: the meaning of the corresponding notation
will also be clear from the context.
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2. Quasi-ordinary singularities and their topological type

In this section we recall the definition of the distinguished tuples associated with an irreducible
quasi-ordinary singularity (F, 0) ⊂ (Cd+1, 0), its connection with the embedded topological type of
(F, 0) ⊂ (Cd+1, 0), and we reformulate our Theorem A.

As a general reference for quasi-ordinary singularities, see [Lip65, Lip83, Lip88].

2.1 We will use the notation x̄ = (x, xd+1) = (x1, . . . , xd, xd+1) ∈ Cd × C = Cd+1 for coordinates
in Cd+1 (or for local coordinates in (Cd+1, 0)).

By the very definition of an irreducible hypersurface quasi-ordinary singularity f : (Cd+1, 0) →
(C, 0), there exist local coordinates (x, xd+1) such that f can be expressed as a (Weierstrass) pseudo-
polynomial in the variable xd+1:

f(x, xd+1) = xn
d+1 + g1(x)xn−1

d+1 + · · · + gn(x),

where gi ∈ C{x} (= the ring of convergent power series in x), and the reduced discriminant of
pr : ({f = 0}, 0) → (Cd, 0) induced by (x, xd+1) �→ x is contained in ({x1 · · · xd = 0}, 0). Moreover,
by the Jung–Abhyankar Theorem [Abh55], there exists a parametrization of (F, 0) = ({f = 0}, 0)
by a fractional power series ζ = H(x1/m

1 , . . . , x
1/m
d ), where H(s1, . . . , sd) is a power series and m is a

suitable natural number depending on f . (This means that there exists a finite map (Cd, 0) → (F, 0)
given by xd+1 = H(s1, . . . , sd), xi = sm

i for i = 1, . . . , d.)

The conjugates of ζ are obtained by multiplying any of x
1/m
i (i = 1, . . . , d) by mth roots of

unity; the number of different conjugates {ζi}i of ζ is precisely the degree n of the covering pr, and

f(x, xd+1) =
n∏

i=1

(xd+1 − ζi).

There is an important finite subset {λi}g
i=1 of the set of exponents λ = (λ1, . . . , λd) ∈ Qd

�0 of
the terms xλ := xλ1

1 · · · xλd
d appearing in ζ with non-zero coefficient, called the distinguished d-tuples

associated with ζ (in some articles they are called characteristic exponents, see [GP00]). They play
a role similar to Puiseux pairs for plane curve singularities.

By unique factorization of the discriminant one has

ζi − ζj = xλij · εij(x
1/m
1 , . . . , x

1/m
d ) with εij(0) �= 0,

and λij,k ∈ (1/m)Z�0. The set {λij}ij = {(λij,1, . . . , λij,d)}ij constitutes the set of distinguished
tuples.

2.2 In the rest of this paper we use the following partial ordering. For any λ, µ ∈ Qd, we say
that λ � µ if λi � µi for all i = 1, . . . , d. If λ � µ, but λ �= µ, then we write λ < µ.

The distinguished tuples {λi}g
i=1 are totally ordered:

0 < λ1 < λ2 < · · · < λg. (1)

Let αλ be the coefficient of the term xλ in ζ having exponent λ. Then the distinguished tuples
{λi}g

i=1 generate all the other exponents in the following sense:

If αλ �= 0 then λ ∈ Zd +
∑
λi�λ

Z(λi); and λj �∈ Zd +
∑

λi<λj

Z(λi) for 1 � j � g. (2)

Sometimes it is convenient to order the coordinates x1, . . . , xd: after permuting (x1, . . . , xd) we can
assume

(λ1,1, . . . , λg,1) > (λ1,2, . . . , λg,2) > · · · > (λ1,d, . . . , λg,d) (lexicographically in Qg). (3)
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The parametrization ζ of F , in general, is not unique. Consider, for example, an arbitrary
parametrization ζ as above. ζ can be written in a unique way as ζ(0) + ζ(>0), so that ζ(0) ∈ C{x},
and for any non-zero term αλxλ of ζ(>0) one has λ �∈ Zd. We say that the local coordinates (x, xd+1)
(of ζ) are ‘good’ (cf. [GP00, p. 71], cf. also with [BMcN02, property (4)]) if

ζ(0) = 0. (4)

Obviously, if the coordinates of ζ are not ‘good’, then the local change of variables x′
d+1 = xd+1−

ζ(0), x′
i = xi for i = 1, . . . , d, transforms ζ into ζ ′ = ζ − ζ(0) with (ζ ′)(0) = 0. This transformation

preserves the distinguished tuples of the parametrizations.
In fact, different parametrizations could produce different sets of distinguished tuples. But if

we consider only the ‘normalized’ parametrizations, then the corresponding tuples are independent
of the choice of parametrization. A parametrization ζ is normalized if in addition to (1)–(3) we have
the following:

If λ1 = (λ1,1, 0, . . . , 0) then λ1,1 > 1. (5)
We recall the following facts about distinguished tuples.

2.3 By a result of Lipman [Lip65, Lip83, Lip88], by a suitable change of variables, any paramet-
rization ζ can be transformed into a normalized parametrization ζ ′. The normalized distinguished
tuples of ζ ′ (or of f) can be determined explicitly from the distinguished tuples of ζ.

From [Lip88, Gau88] the embedded topological type of f determines, and is determined by, the
normalized distinguished tuples of f . In particular, via the above statement, any set of distinguished
tuples (normalized or not) contains the complete information about the embedded topological type
of (F, 0) ⊂ (Cd+1, 0).

We add to this list the following general fact about hypersurface singularities.
Let f : (Cd+1, 0) → (C, 0) be a reduced hypersurface singularity with Milnor fiber Fε and

geometric monodromy mgeom : Fε → Fε (defined up to an isotopy). Then the homotopy type of the
pair (Fε,mgeom) can be recovered from the embedded topological type of f . (For isolated singularities
it was proved in [LDT73], cf. also [Yau89] and [Tei74]; in the general case by [BMcN02].)

2.4 The above results show that there should exist an explicit formula of ζ(f) of any irreducible
quasi-ordinary singularity f in terms of the distinguished tuples {λi}g

i=1 of any parametrization ζ
(normalized or not) of (F, 0). Our main theorem provides such a formula.

Theorem A (reformulated). Assume that f : (Cd+1, 0) → (C, 0) (d � 2) is an irreducible quasi-
ordinary singularity represented in a local coordinate system (x, xd+1) as in § 2.1. For convenience,
we assume that the coordinates are ordered, i.e. (3) is satisfied. Then ζ(f) = ζ(f |xd=0), hence (by
induction):

ζ(f) = ζ(f |xd=···=x2=0).
Moreover, if the first distinguished tuple λ1 = (λ1,1, . . . , λ1,d) satisfies λ1,2 �= 0, then

f |xd=···=x2=0 = (xd+1 − ζ(0)(x1, 0, . . . , 0))n,

hence ζ(f)(t) = 1 − tn.

If λ1,2 = 0 (hence λ1 = (λ1,1, 0, . . . , 0)), then let i0 � 1 be that index which satisfies λi0,2 = 0
but λi0+1,2 �= 0 (if λi,2 = 0 for all i = 1, . . . , g, then i0 = g). Then

f |xd=···=x2=0 = (f̃(x1, xd+1))n/degf̃ ,

where f̃ is an irreducible plane curve singularity, which has the equisingularity type of the singular

germ defined by the Puiseux parametrization xd+1 =
∑i0

i=1 x
λi,1

1 , and deg f̃ is the xd+1-degree of f̃ .
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Remark. It is well known that, for any germ f̃ and integer s � 1, one has

ζ(f̃ s)(t) = ζ(f̃)(ts).

On the other hand, for any irreducible plane curve singularity f̃ , ζ(f̃) has an explicit expression
in terms of the Puiseux pairs, see e.g. [EN85]. Moreover, deg f̃ can also be determined from the
exponents {λi,1}i0

i=1: it is the number of conjugates of
∑

1�i�i0
x

λi,1

1 .

3. The partial toric resolution: results of González Pérez

In this section we will assume that f is a quasi-ordinary singularity as in § 2.1, satisfying property (4).
(Note that properties (1) and (2) are automatically satisfied.) We will consider a toric modification
π(Σ) : Z(Σ) → Cd+1 whose restriction above a small ball Br provides a partial resolution of
(F, 0) := (f−1(0), 0) ⊂ (Cd+1, 0). In order to be uniform in the next discussions, we will use Cd+1

instead of Br, but this will not affect the proof of our theorems (since in the formula given in
Theorem 4.7 only π(Σ)−1(0) is used; see also Remark 4.6).

Some results of this section are proved in the thesis of González Pérez [GP00]. We will indicate
the corresponding page numbers at the corresponding places.

3.1 The function f1

Let f be as above. Properties (2) and (4) guarantee that, if the coefficient αλ of xλ in the
parametrization ζ is non-zero, then λ1 � λ, i.e.

ζ = αλ1x
λ1 +

∑
λ1<λ

αλxλ (α1 := αλ1 �= 0). (6)

Define ζ ′ := α1x
λ1 . Obviously, ζ ′ determines a quasi-ordinary singularity, which has only one

distinguished tuple (namely λ1), and degree n1 = the number of conjugates of xλ1 . Its monic minimal
polynomial is

f1 =
n1∏
i=1

(xd+1 − ωiα1x
λ1) = xn1

d+1 − αn1
1 xn1λ1 , (7)

where {ωi}i are the n1 roots of unity. If L denotes the fraction field of C{x}, then n = [L(ζ) : L] =
[L(xλ1 , . . . , xλg ) : L], and n1 = [L(xλ1) : L]. Therefore, e1 := n/n1 ∈ Z>0.

3.2 The Newton polyhedron of f

Given f =
∑

v cvx̄
v ∈ C{x̄}, its Newton polyhedron N (f) is the convex hull of the set

∑
cv �=0 v +

Rd+1
�0 . Any vector u ∈ (Rd+1)∗�0 defines the face Fu of N (f) by

Fu :=
{

v ∈ N (f) : 〈u, v〉 = inf
v′∈N (f)

〈u, v′〉
}

.

If f is a quasi-ordinary singularity as above, then N (f) has only two vertices, namely (0, . . . , 0, n)
and (nλ1,1, . . . , nλ1,d, 0). Let Fco be the segment determined by these two vertices. Notice that
Fco and its vertices are the only compact faces of N (f). By (6) one has

f |Fco = (f1)e1. (8)

Above f |F denotes the (symbolic) restriction of f to the face F , namely f |F =
∑

v∈F cvx̄
v.
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3.3 The fan Σ(N (f)) in (Rd+1)∗�0

We say that two vectors in (Rd+1)∗�0 are related if they define the same face in N (f). The fan
Σ(N (f)) is defined in such a way that the classes of the above relation are the relative interiors
of the cones of Σ(N (f)). In general, Σ(N (f)) is not regular. We fix a regular fan Σ, supported by
(Rd+1)∗�0, which subdivides Σ(N (f)). This, in particular, means that the intersection of any cone
σ ∈ Σ with the linear subspace l given by the equation

l(v) :=
d∑

j=1

λ1,jvj − vd+1 = 0 (9)

is a cone of Σ. For any σ ∈ Σ, we denote by Fσ the face Fu of any vector u from the relative interior
of σ.

3.4 The regular fan Σ supported by (Rd+1)∗�0 defines a modification π(Σ) : Z(Σ) → Cd+1. The
variety Z(Σ) is smooth, and it is covered by affine spaces {Z(σ)}dim σ=d+1 (i.e. each Z(σ) ≈ Cd+1).
The inclusion σ ⊂ (Rd+1)∗�0 provides a morphism π(σ) : Z(σ) → Cd+1. If σ = 〈a1, . . . , ad+1〉 and ai

has coordinates (ai
1, . . . , a

i
d+1), then π(σ) has the form:

x1 = u
a1
1

1 · · · uad+1
1

d+1 , . . . , xd+1 = u
a1

d+1

1 · · · uad+1
d+1

d+1 . (10)

The total transform of f =
∑

v cvx̄
v by π(σ) is

f ◦ π(σ) =
∑

v

cvu
〈a1,v〉
1 · · · u〈ad+1,v〉

d+1 = u
m(a1)
1 · · · um(ad+1)

d+1 · f̃σ, (11)

where m(a) := infv∈N (f)〈a, v〉 and f̃σ defines the equation of the strict transform of f in the chart
Z(σ) ⊂ Z(Σ).

If l(a) � 0 (cf. Equation (9)), then (0, . . . , 0, n) ∈ Fa, hence

m(a) = nad+1. (12)

3.5 The divisors D(a) in Z(Σ)
To any primitive vector a of Σ(1) (:= 1-skeleton of Σ), we associate a divisor D(a) in Z(Σ). In
any chart Z(σ), associated with a cone σ = 〈a1, . . . , ad+1〉, D(ai) is given by {ui = 0}. If b �∈
{a1, . . . , ad+1}, then D(b)∩Z(σ) = ∅. By (10) one gets that π(Σ)(D(ai)) is the coordinate subspace
defined by xj = 0 for all j with ai

j �= 0. If e1, . . . , ed+1 denote the canonical basis on Zd+1, then
π(Σ)(D(ei)) = {xi = 0}, but for any a ∈ Σ(1) \ {e1, . . . , ed+1} one has dim π(Σ)(D(a)) � d− 1. The
critical locus (exceptional divisor) of π(Σ) is exactly the union of these divisors:⋃

a∈Σ(1)\{ei}i

D(a).

Moreover, D(a) is compact (i.e. D(a) ⊂ π(Σ)−1(0)) if and only if a is an interior point of (Rd+1)∗�0.
More generally, one has the following fact.

Lemma 3.1. Let A = {a1, . . . , as} be a non-empty subset of Σ(1). Denote DA :=
⋂

a∈A D(a). Then:

a) if DA �= ∅, then {a1, . . . , as} forms a cone σA in Σ. Moreover, LA := π(Σ)(DA) is a linear
coordinate subspace of Cd+1;

b) assume that DA �= ∅, then

DA compact ⇔ σA ∩ (Rd+1)∗>0 �= ∅ ⇔ LA = 0.

The proof follows from standard facts of toric geometry and the previous discussion.
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3.6 The divisor D :=
⋃

a∈Σ(1) D(a) in the smooth variety Z(Σ) is a normal crossing divisor with
smooth irreducible components. González Pérez proves [GP00, Theorem 3.6] that π(Σ) : Z(Σ) →
Cd+1 provides an embedded resolution of f1. If F̃1 denotes the strict transform of F1 = {f1 = 0},
then F̃1 is smooth and D ∪ F̃1 is a normal crossing divisor. Moreover, the restriction π(Σ)|F̃1

:
F̃1 → F1 is an isomorphism above F1 \ Sing F1 (cf. [GP00, Lemma 3.6]). But, for a general Σ (e.g.
if Σ(1) ∩ {vd+1 = 0} is ‘too rich’), it is not true that π(Σ) : Z(Σ) → Cd+1 is an isomorphism
above Cd+1 \ Sing F1. On the other hand, in the proof of Theorem B, the property that π(Σ) is an
isomorphism (at least) above Cd+1 \ F1 (respectively above Cd+1 \ F ) is crucial (cf. Theorem 4.7).
(We notice that a similar property is used in [Var76] as well.)

Proposition 3.2. There exists a regular fan Σ which subdivides Σ(N (f)), supported by (Rd+1)∗�0,

so that π(Σ) is an isomorphism above Cd+1 \ (F1 ∩ F ). This means that the image

∆Σ := π(Σ)
( ⋃

a∈Σ(1)\{ei}i

D(a)
)

of the exceptional divisor of π(Σ) is included in F1 ∩ F .

Proof. A) First we assume that λ1,i �= 0 for all i; and we construct a regular fan Σ with ∆Σ ⊂ F1.
Define H := {v ∈ (Rd+1)∗�0 : vd+1 = 0}. By assumption about λ1 one has

l ∩ H ∩ (Rd+1)∗�0 = 0. (13)

In [Ful93, pp. 47–48], Fulton gives the following algorithm to find a regular refinement Σ. This
algorithm provides our wanted fan as well.

Given a fan Σ0 and any lattice point v, one can subdivide Σ0 to a fan Σ1 as follows: each cone
that contains v is replaced by the joins of its faces with the ray through v; each cone not containing
v is left unchanged.

Now, the construction of the regular refinement is done by adding successively vectors v as
above. In this procedure there are two steps.

Step 1. On can subdivide any fan by successively adding vectors in larger and larger cones, until it
becomes simplicial.

Step 2. Any additional new vector v has the following form: for some simplicial k-cone σ generated
by the primitive vectors v1, . . . , vk, the new v is a lattice point of the form v =

∑k
i=1 tivi (0 � ti < 1).

We have to show that, at any time in this procedure, one can make the choice of the vector v
so that v �∈ H. In this case, for any a ∈ Σ(1) \ {ei}i, we will have ad+1 �= 0, hence π(Σ)(D(a)) ⊂ F1

(cf. § 3.5).
Since H ∩ Σ(N (f)) is simplicial (cf. (13)), we can assume that all the vectors v introduced in

Step 1 have vd+1 > 0. For Step 2, notice that any vector in H ∩ {v1, . . . , vk} is automatically of
type {ei}i�d, and the new (lattice) vector v cannot be of the form

∑
i�d tie

i (0 � ti < 1). Hence
vd+1 > 0.

B) Assume that λ1,j0 �= 0, but λ1,j0+1 = 0 for some j0 < d. First construct a refinement Σj0

of Σ(N (f)) ∩ (Rj0+1)∗�0 in (Rj0+1)∗�0 (with coordinates v1, . . . , vj0 , vd+1), then define Σ as the fan
generated by Σj0 and the vectors {ei}j0<i�d. Then again ∆Σ ⊂ F1.

C) Consider the linear coordinate subspace La := π(Σ)(D(a)). Then it is easy to verify (using (6))
that if La ⊂ F1 then La ⊂ F as well.

673

https://doi.org/10.1112/S0010437X03000630 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000630


L. J. McEwan and A. Némethi

3.7 The strict transforms F̃ 1 and F̃

Let g denote one of the functions f or f1, and set S̃ for the strict transform of {g = 0} via π(Σ).
In this section we will analyze the intersections D ∩ S̃.

By [GP00, (3.2)], a divisor D(a) (a ∈ Σ(1)) has a non-empty intersection with S̃ if and only if
a ∈ l. In fact, the intersection D ∩ S̃ can be covered by charts {Z(σ)}σ , where we consider only
those (d + 1)-dimensional cones σ = 〈a1, . . . , ad+1〉 of Σ which satisfy ai ∈ l for all i = 1, . . . , d, and
l(ad+1) > 0 (cf. [GP00, page 110]). Therefore, all the properties of the intersections D∩F̃1 and D∩F̃
can be verified in these charts.

First we analyze the intersection D ∩ F̃1.
Fix a chart Z(σ) as above. Using N (f1) = (1/e1)N (f) and (12), the analog of (11) written for

f1 (and in Z(σ)) reads as

f1 ◦ π(σ) = (u
a1

d+1

1 · · · uad+1
d+1

d+1 )n1 (1 − αn1
1 u

n1l(ad+1)
d+1 ),

where n1l(ad+1) = 1 (cf. [GP00, p. 111]). Therefore:

(f1)∼σ = 1 − αn1
1 ud+1.

This means that F̃1 ∩ Z(σ) has equation w := 1 − αn1
1 ud+1 = 0. Notice that this equation is

independent of the choice of σ. (Indeed, ud+1, as a vector of σˇ, is a primitive vector generating
l⊥, cf. [Ful93, ch. 1].) This has the following important consequence. We say that the ‘natural
stratification’ of D ∩ F̃1 is given by (non-empty) strata of type:( ⋂

a∈A

D(a)
∖ ⋃

a�∈A

D(a)
)
∩ F̃1 (A ⊂ Σ(1)).

Then the above discussion guarantees that the natural stratification of D ∩ F̃1 is equivalent to the
stratification of the toroidal embedding whose combinatorics corresponds to the cones of Σ ∩ l (cf.
[GP00, 3.2.3 and 3.3.2]). In particular,

for any stratum Ξ of D ∩ F̃1 with dimΞ > 0, one has χ(Ξ) = 0. (14)

This can be explained in the following way as well. If a stratum Ξ of D ∩ F̃1 has a non-empty
intersection with the chart Z(σ), then it is completely contained in Z(σ), and in this chart is given
by the intersection ΞD ∩ {w = 0}, where ΞD is a toric stratum (orbit) of D contained in Z(σ).
Hence Ξ itself is a torus.

By similar argument as in Lemma 3.1, and using the above discussion, one obtains the following
lemma.

Lemma 3.3. For any A = {a1, . . . , as} ⊂ Σ(1), one has the following.

a) If DA ∩ F̃1 �= ∅, then {a1, . . . , as} is a cone σA in Σ ∩ l.

b) Assume that DA ∩ F̃1 is not empty. Then

DA ∩ F̃1 is compact ⇔ σA ∩ l ∩ (Rd+1)∗>0 �= ∅.
In particular, we obtain via Lemma 3.1, that

c) DA ∩ F̃1 compact ⇔ DA compact.

The point is that these facts are true for the strict transform F̃ of {f = 0} as well.

Lemma 3.4. The statement of Lemma 3.3 is also true for F̃ instead of F̃1.

Proof. a) is clear from the above discussion. By (8), f is a perturbation of f e1
1 . Using the local

equations of the corresponding strict transforms, one obtains that, if DA ∩ F̃1 is not compact, then
DA ∩ F̃ cannot be compact either. Hence the lemma follows from Lemmas 3.1 and 3.3.
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The final goal of the above discussions is the next result.

Proposition 3.5. Assume that for a non-empty A ⊂ Σ(1) the intersection DA is non-empty and
compact. Then

DA ∩ F̃1 = DA ∩ F̃ .

This (via Lemmas 3.3 and 3.4) gives that:

π(Σ)−1(0) ∩ F̃1 = π(Σ)−1(0) ∩ F̃ .

Proof. By Lemmas 3.1, 3.3 and 3.4 we can assume that A defines a cone σA in l in such a way that
σA∩ l∩ (Rd+1)∗>0 �= ∅. This implies that the face FσA

⊂ N (f) associated with σA is compact, and in
fact it is exactly Fco. Then Proposition 3.5 follows from (8) and from the next technical lemma.

Lemma 3.6 [GP00, p. 105]. Set f =
∑

v cvx̄
v ∈ C{x̄}, and fix a compact face Fσ associated with

the cone σ = 〈a1, . . . , as〉 ∈ Σ. Then in Z(σ), the intersection of the strict transform of {f = 0}
with

⋂
1�i�s D(ai) has equation (f |Fσ)∼ = 0.

3.8 The strict and total transforms of f along π(Σ)−1(0) ∩ F̃

The divisor D ∩ F̃ (also) has a ‘natural stratification’ given by strata of type( ⋂
a∈A

D(a)
∖ ⋃

a�∈A

D(a)
)
∩ F̃ (A ⊂ Σ(1)).

We are interested only in those strata which are situated in π(Σ)−1(0). They are situated in
compact intersections of type DA by Lemmas 3.3 and 3.4. Consider such a (connected) strata Ξ
with dimΞ > 0. We claim that both the strict and the total transforms of f along Ξ determine
an equisingular family of singularities. This follows from [GP00], which provides a simultaneous
resolution of the strict transform of f along Ξ. This shows in particular that the zeta function of
the strict transform along Ξ is constant.

3.9 Now we concentrate our discussion on the zero-dimensional strata {Ξ}dim Ξ=0 of D ∩ F̃ .
Obviously, all of these points are in π(Σ)−1(0) ∩ F̃ .

For this, we fix an arbitrary d-cone σ′ = 〈a1, . . . , ad〉 of l∩Σ, and we consider the unique (d+1)-
cone σ = 〈a1, . . . , ad, ad+1〉 of Σ with a primitive vector ad+1 satisfying l(ad+1) > 0. Then, in the
chart Z(σ) one can find a zero-dimensional stratum Oσ′ := F̃ ∩ D(a1) ∩ · · · ∩ D(ad) of D ∩ F̃ .

In fact, there is a one-to-one correspondence between the zero-dimensional strata of D ∩ F̃ and
the points Oσ′ where σ′ runs over the d-cones of Σ ∩ l.

By § 3.7, Oσ′ is given by the equations u1 = · · · = ud = 0 and w := 1 − αn1
1 ud+1 = 0.

González Pérez in his thesis [GP00] shows that the strict transform f̃σ of f in the local coordinates
(u1, . . . , ud, w) is a quasi-ordinary singularity, but this coordinate system is not ‘good’ (cf. (4)).
However, we can construct a local coordinate system (u1, . . . , ud, w1) (i.e. only w is modified, cf.
(4)) in such a way that the projection (u,w1) �→ u induces a quasi-ordinary projection of (f̃σ, Oσ′),
which satisfies (1), (2) and (4). (In fact, by [GP00], w1 = 0 is the strict transform of the hypersurface
given by the vanishing of the first approximate root of f .) The germ (f̃σ, Oσ′) has smaller complexity
than the original germ f : it has only g − 1 distinguished tuples. (They can be computed from the
original tuples of f , but this formula is not essential here.)

3.10 The total transform of xβf

Fix β ∈ Zd
�0, and consider the germ xβf . Notice that π(Σ)−1({xi = 0}) = D(ei) (for i = 1, . . . , d),

hence D ∪ F̃ = D ∪ {the total transform of xβf}, and both of them have the same ‘natural
stratification’ (i.e. by introducing the factor xβ , we do not create new strata).
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In the proof of Theorem B, we will use an inductive step, which replaces the germ xβf by its
total transform at the points {Oσ′}σ′ . Obviously, the total transform of xβf at the point Oσ′ has
similar form, namely uγ f̃σ for some γ (cf. (11)).

In the next lemma we will use the following notation: For any α = (α1, . . . , αd) ∈ Zd
�0, we define

I(α) := {i | αi > 0}.
Proposition 3.7. Let σ′ be a cone as in § 3.9. Let uγ f̃σ be the total transform of xβf at the
point Oσ′ . Then if #I(β) � 1 and #I(β + λ1) � 2, then #I(γ) � 2. (In particular, uγ f̃σ satisfies
the inductive property #I(γ) � 1 and #I(γ + λ1(f̃σ, Oσ′)) � 2.)

Proof. For simplicity we write 〈ai, β〉 =
∑d

j=1 ai
jβj . Moreover, assume that the coordinates are

ordered, i.e. (3) is satisfied as well.
Then by (10)–(12) one gets that

γi = nai
d+1 + 〈ai, β〉, i = 1, . . . , d.

If ai
d+1 = 0 for all i = 1, . . . , d, then ai ∈ l ∩ {ud+1 = 0} for all i. However, l ∩ {ud+1 = 0} is

(d − 1)-dimensional, and σ′ is d-dimensional, hence this inclusion is not possible.
Assume that for some i0 one has ai0

d+1 �= 0, but ai
d+1 = 0 for all i �= i0 (1 � i � d). This

means that {ai}i�=i0 is a basis for l ∩ {ud+1 = 0}. Notice that each ai ∈ (Rd+1)∗�0, and 0 = l(ai) =
〈ai, λ1〉 − ai

d+1 = 〈ai, λ1〉 for i �= i0. This can happen only if #I(λ1) = 1, i.e. λ1,1 �= 1, but λ1,i = 0
for i � 2. In this case l ∩ {ud+1 = 0} = Z(e2, . . . , ed). Since #I(β + λ1) � 2, there exists an index
i′ � 2 such that 〈ei′ , β〉 = βi′ > 0. Therefore, there exists at least one index i′0 �= i0 such that
〈ai′0 , β〉 > 0. Therefore, γi0 > 0 and γi′0 > 0 for some i′0 �= i0, hence #I(γ) � 2.

4. Generalities about the zeta function

4.1 Definitions/notations

Let f : (Cd+1, 0) → (C, 0) be the germ of an analytic function, Fε = f−1(ε)∩Br the Milnor fiber of f ,
mgeom the geometric monodromy acting on Fε (defined up to an isotopy), and mq ∈ AutHq(Fε, R)
the algebraic monodromy induced by mgeom (q � 0). Then the rational function

ζ(f)(t) :=
∏
q�0

det(I − tmq)(−1)q

is called the zeta function of f .
If, additionally, one has a local analytic divisor (V, 0) ⊂ (Cd+1, 0), then one can take a geometric

monodromy mgeom compatible with (V, 0). This means that mgeom acts on (Fε, Fε ∩ V, Fε \ V ).
This gives rise to two additional fibrations (over the circle) with fibers Fε ∩ V , respectively Fε \ V .
The corresponding zeta functions are denoted as follows:

ζ(f |V )(t) =
∏
q�0

det(I − tmgeom,q|Hq(Fε∩V,R))
(−1)q

,

ζ({f = ε} \ V )(t) =
∏
q�0

det(I − tmgeom,q|Hq(Fε\V,R))
(−1)q

.

By a Mayer–Vietoris argument one has:

ζ(f) = ζ(f |V ) · ζ({f = ε} \ V ).

In particular, if f, g : (Cd+1, 0) → (C, 0) are germs of hypersurface singularities, then taking V =
{g = 0}, ζ(f |g=0) means ζ(f |V ).
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Notice that the ‘degree’ of the rational function ζ(f)(t) is exactly the Euler characteristic χ(Fε)
of Fε. Sometimes we denote this number by χ(f). Similarly, the degree of ζ(f |g=0) will be denoted
by χ(f |g=0) (which is the Euler characteristic of the Milnor fiber {f = ε} ∩ {g = 0} ∩ Br of the
restriction f |g=0). The following example will be a building block in the proof of Theorems A and B.

Example 4.1. Let f : (Cd+1, 0) → (C, 0) be defined by f(x, xd+1) = xβ(xn1
d+1 + cxλ), where x =

(x1, . . . , xd), xλ = xλ1
1 · · · xλd

d (similarly for xβ), n1 � 1, and c ∈ C. Assume that #I(β) � 1 and
#I(β + λ) � 2. (Here, as above, I(α) = {i | αi > 0}.) Then ζ(f)(t) = 1.

Indeed, since f is given by a weighted homogeneous polynomial, we can replace the local situation
by the affine one. Then Fε = {f = ε} ⊂ Cd+1. Assume that c �= 0, and consider the projection
pr : Cd+1 → Cd given by (x, xd+1) �→ x. Then for ε �= 0, pr(Fε) = Cd \ ⋃

βj �=0{xj = 0}. The
discriminant locus ∆ of the projection pr : Fε → pr(Fε) is {cxβ+λ = ε}. Since I(β) � 1, one gets
χ(pr(Fε)) = 0; similarly, since I(β + λ) � 2, χ(∆) = 0. Therefore, χ(Fε) = 0. Notice that the above
geometric picture is compatible with the monodromy action, hence ζ(f) = 1 by similar argument
(cf. [Ném91, Lemma 3.3.9]). (If c = 0 then the result is trivial.)

4.2 One has the following generalization of A’Campo’s formula [A’C75], which provides the zeta
function in terms of an embedded resolution.

Fix the following data:

i) an arbitrary analytic germ h : (Cd+1, 0) → (C, 0);
ii) a local analytic divisor (V, 0) ⊂ (Cd+1, 0);
iii) an analytic subset (S, 0) ⊂ (V, 0) ∪ ({h = 0}, 0).

Let Br be a sufficiently small ball in Cd+1 centered at the origin. We write {h = ε} for the Milnor
fiber h−1(ε) ∩ Br (0 < ε � r).

Assume that φ : X → Br is a birational modification such that:

1) φ−1({h = 0} ∪ V ) is a normal crossing divisor;
2) φ is an isomorphism above Br \ S.

Let E be the total transform of {h = 0}∪V , {Ei}i the irreducible components of E, and mEi(h)
the vanishing order of h ◦ φ along Ei.

Proposition 4.2. With the above notations, one has:

ζ({h = ε} \ V ) =
∏

i

(1 − tmEi
(h))χ(Ei\

⋃
j �=i Ej).

The proof is similar to the proof of the classical case [A’C75] (see also [AGV88, Theorem 3.10]),
and it is left to the reader. The classical case corresponds to V = ∅ (cf. also with Remark 4.6.)

Corollary 4.3 (Splitting property for χ) [BMcN02]. Let f , g : (Cd+1, 0) → (C, 0) be two germs
of analytic functions. Then

χ(fg) = χ(f) + χ(g) − χ(f |g=0) − χ(g|f=0).

In order to emphasize the similarities and the differences between the splitting property of χ
and ζ, we present a short proof of Corollary 4.3.

Proof. Fix an embedded resolution φ of the divisor ({fg = 0}, 0) ⊂ (Cd+1, 0) which has the property
that it is an isomorphism above Cd+1 \S for some S ⊂ Sing{fg = 0}. Let E be the total transform
of {fg = 0}. By applying Proposition 4.2 for h = f and V = {g = 0}, we obtain χ(f)− χ(f |g=0) =∑

i mEi(f) · χ(Ei \
⋃

j �=i Ej).
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One can write a similar identity for χ(g) − χ(g|f=0), and for χ(fg) (with h = fg and V = ∅).
The corollary then follows from mEi(fg) = mEi(f) + mEi(g).

4.3 Notice that Corollary 4.3 has no analog for ζ, since, in general, (1−tmEi
(f))χi ·(1−tmEi

(g))χi �=
(1 − tmEi

(fg))χi . In fact, the reader can easily find examples of germs f, g such that ζ(fg) �=
ζ(f)ζ(g)/ζ(f |g=0)ζ(g|f=0).

Nevertheless, we prove the following weak version of the splitting property for ζ.

Proposition 4.4 (Weak splitting property for ζ). Let f , g : (Cd+1, 0) → (C, 0) be two germs of
analytic functions. Assume that for any k � 1 we have ζ(fkg)(t) = 1. Then

ζ(f) = ζ(f |g=0) and ζ(g) = ζ(g|f=0).

Proof. Consider the geometric set-up of the proof of Corollary 4.3. By Proposition 4.2 one gets

ζ(f)
ζ(f |g=0)

=
∏

i

(1 − tmEi
(f))χi ,

where χi := χ(Ei \
⋃

j �=i Ej); and there is a similar formula for ζ(g)/ζ(g|f=0). Moreover,

ζ(fkg) =
∏

i

(1 − tkmEi
(f)+mEi

(g))χi .

Now the result follows from the next lemma (with s = 1). If the pairs {mEi(f),mEi(g)}i are
not distinct, regroup them replacing {χi}i by {χ̄j :=

∑
i∈Ij

χi}j for convenient index sets {Ij}j

corresponding to equal pairs.

Lemma 4.5. Let J be a finite set, s ∈ Z>0, {χ̄j}j∈J a set of integers, and finally mj
l > 0 (j ∈

J, 0 � l � s) positive integers such that the vectors mj = (mj
0, . . . ,m

j
s) ∈ Zs+1

>0 are distinct (j ∈ J).
Assume that for any (k1, . . . , ks) ∈ Zs

>0 we have:∏
j∈J

(1 − tm
j
0+
∑

l�1 mj
l kl)χ̄j = 1. (15)

Then χ̄j = 0 for all j ∈ J .

Proof. If mj0 is maximal in the lexicographic order, then

M := mj0
0 +

∑
l�1

mj0
l kl > mj

0 +
∑
l�1

mj
l kl

for any j �= j0 and some well-chosen kl’s. Fix such kl’s, take a primitive M -root ξ of unity, and see
the multiplicity of t − ξ in the left- and right-hand sides of (15). This gives χ̄j0 = 0. Then proceed
by induction.

Remark 4.6. In Proposition 4.2 it was convenient to formulate the A’Campo type theorem in terms
of the total transform. However, when V = ∅, it is more natural to formulate it in terms of the
compact space φ−1(0). In fact, if we stratify the spaces considered in Proposition 4.2 with respect
to φ−1(0) and its complement φ−1(Br \ {0}), the contribution to the zeta function over Br \ {0}
is 1 by vanishing of some Euler characteristics. Therefore, it is enough to consider only the compact
space φ−1(0). In fact, this will be crucial in the proof of the main theorems. On the other hand, in
some cases, we need a similar result formulated in the context of partial resolutions. This type of
statement was proved in [GLM97].

Theorem 4.7. Let φ : X → Br be an arbitrary birational modification such that φ is an isomor-
phism above the complement of {f = 0}. Let S be a semi-analytic stratification of φ−1(0) such that
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along each stratum Ξ of S the zeta function of the germ (f ◦ φ, x) at x ∈ Ξ does not depend on
x ∈ Ξ. Denote this rational function by ζΞ(t). Then:

ζ(f)(t) =
∏
Ξ∈S

ζΞ(t)χ(Ξ).

(In this paper stratification means a pre-stratification, without any regularity assumption.)

Remark 4.8. In the setting of an embedded resolution when the total transform is a normal crossing
divisor (and the stratification is a ‘natural’ one), then all the contributions from the non-top-
dimensional strata Ξ vanish, since along them ζΞ(t) = 1. (In fact this follows from Proposition 4.2,
case c = 0. Compare also with Proposition 4.2 or with the original case of A’Campo [A’C75].)

5. The proofs of Theorems A and B

5.1 Proof of Theorem B
Theorem B (reformulated). Let f be a quasi-ordinary singularity as in § 2.1. We fix β ∈ Zd

�0 with
#I(β) � 1. Assume that g > 0 and the first distinguished tuple λ1 satisfies #I(β + λ1) � 2. Then

ζ(xβf) = 1.

Proof. First notice that we can assume that f satisfies property (4) of § 2.2 ((1) and (2) are
automatically satisfied, cf. § 2.2). Then consider a regular fan Σ as in Proposition 3.2, and the
partial resolution π(Σ) : Z(Σ) → Cd+1 as described in § 3. The critical locus of π(Σ) is included in
both F and F1 (cf. Proposition 3.2). Therefore, Theorem 4.7 can be applied for both xβf and xαf1

(for some α, see below). First we apply for the germ xβf .
Define the index set

Σ(1)(β) := Σ(1) \ {ei}i�∈I(β).

The corresponding divisor is

D(β) :=
⋃

a∈Σ(1)(β)

D(a).

Obviously, D(β) ⊂ D, and D(β) ∪ F̃ is exactly the total transform of xβf .
The divisor D has two natural stratifications provided by intersections of type {DA}A, where in

the first case A ⊂ Σ(1), and in the second case A ⊂ Σ(1)(β). Obviously, the second one is coarser.
In fact, in this proof we will need the following ‘mixed stratification’ of D:{( ⋂

a∈A

D(a)
∖ ⋃

a�∈A

D(a)
)∖

F̃

}
A⊂Σ(1)(β)

,

{( ⋂
a∈A

D(a)
∖ ⋃

a�∈A

D(a)
)
∩ F̃

}
A⊂Σ(1)

.

(The first group of strata has the advantage that it is compatible with A’Campo’s theorem in
the sense that ζΞ(t) = 1 for all non-top-dimensional strata Ξ; cf. Remark 4.8; the second group
has the advantage that it corresponds to a toroidal embedding, hence χ(Ξ) = 0 for all non-zero-
dimensional strata Ξ; cf. (14). See the details below.)

This stratification of D induces a stratification on π(Σ)−1(0) which will be denoted by S.
By Lemma 3.3, each stratum Ξ of S is included in some compact intersection of type

⋂
a∈A D(a).

By the very definition, the stratification is compatible with F̃ . Denote by S ∩ F̃ (respectively by
S \ F̃ ) the collection of those strata which are in F̃ (respectively are in D \ F̃ ). The stratification
is compatible with the assumptions of Theorem 4.7 by § 3.8. Then

ζ(xβf)(t) =
∏

Ξ∈S\F̃
(ζΞ(t))χ(Ξ) ·

∏
Ξ∈S∩F̃

(ζΞ(t))χ(Ξ). (16)
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The first factor on the right-hand side of (16), which we denote ζS\F̃ , corresponds to the product
over Ξ ∈ S \ F̃ . It can be computed as follows. Since D(β) is the total transform of xβf , and the
divisor D(β) \ F̃ is a normal crossing divisor, one gets that for any Ξ ∈ S \ F̃ the corresponding
contribution is

ζΞ(t)χ(Ξ) = (1 − tmΞ(xβf))χ(Ξ),

provided that dim Ξ = d, and equals 1 otherwise (cf. Remark 4.8). If dim Ξ = d, then Ξ ⊂ D(a) for
some a ∈ Σ(1), and by (11) we obtain

mΞ(xβf) = mD(a)(x
βf) = m(a) + 〈a, β〉 = infv∈N (f)〈a, v〉 + 〈a, β〉.

Therefore
ζS\F̃ =

∏
(1 − tm(a)+

∑
l alβl)χ(Ξ), (17)

where the product is over Ξ ∈ S \ F̃ with Ξ ⊂ D(a) (and 1 � l � d).
Next, for any k = (k1, . . . , kd) ∈ Zd

>0, consider the germ

xk·βf1 := xk1β1
1 · · · xkdβd

d · f1.

We apply Theorem 4.7 for this germ and modification π(Σ).
The main point is that the same stratification S is good in this case as well (cf. Proposition 3.5).

Moreover, D ∪ {total transform of xk·βf1} is a normal crossing divisor (cf. § 3.6), hence in the
ζ(xk·βf1) we have contributions only from the top-dimensional strata, and all of these are situated
in S \ F̃ .

On the other hand, we know from Example 4.1 that ζ(xk·βf1) = 1. Therefore:∏
(1 − t(1/e1)m(a)+

∑
l alklβl)χ(Ξ) = 1 (18)

for any (k1, . . . , kd) ∈ Zd
>0, and the product is over Ξ ∈ S \ F̃ with Ξ ⊂ D(a) (and 1 � l � d).

In this formula we used for a stratum Ξ ⊂ D(a) that

mΞ(f1) = inf
v∈N (f1)

〈a, v〉 = inf
v∈(1/e1)N (f)

〈a, v〉 =
1
e1

mΞ(f).

But (17), (18) and Lemma 4.5 imply that in (16) the first factor ζS\F̃ = 1.

Now, the second factor on the right-hand side of (16) is a product over Ξ ∈ S ∩ F̃ . By Proposi-
tion 3.5 and (14), each positive dimensional stratum has Euler characteristic χ(Ξ) = 0. Hence, (16)
reads as

ζ(xβf)(t) =
∏

dimΞ=0,Ξ∈S∩F̃

ζΞ(t)

=
∏

σ′⊂Σ∩l,dimσ′=d

ζ (total transform of xβf at Oσ′)(t).

But each total transform at Oσ′ has the form uγ f̃σ satisfying all the inductive properties: f̃σ is quasi-
ordinary in local coordinates (u,w1) with properties (1), (2) and (4), it has less complexity (i.e. with
g − 1 distinguished tuples), and #I(γ) � 1, #I(γ + λ1(f̃σ)) � 2 (cf. § 3.10 and Proposition 3.7).

Notice that, in the case g = 1, uγ f̃σ has the form uγw in some local coordinates (u,w), hence
by Example 4.1 its zeta function is 1. Hence Theorem B follows by induction (over g).

5.2 Proof of Theorem A
Theorem A is a consequence of Theorem B and the splitting property. Indeed, we can assume that
f satisfies properties (1)–(4) (cf. § 2.2). Set β := (0, . . . , 0, k). Then #I(β) � 1 and #I(β +λ1) � 2.
Then by Theorem B one has ζ(xk

df) = 1 for any k � 1. Then ζ(f) = ζ(f |xd=0) by Proposition 4.4.
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5.3 Final remarks

1) In the case of an irreducible plane curve singularity (i.e. in the case of d = 1), ζ(f) is a
complete topological invariant. If d � 2, then this is not true any more: ζ(f) forgets almost all the
information about the (normalized) distinguished tuples {λi}i of f . For example, if λ1,2 �= 0, then
ζ(f)(t) = 1 − tn, hence from ζ(f)(t) only the degree n can be recovered. On the other hand, this
fact can have interesting consequences (e.g. in the Jung program).

2) It is not true that the Milnor fiber Fε(f) of f has the same homotopy type as the Milnor
fiber of Fε(f |xd=0) of f |xd=0. For example, if d = 2 and f = xn

3 − x1x2, then Fε(f) is
∨

n−1 S2,
but Fε(f |x2=0) ≈ disjoint union of n discs. Notice that Fε(f) can be obtained from Fε(f |x2=0) by
identifying the boundaries of the discs (i.e. by an S1-equivariant surgery).
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A’C75 N. A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–248.
AGV88 V. I. Arnol’d, S. M. Gusein-Zade and A. N. Varchenko, Singularities of differentiable maps, vols I
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LDT73 Lê Dũng Tráng, Topologie des singularités des hypersurfaces complexes, Astérisque 7–8 (1973),
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