A NOTE ON DERIVATIONS II.

by I. N. HERSTEIN⁽¹⁾

In a previous note on derivations [1] we determined the structure of a prime ring R which has a derivation $d \neq 0$ such that the values of d commute, that is, for which d(x) d(y) = d(y) d(x) for all $x, y \in R$. Perhaps even more natural might be the question: what elements in a prime ring commute with all the values of a non-zero derivation? We address ourselves to this question here, and settle it.

We prove the

THEOREM. Let R be a prime ring and let $d \neq 0$ be a derivation of R. Suppose that $a \in R$ is such that ad(x) = d(x)a for all $x \in R$. Then:

(1) If R is not of characteristic 2, a must be in Z, the center of R.

(2) If R is of characteristic 2, then $a^2 \in Z$. Moreover, if $a \notin Z$ then d is the inner derivation given by $d(x) = (\lambda a)x - x(\lambda a)$, where λ is in the extended centroid of R, for all $x \in R$.

Proof. Suppose that $a \notin Z$. Using the hypothesis we have, for all $x, y \in R$, that [a, d(xy)] = 0 where [u, v] denotes the commutator uv - vu. Since d(xy) = d(x)y + xd(y) we have [a, d(x)y + xd(y)] = 0. Again making use of the fact that a commutes with all d(t) we obtain

(1)
$$[a, x] d(y) + d(x)[a, y] = 0$$

If $y \in R$ commutes with a then [a, y] = 0, hence (1) reduces to [a, x] d(y) = 0for all $x \in R$. Because $a \notin Z$, by the Corollary to Lemma 1.1.7 of [2] we are forced to conclude that d(y) = 0. In other words, d vanishes on the centralizer, $C_R(a) = \{y \in R \mid ya = ay\}$, of a in R. But, for any $x \in R$, $d(x) \in C_R(a)$ by hypothesis; thus we get that $d^2(x) = 0$ for all $x \in R$.

However, as the proof of Lemma 1.1.9 of [2] shows, if R is prime (even semi-prime) of characteristic not 2 and d is a derivation of R such that $d^2 = 0$ then d = 0. Since we have supposed that $d \neq 0$, if the characteristic of R is not 2, by the results above we are led to the conclusion $a \in Z$. This settles the situation when the characteristic of R is not 2.

So, from this point on, we assume that R is of characteristic 2 and that $a \notin Z$. In this case equation (1) becomes

(2)
$$[a, x] d(y) = d(x)[a, y] \text{ for all } x, y \in \mathbb{R}.$$

⁽¹⁾ This work was supported by Grant NSF-MCS-78-01153 at the University of Chicago.

509

Received by the editors July 6, 1978.

December

Thus, if d(y) = 0 we obtain from equation (2) that d(x)[a, y] = 0 for all $x \in R$. The proof of Lemma 1.1.7 of [2] reveals that when R is prime we must have [a, y] = 0, that is, $y \in C_R(a)$. Combined with what we said earlier, namely that d vanishes on $C_R(a)$, we now know that $C_R(a)$ coincides with $\{y \in R \mid d(y) = 0\}$.

We return to equation (2), substituting in it xw for x, where x and w are arbitrary in R. Hence [a, xw] d(y) = d(xw)[a, y]. In this last relation we insert the explicit values [a, xw] = [a, x]w + x[a, w] and d(xw) = d(x)w + xd(w); we end up with [a, x]wd(y) + x[a, w] d(y) = d(x)w[a, y] + xd(w)[a, y]. However, equation (2) gives us equality for the last terms on both sides of this equation; thus we obtain

(3)
$$[a, x]wd(y) = d(x)w[a, y]$$
 for all $w \in R$, and all $x, y \in R$.

If $[a, x] \neq 0$, using a result of Martindale (Lemma 1.3.2 in [2]) we have that $d(x) = \lambda(x)[a, x]$ where $\lambda(x)$ is in the extended centroid of R. (See p. 22 of [2] for the notion of extended centroid.) Moreover, since $C_R(a) = \{y \in R \mid d(y) = 0\}$, we must have that $\lambda(x) \neq 0$ if $[a, x] \neq 0$. Also, if [a, x] = 0 then d(x) = 0 hence 0 = d(x) = 0[a, x]. Thus for all $x \in R$, $d(x) = \lambda(x)[a, x]$ where $\lambda(x)$ is in the extended centroid of R.

We claim that [a, [a, x]]=0 for all $x \in R$. Clearly, if [a, x]=0 then [a, [a, x]]=0. On the other hand, if $[a, x]\neq 0$ then, by the above, $d(x) = \lambda(x)[a, x]$ where $\lambda(x)\neq 0$, so since [a, d(x)]=0 we have that $\lambda(x)[a, [a, x]]=0$. Because $\lambda(x)\neq 0$ is invertible we end up with [a, [a, x]]=0 for all $x \in R$. Writing this out a(ax+xa)=(ax+xa)a we see that $a^2 \in Z$.

Now to the final part of the theorem. We just saw that if $a \notin Z$ then $d(x) = \lambda(x)[a, x]$, with $\lambda(x)$ in the extended centroid, for all $x \in R$. We want to prove that $\lambda(x)$ is a constant.

Let $x, y \in R$; then $d(xy) = \lambda(xy)[a, xy]$, that is, $d(x)y + xd(y) = \lambda(xy)[a, x]y + \lambda(xy)x[a, y]$. Because $d(x) = \lambda(x)[a, x]$, $d(y) = \lambda(y)[a, y]$ we get $\lambda(x)[a, x]y + \lambda(y)x[a, y] = \lambda(xy)[a, x]y + \lambda(xy)x[a, y]$. Hence, if $\mu = \lambda(x) + \lambda(xy)$ and $\nu = \lambda(y) + \lambda(xy)$, the above boils down to

$$\mu[a, x]y = \nu x[a, y] \quad \text{for all} \quad x, y \in R.$$

Since $a^2 \in \mathbb{Z}$, [a[a, x]] = 0, we obtain from this, by commuting it with a, that

$$(\mu + \nu)[a, x][a, y] = 0$$
 for all $x, y \in \mathbf{R}$.

Thus, if $[a, x][a, y] \neq 0$ we have $\mu + \nu = 0$, that is, $\lambda(x) + \lambda(xy) + \lambda(y) + \lambda(xy) = 0$, and so, $\lambda(x) = \lambda(y)$. Suppose now that $[a, x] \neq 0$, $[a, y] \neq 0$. We claim that there is a $w \in R$ such that both $[a, x][a, w] \neq 0$ and $[a, w][a, y] \neq 0$. If this were so we would have by the above that $\lambda(x) = \lambda(w)$ and $\lambda(w) = \lambda(y)$, hence $\lambda(x) = \lambda(y)$. This would tell us that λ would be constant on all elements failing to commute with a. Knowing further that

510

 $C_R(a) = \{y \in R \mid d(y) = 0\}$ would then tell us that $d(x) = [\lambda a, x]$ for all $x \in R$, for some λ in the extended centroid. This is, of course, our desired result.

So, to finish, we must show the existence of such a $w \in R$. In fact, we shall show a little more, namely, that there is an element $w \in R$ such that $[a, x][a, w][a, y] \neq 0$. If this were not true then [a, x][a, z][a, y]=0 for all $z \in R$, that is, [a, x]az[a, y]=[a, x]za[a, y]. By the result of Martindale quoted earlier, $[a, x]a = \mu[a, x]$ where μ is in the extended centroid of R. Since $a^2 = \sigma \in Z$ we have that $\mu^2 = \sigma$ and since the extended centroid is a field and is of characteristic 2, μ is uniquely determined by σ , hence does not depend on x. But then $[a, x](a + \mu) = 0$ for all x such that $[a, x] \neq 0$; if [a, x] = 0 this relation is certainly true. So $[a, x](a + \mu) = 0$ for all $x \in R$. But then this carries over to all x in the central closure T of R, which itself is a prime ring. Since $a \notin Z$ and $[a, x](a + \mu) = 0$ for all $x \in T$, by the Corollary to Lemma 1.1.7 of [2] we deduce that $a + \mu = 0$, and so $a \in Z$. With this contradiction the theorem is proved.

BIBLIOGRAPHY

1. I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), 369-370.

2. I. N. Herstein, Rings with Involution, University of Chicago Press, Chicago, 1976.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF CHICAGO 5734 UNIVERSITY AVENUE CHICAGO, ILLINOIS 60637