
RESEARCH ARTICLE

A data-driven method for automated data superposition with
applications in soft matter science

Kyle R. Lennon1 , Gareth H. McKinley2 and James W. Swan1

1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
Corresponding author: Gareth H. McKinley; Email: gareth@mit.edu

Received: 30 March 2022; Revised: 21 September 2022; Accepted: 01 March 2023

Keywords: Bayesian statistics; Gaussian process regression; method of reduced variables; self-similarity

Abstract

The superposition of data setswith internal parametric self-similarity is a longstanding andwidespread technique for the
analysis of many types of experimental data across the physical sciences. Typically, this superposition is performed
manually, or recently through the application of one of a few automated algorithms. However, these methods are often
heuristic in nature, are prone to user bias via manual data shifting or parameterization, and lack a native framework for
handling uncertainty in both the data and the resulting model of the superposed data. In this work, we develop a data-
driven, nonparametric method for superposing experimental data with arbitrary coordinate transformations, which
employs Gaussian process regression to learn statistical models that describe the data, and then uses maximum a
posteriori estimation to optimally superpose the data sets. This statistical framework is robust to experimental noise and
automatically produces uncertainty estimates for the learned coordinate transformations. Moreover, it is distinguished
from black-boxmachine learning in its interpretability—specifically, it produces a model that may itself be interrogated
to gain insight into the systemunder study.We demonstrate these salient features of ourmethod through its application to
four representative data sets characterizing the mechanics of soft materials. In every case, our method replicates results
obtained using other approaches, but with reduced bias and the addition of uncertainty estimates. This method enables a
standardized, statistical treatment of self-similar data acrossmany fields, producing interpretable data-drivenmodels that
may inform applications such as materials classification, design, and discovery.

Impact Statement

The dynamics of certain physical systems exhibit parametric self-similarity, meaning that experiments conducted
at different states produce data sets that can be superposed to produce a universally valid model. Performing this
analysis by hand may lead to human bias, however, and does not acknowledge experimental uncertainty in the
data, which can lead to unstandardized and poorly reproducible results. Here, we develop an automated method
for shifting data sets onto a single curve, which combines Gaussian process regression andmaximum a posteriori
estimation to represent the experimental data and coordinate transforms statistically. Ourmethod standardizes the
popular practice of data superposition and the construction of master curves, accounts for uncertainty in the data,
and provides meaningful and physically interpretable predictions.
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1. Introduction

For many of the physical processes encountered in scientific and engineering studies, the underlying
governing equations are unknown, oftentimes despite tremendous scientific effort. Even in systems for
which it is possible to write down the governing equations, the dynamical response often remains too
complicated to admit a compact analytical solution, and frequently even numerical solutions to such
complicated equation sets are too cumbersome to form the basis of useful tools for the prediction or
analysis of experimental observations. In such cases, insights and predictions are instead often made by
using domain knowledge and heuristics to identify patterns in experimental data. These patterns may then
inform empirical models that describe the behavior of systems quite accurately, over a wide range of
conditions. With increasing popularity, these patterns and empirical models are being identified auto-
matically by computational algorithms, a process commonly referred to as machine learning (Ferguson,
2017; Butler et al., 2018; Carleo et al., 2019).

There are many ways in which patterns in data may inform useful mathematical models without any
physical considerations. Here we consider one special case, which we exemplify by examining a simple
physical system whose governing equations, and the analytical solution to those equations, are known:
one-dimensional diffusion from an instantaneous point source. In this system, a fixedmassM of a passive
scalar is released at the origin (x= 0) at time t = 0 in an infinite domain, and allowed to diffuse with a
constant diffusion coefficient D, such that the concentration C of the diffusing species is governed by

∂C
∂t

=D
∂
2C
∂x2

: (1)

The analytical solution to this diffusion problem for all times t > 0 is known

C x, tð Þ= Mffiffiffiffiffiffiffiffiffiffi
4πDt

p exp � x2

4Dt

� �
: (2)

However, consider if the underlying diffusion process and analytical solution for this system were not
known. Instead, we have access to a (possibly noisy) device that measures the concentration profileC x, tð Þ
at an instant in time. Figure 1a presents some of these fictional measurements. A trained researcher may
notice that the concentration profiles at each measured time form a set of self-similar curves, each with a
different width and maximum value. Noting this pattern, they might rescale the height of each concen-
tration by a factor b tð Þ, and rescale the width by a factor a tð Þ, so that all the rescaled curves fall on top of
one another. This superposition creates the so-called “master curve” shown in Figure 1b. The researcher
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Figure 1. Example of fictitious measurements of the concentration profile of a diffusing species from an
instantaneous point source. (a) The concentration profile was measured instantaneously at four different
times, with lighter-shaded curves representing later times. (b) A “master curve” constructed by rescaling
the width and height of the concentration profiles by time-dependent “shift factors” a tð Þ and b tð Þ,

respectively. (c) The shift factors a tð Þ and b tð Þ plotted as a function of time. The earliest-time concen-
tration profile is taken as the reference, so its shift factors are unity. The remaining shift factors exhibit the

trends a tð Þ� t�1=2 and b tð Þ� t1=2.
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records the horizontal and vertical “shift factors,” a tð Þ and b tð Þ, respectively, and plots them as a function
of time, noting that a tð Þ� t�1=2 and b tð Þ� t1=2. Therefore, using ideas of self-similarity (Barenblatt,
2003) they propose the following model for the concentration profile:

C x, tð Þ= Affiffi
t

p g
xffiffi
t

p
� �

: (3)

We recognize that, for this problem, the functional form for the master curve g zð Þ is a simple Gaussian in
the reduced variable z� x=

ffiffi
t

p
. An approximation for this formmight be determined from the rescaled data

through the same sort of methods that determined forms for a tð Þ and b tð Þ, at which point a self-similar
solution to the diffusion equation will have been constructed directly from data.

In nonlinear or higher-dimensional systems, it may not be possible to choose simple functional forms
that describe amaster curve or the shift factors a tð Þ and b tð Þ. However, parametric self-similarity in data—
that is, the observation that we may construct a master curve by transforming discrete data observed at
different “states” as illustrated in the diffusion example above—is a widespread and salient principle in
the analysis of thermophysical property data in many fields, including rheology, solid mechanics, and
material science (Leaderman, 1944; Tobolsky and Andrews, 1945; Ferry, 1980). In fact, the same
principle of dynamical self-similarity finds applications in many different fields as well, such as
electromagnetism and even finance (Wagner, 1915; Lillo et al., 2003).

Self-similar data sets may be employed to make accurate predictions of material characteristics at
intermediate states, or to learn physical features about the underlying dynamics or structure of the system
under study (de Gennes, 1979; Barenblatt, 2003), often times by traditional methods such as direct
interpolation between data or by constitutive modeling. However, as demonstrated by the previous
example, there is another method for analyzing self-similar data. This method is most accurately referred
to as the “method of reduced variables,” but is commonly referred to as “data superposition” or the
development of “master curves” (Leaderman, 1944; Ferry, 1980).When applicable, this method is potent,
as it is agnostic to selection of an underlying constitutive model, and may encompass a broader and more
physically robust set of hypotheses than direct interpolation between specific (possibly noisy) data. Thus,
when new cases of data self-similarity are explored, data superposition can be immediately applied to gain
physical insight and develop predictive tools, without the need to develop new models.

In many cases, including the diffusion example discussed above, an experiment measuring a property
with parametric self-similarity C x; tð Þ, over an independent variable x and with a state parameter t, is
related to a master curve g zð Þ in the reduced variable z� a tð Þx by the similarity relation:

C x; tð Þ= 1
b tð Þg a tð Þxð Þþ ch xð Þ: (4)

Here a tð Þ and b tð Þ are state-parameter–dependent shift factors, while h xð Þ and c are a state-parameter–
independent offset function and multiplicative constant, respectively. Together, these transformations
collapse the experimental measurements onto the master curve (denoted generically g zð Þ) for all values of
x. Most often, the master curve is constructed from superposition of noisy experimental data. This process
uses experimental data forC x; tð Þ taken for a finite set of state parameters tj

� �
and over a fixed range of x.

Then one determines the set of shift factors, aj = a tj
� �� �

, bj = b tj
� �� �

, and c so that these finite data sets
across experiments are brought into registry without advance knowledge of the functional form of the
master curve g zð Þ.

Typically the process of master curve construction is done by an expert in the art who determines the
shift factors, aj

� �
, bj
� �

, and c, by eye. This can be done reliably, but it is a time-consuming process and
may not be robust to experimental uncertainties. If one aims to construct master curves from large sets of
data in an unbiased fashion—where bias could come in the form of presuming an existingmodel for any of
g zð Þ, a tð Þ or b tð Þ, or through the preconceptions and biases of the expert analyzing the data—then an
algorithm for the automated construction of suchmaster curves is necessary. In this work, we present such
an algorithm relying on Gaussian process regression (GPR) and maximum a posteriori estimation. We
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then apply the algorithm to examples using rheological data for soft material systems drawn from the
existing literature.

At its core, the process of constructing a master curve from self-similar data represents a task in
pattern recognition. Therefore, the automated method for learning coordinate transformations that
result in a master curve presented in this work represents a form of unsupervised learning (Carleo et al.,
2019)—a class of machine learning algorithms that identify patterns in data without explicit supervi-
sion, meaning that the algorithm does not require a set of labeled examples (in this case, a set of data sets
labeledwith the resultingmaster curves) for training. However, the patterns learned in this unsupervised
context—the coordinate transformations and master curve—are themselves useful for making predic-
tions. For instance, one can use the master curve and shift factors as a map x, t↦C for values of x and t
outside of the “training” set used to construct the master curve. This higher-level problem resembles
supervised learning, a class of machine learning algorithms that use a set of labeled examples (here,
measurements of C at particular x and t) to train a predictive model (the master curve and shift factors).
The method presented in this work differs from many so-called “black box” approaches to supervised
learning, in that the predictive model is itself the result of a pattern recognition task, and may
therefore provide value to the user beyond its ability to make accurate predictions. Thus, this method
represents a versatile tool for both modeling and understanding the behavior of systems with parametric
self-similarity.

1.1. Examples in soft matter science

Many thermomechanical properties of interest in soft materials satisfy principles of self-similarity in the
time domain or with respect to the rate of deformation on variation of an appropriate state parameter
(Plazek, 1965; Struik, 1977; Larsen and Furst, 2008; Gupta et al., 2012; Dekker et al., 2018; Caggioni
et al., 2020; Lalwani et al., 2021), whichmay be attributed to the wide range of temporal and spatial scales
that govern the underlying dynamics (Markovitz, 1975; de Gennes, 1979; Barenblatt, 2003). Some
examples include self-similar curves for:

• the creep compliance as a function of time resulting from variation of the temperature in polymer
melts (time–temperature superposition) (Plazek, 1965),

• the linear viscoelastic modulus as a function of frequency on variation of extent of reaction during
gelation (time-cure superposition) (Larsen and Furst, 2008),

• the shear stress as a function of shear rate on variation of packing fraction in an emulsion (shear rate-
volume fraction superposition) (Dekker et al., 2018),

• the relaxation modulus as a function of time on variation of the waiting time tw since sample
preparation in an aging clay suspension (time–age-time superposition) (Gupta et al., 2012).

It is often challenging to design rheometric experiments and equipment capable of measuring these
evolving self-similar mechanical properties over the entire dynamic parameter range on which they vary.
Instead, the principles of self-similarity (Barenblatt, 2003) and dynamic scaling (de Gennes, 1979),
coupled with a judicious choice of physiochemical state parameters such as temperature or pH are used to
expand the effective range of time scales accessible in experiments.

Furthermore, the construction of master curves and the interpretation of those curves plays a critical
role in extrapolating from direct measurement of material properties across a limited number of
experiments to fundamental knowledge of the microscale physical processes giving rise to these material
properties. For instance:

• in time–temperature superposition, C x; tð Þ would be the linear creep compliance (or the relaxation
modulus), x would be the temporal coordinate, the state variable t would be the temperature in a
given set of experiments, a tð Þ and b tð Þwould be the horizontal and vertical shift factors that might be
used to learn about the temperature dependence of relaxation processes in the soft material. In such a
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representation, cwould be a fluidity contribution that is independent of the temperature, and h xð Þ= x
would indicate linear creep at long times (Plazek, 1965),

• in the time-cure superposition principle that underpins gelation (Adolf and Martin, 1990), C x; tð Þ
would be the complex modulus, x would be the frequency, t would be perhaps the concentration of
gelator, a tð Þ and b tð Þwould be horizontal and vertical shift factors that might be used to learn about
the mechanism of gelation, c would be an offset accounting for the solvent viscosity, and h xð Þ= ix
would reflect this high-frequency viscous mode (Larsen and Furst, 2008),

• in the shear rate-volume fraction superposition of an emulsion, C x; tð Þ would be the steady shear
stress, x would be the imposed shear rate, t would be the packing fraction (ϕ) of the emulsion, a tð Þ
and b tð Þ would be the horizontal and vertical shift factors that might be used to learn about the
packing fraction dependence of the yield stress, cwould be a high shear viscosity and h xð Þ= xwould
reflect Newtonian flow of the emulsion at very high shear rates (Dekker et al., 2018; Caggioni et al.,
2020),

• in time–age-time superposition of an aging clay suspension, C x; tð Þ would be the linear relaxation
modulus, xwould be the effective or material time coordinate (~t ), t would be the wait time (tw) after
mixing or preshear of the aging suspension, a tð Þ and b tð Þ would be the horizontal and vertical shift
factors that might be used to learn about the rates of microstructural yielding in the suspension, c
would be an elastic plateau modulus and h xð Þ= 1would reflect the nonaging elastic energy stored in
the microstructure (Struik, 1977; Gupta et al., 2012).

Note that in this last case, the independent variable x represents an effective, or dynamically rescaled, time
coordinate, x= ξ t;νð Þ, representing a nonlinear transformation of the laboratory time coordinate t with
some scaling exponent ν (Joshi and Petekidis, 2018). Despite this added complexity, the method that we
present in this work is sufficiently general to accommodate nonlinear coordinate transformations, and can
indeed infer optimal values of the scaling parameters defining these transformations (such as the aging
exponent ν) at the same time as the shift factors a tð Þ and b tð Þ.

The present work is organized as follows. In Section 2, we develop the mathematics behind the
algorithm for automatic construction of master curves. This includes a brief description of GPR, a
development of maximum likelihood and maximum a posteriori estimation, and the discussion of Monte
Carlo cross-validation (MCCV) for hyperparameter optimization. Then, Section 3 applies this method to
the four specific soft materials science examples listed in this section, which are of increasing complexity.
Finally, Section 4 demonstrates how the learned master curves, combined with the inferred shift factors
a tð Þ and b tð Þ, may be used to inform forward predictions of data with automatic uncertainty estimates.

2. Method

A number of previous works have made efforts to automate the process of master curve construction.
These include methods based on minimizing the mean squared error between data at every state and a
single basis expansion (Honerkamp andWeese, 1993; Buttlar et al., 1998; Sihn and Tsai, 1999), methods
for minimizing the area between linear interpolants defined by data at different states (Barbero and Ford,
2004; Gergesova et al., 2011; Gergesova et al., 2016), methods for minimizing the mean squared error
between the derivatives of spline interpolants fit to the data (Hermida and Povolo, 1994; Naya et al.,
2013), methods to minimize the arc length between data sets at different states (Cho, 2009; Maiti, 2016),
and a method that leverages mathematical constraints on the Fourier transform of real-valued time-series
data (Rouleau et al., 2013). However, only a few of these methods have been demonstrated for
simultaneous horizontal and vertical shifting, and many require either parameters, an appropriate
interpolant, or a set of basis functions to be specified by the user, thereby introducing elements of
subjectivity into the methodology. Moreover, few of these methods explicitly account for the fact that
experimental data possesses a finite amount of noise andmeasurement uncertainty, whichmay affect both
the resulting master curve and confidence in the inferred shift factors. Because noise is not treated directly
by these approaches, systematic parametric sensitivity analysis has required computationally intensive
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approaches, such as bootstrap resampling (Maiti, 2019), which may require hundreds of thousands of
evaluations of the full superposition algorithm.

Here, we propose an approach to automated master curve construction that is both data-driven and
statistically motivated, thereby enabling rapid bidirectional superposition of data with automatic uncer-
tainty quantification.We rely onGPR to infer a continuous and probabilistic description of the underlying
data, and applymaximum a posteriori estimation to infer the best set of parameters that shift the noisy data
onto a common master curve. This methodology is not limited to any specific form for the master curve,
nor is it constrained to any specific form for the transformations applied to the data to obtain the master
curve. Thus, it may be applied to cases of simple horizontal shifting, simultaneous horizontal and vertical
shifting, as well as nonlinear coordinate transformations such as material time dilation in rheologically
aging systems. Moreover, this approach is nonparametric, meaning that users need only supply data and
the functional form of the transformations that should be applied to obtain the master curve. Finally,
because we use a probabilistic description of the data and statistical comparisons of different data sets, the
underlying noise in the data and the resulting uncertainties in the inferred shift factors are handled
naturally within this framework.

In the remainder of this section, we will develop our approach, beginning with a brief discussion of
GPR, then continuing to discussions of inference.We develop ourmaximum a posteriori approach by first
considering the slightly simpler formalism of maximum likelihood estimation. We subsequently incorp-
orate prior expectations about the shifting parameters a tð Þ and b tð Þ into the framework in the form of prior
distributions, which turns the maximum likelihood estimates of the shift parameters to maximum a
posteriori estimates.

2.1. Gaussian process regression

GPR—known in some fields as kriging (Matheron, 1963)—is a machine-learning method for obtaining a
probabilistic model of a stochastic process from data (Rasmussen andWilliams, 2006). GPR assumes that
the data C x; tð Þ at fixed t are described by a Gaussian process (GP):

C x; tð Þ�GP μ x; tð Þ,K θ,x,x0; tð Þð Þ, (5)

with a mean function μ x; tð Þ and a covariance function, commonly referred to as the kernel of the GP,
K θ,x,x0; tð Þ, between any two points x and x0, with a set of hyperparameters θ. In this section, we use the
symbol “�” to signify that a variable (or series of variables) behaves according to some statistical
distribution (or stochastic process). Informally, a GP represents a distribution in function space, or an
ensemble of functions most likely to describe the data set. The form of the prior mean and covariance
functions, μ x; tð Þ andK θ,x,x0; tð Þ encode prior expectations about the functions in this distribution, such as
noise structure, smoothness, and variations over x.

With prior expectations over fitting functions specified by the form of μ x; tð Þ and K θ,x,x0; tð Þ, GPR
proceeds by storing data points in the kernel matrix K with K ij =K θ,xi,xj;y

� �
, where xi and xj represent

values of x present in the input data set, and determining the hyperparameters θ that maximize the log-
marginal likelihood of observing the data from the GP model (Rasmussen and Williams, 2006). The GP
model now represents a distribution over functions that fit the data set subject to prior expectations, with

posterior mean m x∗; tð Þ and variance s x∗; tð Þ2 at an unmeasured point x∗ describing a Gaussian distribu-

tion N over the predicted value, C x∗; tð Þ�N m x∗; tð Þ,s x∗; tð Þ2
	 


. For a GP with zero priormean

(μ x; tð Þ= 0), these posterior mean and variance functions are:

m x∗; tð Þ=K θ,x∗,x; tð ÞK�1C x; tð Þ, (6)

s x∗ð Þ2 =K θ,x∗,x∗; tð Þ�K θ,x∗,x; tð ÞK�1KT ,

where x represents the vector of all values of x in the training data set, C x; tð Þ represents the vector with
elements Ci =C xi; tð Þ for all xi in the training set, and K θ,x∗,x; tð Þ represents the vector with elements
Ki =K θ,x∗,xi; tð Þ for all xi in the training set.
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In this work, we assume a zero-mean (μ x; tð Þ= 0) GP and a combination of constant, white noise, and
rational quadratic kernels (Rasmussen and Williams, 2006):

K θ,x,x0; tð Þ= ζ tð Þ 1þ x� x0ð Þ2
2α tð Þl tð Þ2

 !�α tð Þ
þβ tð Þþ σ tð Þ2þσ2u

	 

δx,x0 , (7)

where θ = α tð Þ,β tð Þ,ζ tð Þ, l tð Þ,σ tð Þ½ � are the hyperparameters which may depend on the state parameter t,
and δx,x0 is theKronecker delta function between points x and x0. Notably, the form of this kernel allows for
the GP to automatically adapt to the level of noise in the data set, via the hyperparameter σ tð Þ. The state-
independent hyperparameter σu represents an experimental uncertainty level which is not fit by GPR, but
rather can be specified in advance to encode additional experimental uncertainty that is not evident in
variations of the data (Ewoldt et al., 2015; Singh et al., 2019). Other authors have noted that a reasonable
limit for the relative uncertainty level in high-quality rheological data is 4% (Freund and Ewoldt, 2015);
therefore, unless otherwise stated, we take σu = 0:04 when the GP model describes the logarithm of
experimental data. This valuemay be assumed by any user to keep themethod nonparametric; however, if
the relative uncertainty of specific classes of experimental data is known in advance, then σu may be
adjusted by the user.

Wewill not discuss the details of the fitting protocol for GPR or hyperparameter optimization here, but
refer interested readers to the following references for more information on GP models and GPR:
(Rasmussen and Williams, 2006; Duvenaud, 2014; Görtler et al., 2019).

2.2. Maximum likelihood estimation

2.2.1. Linearly scaled multiplicative shifting
The first step in our automated superposition algorithm is to fit each data set at distinct state t to its ownGP
model. Once this regression is complete, our goal is to optimally superpose these GP models to create a
master curve. Because GPs are probabilistic in nature, it is sensible to define a statistical criterion for the
optimal superposition.

To begin in developing this criterion, consider the problem of registering a single data point, x jð Þ
i ,C jð Þ

i

	 

from a data set at state tj with a GP model trained on a data set at a different state, tk. For simplicity,
consider tk as the reference state, such that all shift factors required to collapse the data onto the master
curve are applied relative to this state. We apply a horizontal shift ajk and vertical shift bjk to the data point

in tj, bringing it to the coordinates ajkx
jð Þ
i ,bjkC

jð Þ
i

	 

. This shifted data point is now treated as an

observation drawn from the GP model at state tk:

bjkC
jð Þ
i �N mk ajkx

jð Þ
i

	 

,sk ajkx

jð Þ
i

	 
2� �
: (8)

The likelihood pk x jð Þ
i ,C jð Þ

i jajk ,bjk
	 


of this observation may be evaluated from the Gaussian probability

density function taken from theGP at the coordinate ajkx
jð Þ
i . It will be convenient to workwith the negative

of the logarithm of this likelihood (abbreviated NLL, for negative log-likelihood):

� lnpk x jð Þ
i ,C jð Þ

i jajk ,bjk
	 


=
1
2

bjkC
jð Þ
i �mk ajkx

jð Þ
i

	 

sk ajkx

jð Þ
i

	 

0@ 1A2

þ lnsk ajkx
jð Þ
i

	 

þ ln

ffiffiffiffiffi
2π

p
: (9)

The NLL defines a loss function for the superposition of the single data point x jð Þ
i ,C jð Þ

i

	 

at state tj and the

entire data set at state tk, which is captured by the GP model with mean and variance functionsmk xð Þ and
sk xð Þ2, respectively. The likelihood is conditioned on particular values of the shift factors ajk and bjk
applied to data at state tj; thus, minimizing the NLL gives the maximum likelihood estimates of ajk and bjk
for this particular data point.
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Before we extend this approach to include an entire data set, it is worthwhile to consider what exactly
the maximum likelihood estimate aims to achieve. We see that the first term in equation (9) is minimized

when bjkC
jð Þ
i =mk ajkx

jð Þ
i

	 

—that is, when the data point at tj is shifted directly onto the mean of the GP at

tk. Thismatches our intuitive sense of optimal superposition. However, this is not the only term in theNLL
that is affected by the shift parameters. The second term in equation (9) penalizes shifting the data point to
coordinates at which the GP has large variance. This term will become particularly important when we
shift entire data sets, as it prioritizes superposing two data sets in the region with the least uncertainty in
their GP models. Because the covariance in our selected GP kernel depends on the Euclidean distance
between an unmeasured coordinate x∗ and the measured coordinates x0, uncertainty in the GP model is
typically greatest in regions where data are sparse, or in regions outside of the range of measured data.
Penalizing superposition in these regions relative to regions in which data are dense provides a natural
means for regularizing excessive extrapolation.

Equation (9) develops the loss function for a single data point, based on maximum likelihood

estimation. This loss may be applied independently to each data point x jð Þ
i ,C jð Þ

i

	 

in the data set at state

tj, which we denoteDj. We are now interested in the likelihood of observing this entire data set from the
GPmodel at state tk , equivalent to the joint likelihood of observing each data point from that GP. If we treat
the data points in Dj as independent observations, then this joint likelihood is simply the product of the
individual likelihoods. The joint NLL is therefore the sum of the individual NLLs:

� lnpjk Djjajk ,bjk
� �

=
X

x jð Þ
i ,C

jð Þ
ið Þ∈Dj

� lnpk x jð Þ
i ,C jð Þ

i jajk ,bjk
	 


: (10)

This equation now defines a loss function over an entire data set, rather than a single data point. It is not
yet the final loss function to consider for obtaining amaximum likelihood estimate of the shift parameters,
however. Equation (10) describes the likelihood of observing the data setDj to align with the GPmodel at
state tk, but as we shiftDj, we are similarly bringing the data set at the state tk , denotedDk, close to the GP
model trained at state tj. The final loss function should reflect the symmetric nature of this shifting. Thus,
we may define the counterparts to equations (9) and (10):

� lnp0j x kð Þ
i ,C kð Þ

i jajk ,bjk
	 


=
1
2

C kð Þ
i =bjk �mj x kð Þ

i =ajk
	 


sj x kð Þ
i =ajk

	 

0@ 1A2

þ lnsj x kð Þ
i =ajk

	 

þ ln

ffiffiffiffiffi
2π

p
, (11)

� lnp0jk Dkjajk ,bjk
� �

=
X

x kð Þ
i ,C

kð Þ
ið Þ∈Dk

� lnp0j x kð Þ
i ,C kð Þ

i jajk ,bjk
	 


: (12)

The shift parameters ajk and bjk now divide x kð Þ
i and C kð Þ

i , to bring them from state tk to state tj, and the
mean and variance functions mj x∗ð Þ and sj x∗ð Þ are now taken from the GP trained at tj.

To complete the loss function, we simply take the joint likelihoods over data sets Dj and Dk , again
assuming independence, such that the likelihood function that we observe both data sets from the same
master curve given shifting parameters aj and bj is:

� lnp Dj,Dkjajk ,bjk
� �

= � lnpjk Djjajk ,bjk
� �� lnp0jk Dkjajk ,bjk

� �
: (13)

Minimizing this joint NLL loss leads to the maximum likelihood estimates bajk and bbjk , the shifting
parameters for state tj relative to state tk:

bajk ,bbjkn o
= argmin

ajk ,bjk
� lnp Dj,Dkjajk ,bjk

� �� �
: (14)

The preceding equations present a symmetric objective for registering two data sets onto each other. In
practice, data sets atmore than two states are present in themaster set. It is straightforward to extend theNLL
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loss in equation (13) to include more than two data sets, by taking the sum of every pairwise NLL possible
between two data sets in the master set. However, this treatment requires optimization over all shifts ajk

� �
and bjk

� �
simultaneously, a high-dimensional global optimization problem whose complexity may grow

exponentially with the number of states. Instead of shifting all data sets simultaneously, it is most
computationally efficient to perform maximum likelihood estimation pairwise, developing a set of relative
shift factors ajk

� �
and bjk

� �
between two curves with consecutive states: tj and tk = tjþ1. Once all relative

shift factors have been computed, a global reference state may be selected, and the product or quotient of
certain shift factors taken to obtain the global shifts. Although this sacrifices the more general calculation of
the mastercurve from all data simultaneously, it reduces the complexity from exponential to linear in the
number of states. In the coming sections, we will demonstrate how this approachmay be used to solvemore
complex shifting problems in an efficient manner.

The problem of pairwise shifting requires optimizing a nonlinear function in two dimensions—the
horizontal shift ajk and the vertical shift bjk . A close examination of equations (9) and (11) reveals that the
optimization problems in these two dimensions are quite different. The nonlinearity in bjk first arises from
its inversion in equation (11), and in both cases by taking its square, whereas the nonlinearity in ajk arises
from the nonlinear functions sj xð Þ andmj xð Þ (or sk xð Þ andmk xð Þ). While optimization in these dimensions
may be performed simultaneously, a slight reformulation of the problem reveals a natural bilevel structure
to the optimization problem, where the simpler problem of finding the optimal bjk for a fixed value of ajk is
solved inside a higher-level optimization of ajk . The following section presents this reformulation.

2.2.2. Logarithmically scaled multiplicative shifting
The problem formulation in this section has assumed that the data xi,Cið Þ represent linear-scaled
coordinates, and that the desired shifting protocols involve multiplying these coordinates by factors ajk
and bjk at each state pair: tj, tk . This multiplicative rescaling of data is the most common in many fields of
the physical sciences. However, because of the wide underlying spectrum of time and length scales
representing the dynamics of soft multiscale materials, rheological data is often represented on logarith-
mic scales, with the x-coordinate representing a temporal coordinate (or its inverse such as frequency or
shear rate) that spans orders of magnitude, and with the response coordinate C (commonly a stress or
modulus) spanning many orders of magnitude as well. In this case, we may replace the coordinates xi and
Ci in equations (5)–(13) with their logarithms, lnxi and lnCi. That is, the GPmodels are now regressed to
the logarithm of the data, and the joint NLL loss is computed based on the logarithm of the data. In this
case, the expressions for the rescaled data now involve addition of the logarithm of the shift factor, rather
than direct multiplication by the shift factor:

x jð Þ
i ajk ! lnx jð Þ

i þ lnajk , x kð Þ
i =ajk ! lnx kð Þ

i � lnajk , (15)

C jð Þ
i bjk ! lnC jð Þ

i þ lnbjk , C kð Þ
i =bjk ! lnC kð Þ

i � lnbjk : (16)

This substitution is especially convenient in the case of the vertical shift factor, because it reduces the
joint NLL in equation (13) to a quadratic expression in lnbjk . At a fixed value of the lateral shift lnajk ,
optimization of the vertical shift factor lnbjk is now a convex problem whose global minimum can be
found analytically. In fact, the minimizer lnbbjk ajk

� �
as a function of ajk is given by:

1
σ2

=
X

x jð Þ
i ∈Dj

1

sk lnx jð Þ
i þ lnajk

	 
2þ X
x kð Þ
i ∈Dk

1

sj lnx kð Þ
i � lnajk

	 
2 , (17)

lnbbjk ajk
� �

= σ2
X

x jð Þ
i ,C

jð Þ
ið Þ∈Dj

lnC jð Þ
i �mk lnx jð Þ

i þ lnajk
	 


sk lnx jð Þ
i þ lnajk

	 
2
0B@

1CA
264 (18)
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þ
X

x kð Þ
i ,C

kð Þ
ið Þ∈Dk

lnC kð Þ
i �mj lnx kð Þ

i � lnajk
	 


sj lnx kð Þ
i � lnajk

	 
2
0B@

1CA
375: (19)

Note that, since the GPmodels are trained on the logarithm of the original data,mj and sj predict the mean
and standard deviation of the logarithm of the material response for state tj (and similarly for tk). This
minimizer function for lnbjk can be interpreted intuitively as choosing the weighted average of the
differences between the data and the opposing GP model, where each difference is weighted inversely by
its relative contribution to the total uncertainty in the GP predictions. Also, note that the means by which
we apply the horizontal shifting do not affect the complexity of analytically computing the minimizer for
the vertical shifts; therefore, wemay use an analog of equation (19) with any type of horizontal shifting, as
long as the vertical shift is multiplicative and performed on the logarithm of the data.

The realization that themaximum likelihood estimate for the vertical shift factor bjk may be determined
analytically for a specified horizontal shift ajk is significant, as it reduces the pairwise shifting optimiza-
tion problem from a 2D, nonconvex problem to two separate 1D optimization problems, one of which is
convex and solved analytically (vertical shifting), and one that is nonconvex (horizontal shifting). This
gives rise to a natural bilevel structure for the optimization problem. The inner problem of optimizing bjk
for a particular ajk is fast, allowing for an efficient implementation of the outer problem of optimizing ajk .
There are many methods for solving this outer optimization problem. For all examples in this work, we
solve it numerically by first generating an initial guess close to the global minimum via a grid search over
feasible values for ajk, and use this guess to seed a gradient-based algorithm (here, the BFGS algorithm).

2.2.3. Nonmultiplicative shifting
In some circumstances, developing amaster curve requires performing transformations that are not simple
multiplication by constant scaling factors ajk and bjk . In rheology, this may include, for example,
subtracting out state-independent viscous contributions from steady flow curve data, σ�η_γ (Plazek,
1996), or a nonlinear “dilation” in the laboratory time coordinate due to power-law rheological aging,
t1�ν� t1�ν

ref (Gupta et al., 2012; Joshi and Petekidis, 2018). Nonlinear rescaling of temporal and spatial
coordinates is also common in the construction of similarity solutions in fluid dynamics and transport
phenomena (Barenblatt, 2003; Eggers and Fontelos, 2015). In many such cases, the nonmultiplicative
shifts are accompanied by subsequent multiplicative shifts. It is possible to generalize the maximum
likelihood approach discussed previously to accommodate these more complicated data transformations,
with the result again being a high-dimensional, nonconvex optimization problem, which is amenable to
global optimization techniques such as simulated annealing. However, inmany such cases, it is possible to
leverage the computationally efficient technique developed in the previous section for multiplicative
shifting to solve these more complex problems in less time.

To make use of the previous results for nonmultiplicative shifting, we may separate the data
transformations into a set of nonmultiplicative transformations (such as subtracting a state-independent
viscous mode, or applying state-independent time dilation) and a set of multiplicative transformations.
Typically, there is a single nonmultiplicative transformation, which involves a single parameter (such as η
or ν in the previously described examples), which we call generically φ. We may therefore separate the
optimization over φ and over all multiplicative shift factors ajk

� �
and bjk

� �
into an outer-loop optimiza-

tion over φ, and an inner-loop optimization over ajk
� �

and bjk
� �

. This technique is reminiscent of
hyperparameter optimization, which is typical in many statistical and machine-learning approaches,
including GPR (Gelman et al., 2013). In the outer loop, we may perform a grid search over a specified
range of φ, and in the inner loop, we performmaximum-likelihood estimation as described in the previous
sections for a specific value of φ, storing the sum of the NLL loss over each pair of data sets for each φ.

Thus, we obtain minimizers bajk φð Þ� �
and bbjk φð Þ

n o
as a function of φ, and then choose the optimal bφ to

minimize the summed NLL loss over all pairwise shifts in the inner loop. This approach is effective due to
the efficiency of the inner-loop optimization. Moreover, with a grid search over φ, the outer-loop
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optimization is trivially parallelizable; thus it is possible to incorporate nonmultiplicative shifts with
minimal increase in runtime.

2.3. Maximum a posteriori estimation

Themaximum likelihood estimation approach described so far represents a systematic and robust method
for superposing data, which naturally incorporates our intuitive sense of the role of uncertainty in the
superposition process. This approach is sufficient to obtain estimates of the optimal shifting parameters in
many, if not most, cases. However, the maximum likelihood approach does not provide estimates of the
uncertainty in the inferred shift factors, and it is not effective in the limited cases where the NLL loss is
degenerate over multiple values of the shift factor. Both of these deficiencies can be addressed by
introducing the notion of a prior distribution over the shifting parameters, turning the maximum
likelihood estimation approach to one of maximum a posteriori estimation.

FromBayes’ theorem, the likelihood of observing two data sets from amaster curve given certain shift
factors, p Dj,Dkjajk ,bjk

� �
, when multiplied by a prior distribution over ajk and bjk , p ajk ,bjk

� �
, is

transformed to the posterior distribution over the shifting parameters:

p ajk ,bjk jDj,Dk
� �

∝ p Dj,Dkjajk ,bjk
� �

p ajk ,bjk
� �

: (20)

This transformation brings two substantial improvements to ourmethod. Firstly, the posterior distribution
p ajk ,bjk jDj,Dk
� �

now provides a distributional measure of the uncertainty in the shifting parameters. We
may either plot this distribution to understand the certainty in the inferred shifts, or we may summarize it
by computing the concavity of its logarithm around its maximum. Secondly, this formalism allows one to
directly encode prior expectations regarding the shift parameters in order to break degeneracy in certain
circumstances. For instance, some authors have noted that in the case of ambiguous shifting in time-cure
superposition, it is sensible to minimize the extent of horizontal shifting, which may be encoded by a
simple Gaussian prior in lnajk centered about zero (Larsen et al., 2008):

� lnp ajk ,bjk
� �

∝ λ2 lnajk
� �2

: (21)

When employing the negative logarithm of the posterior distribution in estimation, this prior is equivalent
to introducing L2-regularization in the maximum likelihood framework (Hoerl and Kennard, 1970). The
parameter λ in this case may be selected using one of many methods for hyperparameter optimization
(Zhang, 1993; Gelman et al., 2013). In this work, we employ MCCV for optimization of λ (Xu et al.,
2004), which will be discussed briefly in the next section.

The maximum likelihood framework developed previously is extended to maximum a posteriori
estimation simply by replacing the likelihood function within the objective in equation (14) with the
posterior distribution defined in 20. Theminimizersbajk andbbjk upon this substitution becomemaximum a
posteriori estimates, which are accompanied by posterior distributions that enable us to quantify their
uncertainty. For these posterior distributions to be meaningful, they must be normalized such that their
integral over their entire domain is unity.

When our prior expectations about the shift factors are limited, wemay employ a uniform prior over ajk
and bjk . This uniform prior is the maximum entropy (or equivalently, minimum information) prior
possible when ajk and bjk are bounded. With a uniform prior (i.e., assigning a constant value of
p ajk ,bjk
� �

), the posterior distribution is equal to the likelihood function, and therefore the maximum
likelihood andmaximum a posteriori estimates are equivalent. In the examples which follow, we assume a
uniform prior unless otherwise noted, and bound the region of shift parameters to be that which results in
nonzero overlap between data sets.

2.4. Monte Carlo cross-validation

In cases where a uniform prior over the shift parameters is not appropriate, we instead employ a prior, such
as theGaussian prior in equation (21), that typically contains one ormore hyperparameters (λ in the case of
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equation (21)). This prior is meant to encode an expectation for the shift factors; for example, in cases
where a wide range of shift factors result in equivalent superposition of two data sets, a Gaussian prior
favors the minimum extent of shifting that also superposes the data. In order for the prior to work
effectively, however, an appropriate value of the hyperparameter must be selected, without advanced
knowledge of the “tightness” of the prior distribution that will properly balance the preference forminimal
shifting against the quality of superposition. To find such a value, we employ one of many methods for
hyperparameter optimization.

A general class of common methods for hyperparameter optimization is cross-validation, in which a
fraction of the original data set is left out (the “validation” set), and the model is fit to the remaining data
(the “training” set) (Zhang, 1993; Gelman et al., 2013). The optimal hyperparameter value is typically
chosen as that value which, when used to fit the training data, results in the best predictive performance
over the validation set. The methods for partitioning the data into validation and training sets vary. Here,
we use a technique called MCCV, in which training data are selected randomly and without replacement
from the original data set, with a fraction α of the data retained for training and the remaining fraction
1�αð Þ held out for validation (Xu et al., 2004). To apply MCCV to our method, we randomly partition
each data set (i.e., the data at a particular state, tj) individually, thus building an ensemble training set
consisting of training data from all states, and a corresponding ensemble validation set. The sampling and
validation are repeated for K MCCV “folds” to obtain an estimate of the true cross-validation error
associated with a particular hyperparameter value.

A single MCCV fold consists of partitioning the data, applying our automated superposition
algorithm using a Gaussian prior with a particular value of λ to the training data in order to obtain a
master curve, fitting this master curve to its own GP model, and then evaluating the joint NLL
of observing the validation data from this model, denoted Lk λð Þ. We repeat this for K MCCV folds,
and compute the average joint NLL over all folds, L λð Þ=K�1P

kLk λð Þ. In the limit that K is large,
the value of λ that minimizes L λð Þ, denoted λm, is optimal. However, evaluating a large number of
MCCV folds is expensive, thus the estimate of λm is subject to some variation due to the sampling
procedure. With a limited number of folds, a more conservative estimate of the optimal λ is the
maximum value that is within one standard error of the joint NLL loss at λm (Hastie et al., 2009;
Silmore et al., 2019):

bλ= max λjL λð Þ≤L λmð ÞþK�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

Lk λmð Þ�L λmð Þð Þ2
s8<:

9=;: (22)

When hyperparameter optimization is complete, we then apply the superposition approach with a

Gaussian prior and optimal hyperparameter bλ to the entire data set.

3. Detailed Examples Drawn from Rheology

In this section, we present a number of illustrative examples taken from the extensive literature on the
application of the method of reduced variables in order to demonstrate the performance of our data
superposition methodology. These examples are presented in increasing order of complexity—begin-
ning with horizontal-only shifting for time–temperature superposition, continuing to vertical and
horizontal shifting for time-cure superposition, and then concluding with two examples of introducing
nonmultiplicative shifting: one in shear rate—packing superposition of a liquid–liquid emulsion, and
another in time–age-time superposition of a physically aging soft glassy material. In each case, we
highlight the accuracy of our method by comparing the results of our algorithm to results obtained by
other means, and emphasize how the trained models may be interpreted to gain insight into the physics
underlying the observed data. We also provide timing benchmarks, recorded on a 2019 MacBook Pro
(2.4 GHz 8-Core Intel Core i9 processor, 64 GB RAM), to demonstrate the computational efficiency of
our approach.
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Each of the examples presented in this section employs the default GP kernel described by equation (7),
with a zero prior mean function (μ x; tð Þ= 0). The software implementation of our algorithm, which has
been used to obtain the results in this section, is available for download at https://github.com/krlennon/
mastercurves.

3.1. Time–temperature superposition of a polymer melt

Time–temperature superposition is an ubiquitous method for analyzing data pertaining to the thermo-
mechanical response of polymeric materials (Markovitz, 1975; Ferry, 1980). Data at different temperat-
ures may be used to construct master curves that span tens of orders of magnitude in time or frequency, a
range far beyond that achievable in a single experiment. Here, we analyze canonical creep data taken for
an entangled melt of polystyrene by Plazek (1965). The digitized data, shown in Figure 2a, were rescaled
to the recoverable creep compliance by the original author, who first subtracted out a response mode
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Figure 2.Automated superposition of recoverable creep compliance data acquired for a polystyrene melt
at different temperatures. (a) The recoverable creep compliance data in laboratory time (circles), for
temperatures of T = 97:0, 100:6, 101:8, 104:5, 106:7, 109:5, 114:5, 125:0, 133:8, and 144:9 ° C, shown
vertically in increasing order (digitized by Plazek, 1965). Solid lines and shaded regions show the
posterior mean m tð Þ and uncertainty bounds corresponding to one standard deviation, m tð Þ±s tð Þ,
determined via Gaussian process regression. (b) Automatically constructed master curve using hori-
zontal shifting, with a reference temperature of T0 = 100 ° C. (c) The recoverable creep compliance with
added 20% relative Gaussian white noise, along with the associated posterior mean m tð Þ and one
standard deviation bounds m tð Þ±s tð Þ determined by Gaussian process regression. (d) Automatically

constructed master curve using horizontal shifting with 20% relative Gaussian white noise added to the
raw data.
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proportional to the measured background viscosity η Tð Þ, then multiplied the result by a temperature and
density-dependent factor:

Jp t;Tð Þ� t=ηp Tð Þ� Tρ
T0ρ0

� �
J t;Tð Þ� t=η Tð Þ½ �, (23)

where T and ρ are the temperature and density describing a specific data set, and T0 and ρ0 are,
respectively, the reference temperature (373.2 K) and the density at the reference temperature. Because
the vertical rescaling is accomplished using independently measured quantities such as ρ Tð Þ, superpos-
ition of data sets at different temperatures requires only horizontal, multiplicative shifting.

In the notation developed in the previous section, the individual data sets are described by the state
parameter t = T, and the measured data points are xi,Cið Þj = ti,Jp ti;Tj

� �� ti=ηp Tj
� �� �

. We take the
logarithm of this data for GPR and inference, and perform a grid search over values of the horizontal
shift parameter, ajk , with shifting performed pairwise in order of decreasing temperature. Including the
time required to fit the GP models, the superposition algorithm converges in 1.6 s. The master curve
produced by the algorithm is shown in Figure 2b, with a reference temperature selected to be T0 = 100 ° C
as in Plazek (1965). Visually, the data have been brought into registry to create a single master curve with
minimal deviations. Comparing Figure 2b with Figure 4 of Plazek (1965) confirms that the automatically
and manually generated master curves are visually similar, and span nearly the same range in the shifted
time coordinate.

A more quantitative comparison of the automated and manual shifting results is seen in Table 1,
which lists the manually inferred shifts from Plazek (1965) and the maximum a posteriori estimates
from our automated method. The manual and automated shifts are quantitatively close, particularly at
lower temperatures, where the slope of the data is greater. At higher temperatures, however, our
automated procedure identifies that smaller shifts than those determined manually are required to
optimally superpose the data. Moreover, we have obtained uncertainty estimates on these shift factors
by computing the inverse Hessian of the joint negative log-posterior over each shift factor aT, under the
assumption that the posterior is approximately Gaussian. With this assumption, each diagonal element
of the inverse Hessian matrix, H�1

T , is related to the variance σ2T in the inferred value of the
corresponding aT (relative to the value of aT inferred at the next lower temperature, due to pairwise
shifting):H�1

T = σ2T . The shift factor at T = 97:0 ° C is taken from Plazek (1965) and assumed to be exact,
and the relative uncertainty in the shifts is accumulated at successively higher temperatures, thus the

Table 1. Manually and automatically inferred horizontal shift factors for the recoverable creep
compliance of an entangled polystyrene melt (Plazek, 1965).

T ° Cð Þ aT (Manual) aT (Automated) aT , 20% GWN (Automated)

97.0 1:35 �101 1:35 �101 1:35 �101
100.6 6:03 �10�1 5:98±0:05ð Þ �10�1 6:2±0:3ð Þ �10�1

101.8 2:60 �10�1 2:84±0:03ð Þ �10�1 3:1±0:2ð Þ �10�1

104.5 4:12 �10�2 4:22±0:05ð Þ �10�2 4:4±0:3ð Þ �10�2

106.7 1:10 �10�2 1:14±0:02ð Þ �10�2 1:20±0:09ð Þ �10�2

109.5 2:63 �10�3 2:71±0:05ð Þ �10�3 2:7±0:2ð Þ �10�3

114.5 3:24 �10�4 3:3±0:1ð Þ �10�4 3:3±0:6ð Þ �10�4

125.0 1:35 �10�5 1:5±0:1ð Þ �10�5 1:2±0:5ð Þ �10�5

133.8 2:14 �10�6 1:4±0:1ð Þ �10�6 1:1±0:6ð Þ �10�6

144.9 3:89 �10�7 1:6±0:2ð Þ �10�7 1:2±0:7ð Þ �10�7

Note. Manual shift factors are those presented in Plazek (1965). The automated shift factors represent the maximum a posteriori estimates under a
uniform prior, with the reported uncertainty representing one standard deviation, σ. All shifts are computed for a reference temperature of 100 ° C to
match the convention in Plazek (1965). The third column lists the automatically computed shift factors with no added noise, and the fourth column lists
the automatically computed shift factors with 20% relative Gaussian white noise (GWN) added to the raw data.
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relative uncertainty in the shift factors increases monotonically with temperature. In Table 1, these
uncertainty estimates are shown to be quite small relative to the inferred aT . Thus the automatically
generated results are both accurate, and precise.

We next test the robustness of our approach to the presence of noise in the underlying data by adding
synthetic Gaussian white noise (GWN) to the raw data. The data with added 20% GWN are shown in
Figure 2c, along with the posterior mean and one standard deviation uncertainty bounds of the regressed
GP models. The GP models naturally incorporate the noise in the data via larger standard deviations,
leaving the posteriormean function largely unaffected, as compared to the casewith no added noise. Thus,
the superposition of the noisy data, depicted in Figure 2d, is visually similar to that in the noise-free case,
creating a master curve that spans the same range in the temporal coordinate, and maintains the same
shape. The inferred shift factors for the added noise case are listed in Table 1 as well, and remain close to
both the noise-free and manually inferred values. Although these maximum a posteriori estimates are not
substantially affected by a relatively low signal-to-noise ratio, the increased uncertainty in the learned GP
models broadens the posterior distributions over the horizontal shift factors, leading to increased
uncertainty bounds. In particular, the uncertainties of the inferred shifts in the added noise case are
between one and two orders of magnitude greater than those for the noise-free case. These results confirm
the robustness of our automated shifting technique to noise in the underlying data, and demonstrate that
this noise is appropriately transferred to uncertainty in the inferred shifts by virtue of our statistical
approach.

This example represents a success of ourmethod in interpretable machine learning. The learnedmaster
curve and shift factors together form a predictive model, which can be employed for subsequent material
design or discovery. This model is not all that is learned from our algorithm, however. The shift factors in
Table 1 may also be used to infer physical features of this polystyrene melt. For instance, fitting the shift
factors to the Williams, Landel, and Ferry equation reveals the free volume and coefficient of thermal
expansion of the melt (Plazek, 1965).

Before we continue to other applications of our method, it is worthwhile to consider how this method
compares to previous methods for automatic time–temperature superposition. In particular, we compare
the results presented in this section to those obtained by a popular method known as the closed-form
shifting (CFS) algorithm (Gergesova et al., 2011), and to theminimum arc lengthmethod (Maiti, 2016). A
detailed comparison is presented in the Appendix, with the results summarized briefly here. While our
algorithm converged in 1.6 s, the CFS algorithm had a runtime of 4 ms, and the minimum arc length
method converged in 2.7 s. Firstly, we note that our method produces shift factors that are at least as close
to those foundmanually for nearly every temperature, compared to the shift factors determined by theCFS
and minimum arc length methods. However, a particular strength of our method is its robustness to noise,
thus we compare the relative change in the shift factors inferred by eachmethod upon adding 20% relative
GWN to the compliance data. Compared to the CFS algorithm, the relative deviations in the shifts inferred
by our algorithm in the presence of noise were more than a factor of 10 lower on average, and more than a
factor of 20 lower in the worst case (Table A2). Therefore, the speedup of the CFS algorithm comes at an
apparently high cost in robustness to noise. Compared to the minimum arc length method, the deviations
in shifts inferred by our algorithm were more than a factor of two lower on average and in the worst case.
Thus, the accuracy is improved two-fold, while still providing runtime savings of nearly a factor of two.

The runtimes noted in the above section all correspond to a single call of each algorithm. However, a
single call to our algorithm produces estimates for the shift factors alongwith their uncertainties, while the
CFS andminimum arc length methods provide estimates of the shift factors alone. A fairer comparison of
runtimes is one that takes into account the number of calls needed to produce accurate uncertainty
estimates for the latter two algorithms. Previous attempts at such uncertainty quantification have focused
on second-order bootstrap resampling, noting that 100 samples per order are typically sufficient (Maiti,
2019). This procedure requires many thousands of calls to the underlying shifting algorithm. Thus, to
compute uncertainty estimates of the shifts in this way requires more than 6 min of computation for the
CFS algorithm, and more than 75 hr for the minimum arc length method. Thus, when performing
uncertainty quantification, the runtime savings from our method are more than two orders of magnitude
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compared to the CFS algorithm, and more than five orders of magnitude compared to the minumum arc
length method.

The previous two paragraphs clearly identify the strengths of our method compared to existing
algorithms—ours is both substantially more robust to noise, and substantially faster when computing
uncertainty estimates of the shift factors. In addition to its superiority in these aspects, one of the key
algorithmic advances of our method is that it is agnostic to the type of coordinate transformations being
employed. The CFS algorithm is inherently restricted to multiplicative shifting in a single dimension, and
therefore cannot be applied to vertical and horizontal shifting problems unless the vertical and horizontal
shifts can be decoupled (Gergesova et al., 2016). Other types of shifts presented later in this work are
excluded entirely from this algorithm. Similarly, computational challenges preclude the optimization of
the arc length in two dimensions; thus the minimum arc length method has been applied only to
multiplicative horizontal shifting. No such restrictions apply to our method—it can be readily applied
to a variety of superposition problems, as we will demonstrate in the coming sections.

3.2. Time-cure superposition during gelation

The previous time–temperature superposition example demonstrated the effectiveness of our algorithm
for multiplicative shifting of self-similar curve segments along the abscissa only. This is an important and
widely applicable reference case; however, many instances of data superposition involve a rescaling of
both the abscissa and the ordinate with changes in the state parameter. Simultaneous shifting along both
axes complicates the shifting problem, in particular, because it may result in a manifold of candidate shift
parameters in two dimensions. Many previous methods for automatic generation of master curves cannot
accommodate this more complicated case, either due to explicit limitations in their objective functions, or
because they are not able to efficiently explore the two-dimensional domain of shift parameters. Our
algorithm, however, extends naturally to simultaneous shifting on both axes, and its efficiency makes this
two-dimensional optimization problem computationally tractable. Moreover, in the majority of circum-
stances involving rheological data, data are logarithmically scaled, so we may leverage the analytical
solution for the optimal vertical shift presented in Section 2.2.2 to optimize shifts in two dimensions with
minimal additional computational effort.

In this section, we present an example which encompasses simultaneous vertical and horizontal
multiplicative shifting. The data set in this example represents a collection of mean-squared displacement
versus lag-time trajectories that were obtained by particle tracking passive microrheology in a peptide
hydrogel undergoing gelation (Larsen and Furst, 2008). The state parameter in this data set represents the
time t since initial sample preparation (i.e., the “cure time”), ranging from 10–115 min in 5 min
increments. A subset of this data (those trajectories collected at 10 min increments) is shown in
Figure 3a. Because the uncertainty characteristics of microrheological experiments differ from those of
bulk rheology, we fit these data to GP models with σu = 0, to let the noise level be inferred solely from the
data.

There are multiple particularly interesting features of this data set. One feature of importance, which
has been noted in previous time-cure superposition studies (Suman et al., 2021), is that the shift factors
tend to increase with distance from the gel point, tc. This results in the creation of two master curves from
the data set—one for the pregel states t < tc and one for the postgel states t > tc. The gel point can be
inferred by determining the binary partition of the data leading to the optimal superposition into two
master curves (Larsen and Furst, 2008).

To construct the pregel and postgel master curves, and determine the optimal partition of the data set,
we apply our superposition algorithm both in the forward (increasing t) and backward (decreasing t)
directions, enforcing that the horizontal shifts decrease monotonically, and recording the pairwise
posterior loss for each successive pair of curves in each direction. The total loss across a master curve
is the sum of all pairwise losses; thus we may determine the optimal partition of the data to two master
curves as that which minimizes the joint sum of pairwise losses associated with both curves. Specifically,
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ifLf tkð Þ represents the loss incurred by adding the curve at state tk to the pregel (forward) master curve,
andLb tkð Þ represents the loss incurred by adding that curve to the postgel (backward) master curve, then:

t̂c = argmin
tc

X
tk < tc

Lf ðtkÞþ
X
tk > tc

LbðtkÞ
( )

: (24)

Upon applying the algorithm to this data set, however, one notices immediately that certain early cure time
data sets are nearly linear trajectories in the log–log plots. Thus, there exists for these states a manifold of
shifts resulting in nearly degenerate loss when applying a uniform prior to both the horizontal and vertical
shift factors. In this case, the algorithm tends to prefer aligning curves at their ends, in order to minimize
the overlap between the low-uncertainty (data-dense) regions of the underlying GP models where
deviations between curves is most heavily weighted in the joint NLL loss. This behavior results in
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Figure 3. Automated superposition of mean-squared displacements measured by particle tracking
passive microrheology in a peptide hydrogel undergoing physical gelation (Larsen and Furst, 2008).
(a) The mean squared displacement 〈Δr2 τð Þ〉 as a function of lag-time τ (circles). Data were obtained for
cure times t∈ 10,115½ � minutes at 5 min increments, though only data at 10 min increments are shown
here, presented in vertically descending order. Solid lines and shaded regions show the posterior mean
m τð Þ and uncertainty bounds corresponding to one standard deviation, m τð Þ±s τð Þ, determined via
Gaussian process regression. (b) Maximum a posteriori estimates of the horizontal (red circles) and

vertical (blue triangles) shift factors. Lightly shaded points and lines represent values inferred under a
uniform prior. Darker shaded points and lines represent values inferred with a Gaussian prior over a tð Þ
with hyperparameters optimized pairwise using Monte Carlo cross-validation. The shifts are optimally
partitioned into a pregel curve and postgel curve. (c) Pregel master curve obtained with an optimized
Gaussian prior over the shift factors a tð Þ. (d) Postgel master curve obtained with an optimized Gaussian

prior over a tð Þ.
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extreme values of the shift factors a tð Þ and b tð Þ. This case of excessive shifting is demonstrated by the
horizontal and vertical shifts inferredwith a uniform prior, shown as the lightly shaded points in Figure 3b.
For early times, these shifts decrease precipitously, even when no shifting at all would result in a similar
likelihood of the master curve.

We may remedy these extreme shift factors by introducing a more informative prior over the shift
factors, specifically, the Gaussian prior presented in equation (21). This prior is aligned with physical
intuition, as previous authors have noted that in the case of ambiguous shifts it is sensible to limit shifts
along the abscissa in favor of shifts along the ordinate, corresponding to an increased viscosity of a
solution undergoing gelation (Larsen et al., 2008). For each successive pair of data sets, we optimize the
hyperparameter λ for this prior usingMCCV. For this example, it was found that α= 0:1,K = 20, and a grid
search over 31 values of λ∈ 0:01,10½ � (spaced logarithmically) were sufficient.

The darker shaded markers and lines in Figure 3b represent the maximum a posteriori estimates of the
horizontal (red circles) and vertical (blue triangles) shift factors, a tð Þ and b tð Þ respectively, inferred from a
Gaussian prior with optimized bλ. The introduction and optimization of this prior has clearly resulted in
moderate values of shifts when superposing two nearly linear data sets (i.e., data obtained at early cure
times), while still allowing for larger shifts when necessary (i.e., later cure times). The inferred shifts now
closely resemble those inferred manually (cf. Figure 3a in Larsen and Furst, 2008). Importantly, our
algorithm and the condition specified in equation (24) have also reproduced the manual determination of
the gel point (Larsen and Furst, 2008), where the optimal partition of the data set to two master curves
occurs with tc between 80 and 85 min. This sensitive determination of a critical point demonstrates the
capability of our automated shifting algorithm to detectmeaningful, physically relevant features in rapidly
evolving rheological data. The resulting pregel and postgel master curves are shown in Figure 3c,d, both
of which show excellent superposition, as well as close agreement with the manually constructed master
curves reported in Larsen and Furst (2008). Moreover, the shift factors depicted in Figure 3b may be
interpreted in terms of the divergence in the longest relaxation time and creep compliance of the hydrogel
near the gel point. The exponents in this power-law divergence may be fit from the learned shift factors
and compared to predicted results for certain universality classes of percolated gels, providing insight into
the nature of hydrodynamic interactions in these evolving hydrogels (Larsen and Furst, 2008; Joshi and
Petekidis, 2018).

3.3. Shear rate-volume fraction superposition of an emulsion

In Section 2.2.3, we discussed how our automated, maximum a posteriori shifting approach can be
extended beyond simple multiplicative vertical and horizontal shifting. Due to the efficiency of the
optimization over multiplicative shifts, for example, it is straightforward and still computationally
tractable to perform other non-multiplicative coordinate transformations in an outer optimization prob-
lem. Moreover, this optimization hierarchy fits naturally within a Bayesian framework, so that the
posterior distribution can easily incorporate a new parameter from the outer optimization problem. In
this section, we demonstrate one such problem: the superposition of steady flow curves obtained for castor
oil-in-water emulsions at varying oil volume fractions (Dekker et al., 2018).

Recently, a three-component model has been proposed to describe these steady flow curves, composed
of elastic, plastic, and viscous contributions to the total shear stress σ _γ;ϕð Þ in the emulsion (Caggioni et al.,
2020):

σ _γ;ϕð Þ= σy ϕð Þþσy ϕð Þ _γ
_γc ϕð Þ

� �1=2

þηbg _γ, (25)

where the yield stress σy ϕð Þ and critical shear rate _γc ϕð Þ both are assumed to vary with the oil volume
fraction ϕ, while the background viscosity ηbg is typically assumed to be independent of ϕ. This model
assumes a true yield stress σy and square root dependence of the plastic contribution on the shear rate.
More generally, we may relax these assumptions to write the relationship:
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σ _γ;ϕð Þ= σy ϕð Þg _γ
_γc ϕð Þ

� �
þηbg _γ, (26)

where g _γrð Þ, with the reduced shear rate _γr � _γ=_γc ϕð Þ, captures the nonlinear viscoplastic response of the
emulsion. For example, an ideal Herschel–Bulkley fluid would be described by ηbg = 0 and g _γrð Þ= 1þ _γnr .
The parametric self-similarity of this model is now clear, as the above equation is of the form of equation
(4). To obtain the master curve g _γrð Þ, we must first subtract any purely viscous mode ηbg _γ (e.g., arising
from the background solvent) from σ _γ;ϕð Þ, then apply vertical and horizontal multiplicative shifting.

In Figure 4a, we show steady flow curves for castor oil-in-water emulsions at seven different oil volume
fractions spaced evenly between 0.68 and 0.80, digitized byDekker et al. (2018) and each fit to a GPmodel.
Optimization of the volume fraction-dependent vertical and horizontal shift factors, σy and _γc, as well as the
volume fraction-independent background viscosity ηbg proceeds hierarchically as described previously. In
particular, we perform a grid search over 100 linearly spaced values in ηbg∈ 0,0:1½ �. At each value, we
compute the optimal σy and _γc (selecting a reference state of ϕ= 0:68 with σy = 4:7 Pa and _γc = 4:7 s�1, as
computed in Caggioni et al., 2020) using our algorithm for multiplicative-only shifting, and we record the
total negative log posterior loss. Under a uniform prior, the maximum a posteriori estimate of ηbg
corresponds to the numerical value minimizing this loss, and the uncertainty in ηbg can be estimated from
a finite-difference approximation for the Hessian of the recorded loss about the minimum.

Upon performing this optimization, we obtain a master curve with optimal vertical and horizontal shifts,
as well as the maximum a posteriori estimate of the background viscosity. At each value of ηbg in the grid
search, the optimization takes approximately 1.3 s to converge. The resulting master curve is presented in
Figure 4b, which corresponds to a maximum a posteriori estimate of ηbg = 4:5±0:2ð Þ×10�2 Pa�s. This
estimate is only slightly greater than that obtained via direct fits of the three-component model,
ηbg = 3:7×10

�2 Pa�s (Caggioni et al., 2020), but now incorporates all data sets in its determination and is
accompanied by an uncertainty estimate. To emphasize the benefit of employing the entire data set in robust
estimation of ηbg, we perform the same optimization using pruned data sets, consisting of a subset of the
seven flow curves in Figure 4a. The inset in Figure 4b presents the inferred value of ηbg, and its associated
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Figure 4. Automated superposition of steady flow data for castor oil-in-water suspensions with varying
oil volume fraction. (a) The steady shear stress σ measured over a range of steady shear rates _γ (circles),
for oil volume fractions of ϕ = 0.68, 0.70, 0.72, 0.74, 0.76, 0.78, and 0.80, shown vertically in increasing
order (digitized by Dekker et al., 2018). Solid lines and shaded regions show the posterior meanm _γð Þ and
uncertainty bounds corresponding to one standard deviation, m _γð Þ±s _γð Þ, determined via Gaussian

process regression. (b) Automatically constructed master curve using subtraction of a state-independent
purely viscous contribution to the stress with ηbg = 4:5×10

�2 Pa�s, followed by horizontal and vertical
shifting. The reference state is taken as ϕ= 0:68 with σy = 4:7 Pa and _γc = 4:7 s

�1. Inset shows the optimal
value and estimated uncertainty of ηbg inferred by applying the method to an increasing number of flow

curves from (a), averaged over all possible combinations.
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uncertainty, averaged over all possible combinations of these subsets of a given size. The value of ηbg
inferred with fewer flow curves deviates progressively from the value that is optimal for the entire data set,
and has substantially higher uncertainty. That the parameter estimate becomes more precise when including
more data highlights a salient feature of our methodology—namely, that its inferences and predictions may
be continually refined by including more data.

The inferred horizontal and vertical shifts, corresponding to the critical shear rate _γc and yield stress σy,
are presented in Figure 5. The values determined via individual fits to the three-component model with
ηbg = 3:7×10

�2 Pa�s are shown by dashed lines for clarity (Caggioni et al., 2020). In parallel with the
values determined by our automated shifting procedure for the maximum a posteriori estimate of
ηbg = 4:5×10

�2 Pa�s, we also present using hollow symbols the corresponding shifts inferred by our
algorithm with a fixed value of ηbg = 3:7×10

�2 Pa�s to enable a direct comparison to the previously
reported three-component values in Caggioni et al. (2020). The yield stresses (triangles) determined by
each method are remarkably similar and unaffected by variation in ηbg. The critical shear rates are also
quite similar for all cases. Themaximum a posteriori estimates for _γc ϕð Þwith ηbg = 3:7×10�2 Pa�s are very
close to those from the three-component fit—within one standard error for all ϕ—confirming that our
method produces quantitatively similar results to parameter estimation within a constitutive model. The
optimal values of _γc ϕð Þwith ηbg = 4:5×10�2 Pa�s are slightly lower, demonstrating some sensitivity of the
method to the choice of background viscosity and again highlighting the importance of including the
entire data set for parameter estimation.

Within our interpretable machine learning framework, the learned shift factors in Figure 5 may be
explained in terms of a power-law dependence of the yield stress and critical shear rate on the distance to
jamming (Dekker et al., 2018). The exponents in such a dependence typically suggest that these emulsions
belong to a certain universality class describing a transition from liquid-like to solid-like dynamics
(Paredes et al., 2013).

3.4. Time–age-time superposition of an aging soft glassy material

The previous examples encompass multiple cases of vertical and horizontal multiplicative shifting, with
the additional feature of state-independent nonmultiplicative shifting illustrated in the previous section.
These linear coordinate transformations are ubiquitous in the analysis of rheological data; however, there
are other more complex material responses that require other, nonlinear coordinate transformations. One
example is that of power-law rheological aging in soft glassy materials, in which the modulus and
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Figure 5. The critical shear rate and yield stress values for castor oil-in-water emulsions inferred by the
automated algorithmwith themaximuma posteriori estimate of ηbg = 4:5×10

�2 Pa�s (filled symbols), and
with ηbg = 3:7×10

�2 Pa�s (unfilled symbols), as well as values fit via the three-component (TC) model
(dashed lines) (Caggioni et al., 2020). Vertical bars depict one standard error in the estimates.
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relaxation dynamics become parametrically self-similar only in an effective time domain (Struik, 1977;
Gupta et al., 2012):

~t
tref

=
1

1� ν
t
tref

� �1�ν

� tw
tref

� �1�ν
" #

: (27)

The effective time interval ~t is related by a power law in a state-independent parameter ν (provided that
ν≠1) to the laboratory time t and the “wait time” tw (which represents roughly the elapsed time between
material preparation and the beginning of a measurement), with tref representing the selected reference
state.

For a soft glassy material undergoing power-law aging, one can measure the relaxation modulus
G t� tw; twð Þ by applying step strains at various times tw. In this case, the state parameter is thewait time tw.
However, due to the power-law dilation of time described by equation (27), the system is not time-
translation-invariant (Fielding et al., 2000; Joshi and Petekidis, 2018), and therefore the relaxation
modulus is no longer related to a master curve by the relation specified in equation 4 with x= t. Instead,
it is self-similar in the effective time domain:

g ~tð Þ= b twð ÞG t� tw; twð Þ, (28)

where~t depends on t, tw, and the exponent ν as per equation (27). Given this similarity relation, we may
apply the same hierarchical optimization approach as in the previous section to the superposition of stress
relaxation data in an aging soft material. In an outer optimization loop, we perform a grid search over ν,
transforming the data into the effective time domain~t νð Þ for each value of ν in the search. In the inner loop,
the optimal vertical shifts are computed analytically using the approach described in Section 2.2.2.

In Figure 6a, we show stress relaxation data taken for a 2.8 wt% aqueous suspension of Laponite-RD
clay, digitized by Gupta et al. (2012). This clay suspension is known to exhibit soft glassy characteristics,
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Figure 6. Automated superposition of stress relaxation data for a physically aging suspension of
Laponite-RD clay with varying wait time tw between mixing and preshearing, and imposition of a step
strain with γ0 = 0:03 (which is always in the linear viscoelastic range). (a) The relaxation modulus

G t� tw; twð Þ as a function of the time since the step strain, is t� tw parametric in the wait time tw. Data
(circles) are shown for tw = 600 s, 1,200 s, 1,800 s, 2,400 s, and 3,600 s, shown vertically in increasing
order (digitized by Gupta et al., 2012). Solid lines and shaded regions show the posterior meanm t� twð Þ
and uncertainty bounds corresponding to one standard deviation, m t� twð Þ±s t� twð Þ, determined via
Gaussian process regression. (b) Automatically constructed master curve using transformation to the

effective or material time interval~t=tref = t=trefð Þ1�ν� tw=trefð Þ1�ν
h i

= 1�νð Þwith ν= 1:1, and subsequent
vertical multiplicative shifting by a factor b twð Þ, with a reference wait time of tref = 600 s. The vertical shift
factors b twð Þ are shown in the inset, with vertical bars representing one-standard-error uncertainty

estimates.
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including power-law aging. Data are obtained for five different wait times tw between 600 s and 3,600 s.
We fit each data set to a GP model, and perform a grid search over 100 linearly spaced values of the state-
independent parameter ν∈ 0:1,1:9½ �, representing a range of values typical for aging clay suspensions
(Joshi and Petekidis, 2018). At each value of ν in the grid search, optimization of the multiplicative
vertical shift factors proceeds analytically and in a pairwise fashion. Finally, starting from the optimal
value of ν determined by the grid search, we perform gradient descent to refine the estimation, and
compute the Hessian for uncertainty analysis. In total, the grid search and subsequent gradient descent
converges in just under 1 s, producing the maximum a posteriori estimate of ν= 1:1±0:1. The resulting
master curve for a chosen reference time of tref = 600 s is presented in Figure 6b.

The inferred value of ν is virtually identical to that obtainedmanually—ν≈ 1:1 (Gupta et al., 2012), but
its determination comes with the additional benefits of an uncertainty estimate and analytic determination
of b twð Þ (shown in the inset of Figure 6b). This demonstrates that our automated shifting algorithm
effectively handles more complicated coordinate transformations, such as time dilation via power law
aging, in a manner consistent with expert manual analysis. The precise determination of ν is also
significant, because ν is often used to delineate “hyperaging” (ν> 1) and “subaging” (ν< 1) materials.
Therefore, the estimate of ν= 1:1 also serves to identify that this clay suspension is in the universality class
of hyperaging materials, and this automated classification is consistent with the expert manual classifi-
cation. By collating a series of such time–age-time superposition (tats) measurements at different
temperatures, the inferred value of ν and its dependence on temperature may be interpreted in terms of
the microscopic yielding dynamics of soft glassy materials, and subsequently related to characteristic
length scales and yielding energy barriers associated with the aging colloidal gel (Gupta et al., 2012).

3.5. Additional examples and considerations

The previous examples were selected to demonstrate the diversity of superposition problems to which our
method can be applied, and these examples were presented in an order that introduced increasingly
complex features of our method sequentially. There are many variations of these problems that appear in
science and engineering applications, and these often present their own complexities. It is not practical to
consider all of the possible complexities of shifting problems here; however, based on the previous
examples and the general formulation of our method, we expect its performance to resemble that
demonstrated above for most problems of interest. Moreover, the flexibility of the framework, such as
in the choice of prior distributions over the shift parameters or in the choice of the coordinate transform-
ations themselves, leaves space for adaptations to problem-specific challenges.

For instance, one complexity that is not present in the previous examples is nonmonotonicity in either
the underlying master curve, or in the dependence of the shift factors on the state parameters. This feature
is occasionally seen, for example, in steady flow curves (Mari et al., 2015) or in measurements of the
viscoelastic loss modulus (Gergesova et al., 2016) for certain complex fluids. Because our method makes
no assumptions about the relationship between the independent and dependent quantities, or between the
shift parameters and state variables, nonmonotonic behavior can be easily accommodated. Nonmonotonic
vertical shift factors, for instance, will be identified automatically by virtue of the analytical solution for
log-scaled multiplicative shifting. Nonmonotonic horizontal shift factors can be identified by conducting
a grid search over a range centered about lnaj = 0. If the underlying master curve is nonmonotonic, there
still will exist global optima for the horizontal and vertical shift factors that construct the optimal master
curve, and these optima will be found by simply conducting a large enough grid search on the horizontal
shift factors. Such nonmonotonicity in the master curve may give rise to multiple local minima in the
search for the horizontal shift factor, and if these minima are nearly degenerate in value, the “optimal”
master curve may no longer be unique. However, as we have demonstrated in Section 3.2, the method can
be biased toward either of the solutions as necessary, by introducing nontrivial physical or empirical priors
on the shift factors.

Although we do not present examples that highlight many of the other considerations that may arise in
superposition problems in this work, we note that more examples are available on the project GitHub
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repository, including one that demonstrates nonmonotonic behavior in the master curve and shift factors
measured during time–temperature-water superposition (Lalwani et al., 2021).

4. Forward Predictions Using Automated Shifting

In the previous section, we provided four canonical examples of automated construction of rheological
master curves using real experimental data taken from the literature, demonstrating the robustness of our
automated method to different types of data, types of shifting, and levels of noise. The automated shifting
algorithm is thus a useful tool in the analysis of linear and nonlinear thermorheological data, as the inferred
shifting parameters provide physical insight to key material properties—such as the static yield stress of
an emulsion, the gel point of a reacting or curing polymeric solution, or the rate of aging of a soft glassy
material. Another potent application of this algorithm is to make reliable forward predictions of material
rheology at a previously unstudied state. In this section, we present an example of one such forward
prediction, using the castor oil-in-water flow curve data (Dekker et al., 2018).

Within the mathematical framework employed in this work, the forward prediction problem is as
follows. Given data for a material property C x; tð Þ at a set of states tj

� �
, including a reference state tk , we

apply the method outlined in Section 2 to infer optimal shifting parameters— ajk
� �

, bjk
� �

, and c in the
scenario described by equation (4)—and apply these shifts to the data as in equation (4) to construct a
master curve approximating g zð Þ in the reduced variable z= a tð Þx. To make a forward prediction at a new
state tl, we must estimate the shift parameters alk and blk for that state, and then use equation (4) to
transform the inferred master curve g zð Þ into a prediction of C x; tlð Þ at state tl. Making predictions
continuously in the independent variable x requires a continuous approximation for g zð Þ, which may be
obtained by fitting the automatically constructed master curve to a new GP model. Similarly, predicting
alk and blk requires an interpolant between the inferred set of ajk

� �
and bjk

� �
; this interpolant can also be

treated using a GP model.
To demonstrate this forward prediction procedure, we automatically construct a master curve for the

castor oil-in-water data set shown in Figure 4, but excluding the data set at ϕ= 0:72. The master curve
constructed while deliberately omitting this data set out is still very similar to that depicted in Figure 4b, as
are the inferred shift factors σy and _γc for the remaining volume fractions, and the estimate of
ηbg = 4:5±0:2ð Þ×10�2 Pa�s. These shift factors are fit to GP models as a function of ϕ, and these GPs
are used tomake a forward prediction of the yield stress and critical shear rate at ϕ= 0:72. These GPs again
have a zero-mean prior, and to ensure that the GPs fit to these shifts incorporate the uncertainty in the
underlying shift factors, we set the GP kernel to that in equation (7) with the fixed noise level σ2u equal to
the greatest variance of any shift factor (shown by the error bars in Figure 5). The predictions from the
resulting GPs are: σy = 9±1 Pa and _γc = 6:7±0:1 s

�1, both in close agreement with the values obtained by
automated shifting of the data set at ϕ= 0:72 and the values determined from fits to the three-component
model (cf. Figure 5).

Finally, the master curve obtained from all data sets besides that for ϕ= 0:72 is fit to its own GPmodel
in the reduced coordinate z with the prior mean μ zð Þ= 0 and kernel function K θ,z,z0ð Þ described by
equation (7). The self-similar posterior mean function g _γrð Þ and variance δg _γrð Þ of this GPmodel are then
computed for a range of reduced shear rates _γr � _γ=_γc, and the self-similar results are shifted back to the
original (σ, _γ) parameter space by first applying vertical and horizontal shifts with the estimated σy and _γc
at ϕ= 0:72, then adding in the viscous mode with the inferred optimal value of ηbg:

σ _γð Þ= σyg _γ=_γcð Þþηbg _γ: (29)

Uncertainty in the value of the vertical shift δσy, the horizontal shift δ_γc, and the background viscosity δηbg
can also be propagated to the total uncertainty expected in the prediction of the resulting flow curve:

δσð Þ2 = g _γ=_γcð Þ2 δσy
� �2þσ2y δg _γ=_γcð Þð Þ2þ σyg0 _γ=_γcð Þ_γ

_γ2c

� �2

δ_γcð Þ2þ _γ2 δηbg
	 
2

, (30)
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with g0 _γrð Þ= dg _γrð Þ=d _γr. Figure 7 depicts the forward prediction for the steady shear stress of an emulsion
with ϕ= 0:72. The expectation for the flow curve σ _γð Þ is shown as a solid line, along with uncertainty
bounds σ±dσ in the shaded region, over six orders of magnitude in the imposed shear rate _γ. The
predictions are compared to the original withheld data, shown with filled circles. The data fall nearly
exactly on the mean predictions over the entire range of _γ, and in all cases are well within the uncertainty
bounds, which represent a conservative estimate of the total uncertainty due to the built-in noise level of
σu = 0:04 in the GPs. In this case, the automatically generated master curve, in combination with GP
models for the shift factors as a function of ϕ, serves as a highly effective predictive tool. Notably, these
accurate predictions have been made without assuming or specifying a specific constitutive model for the
master curve, g _γrð Þ. Rather, the predictions are data-driven, using GPR as a machine learning tool to
represent the underlying master curve. Moreover, the predictions are statistical in nature; the uncertainty
bounds in Figure 7 are similarly derived directly from the available data, and are obtained with minimal
extra work. Viewed holistically, this example of forward prediction highlights many of the salient features
of our data superposition approach, and demonstrates how it may be straightforwardly adapted as a
predictive tool for material design and formulation considerations.

5. Conclusions

In this work, we have developed a data-driven, statistical method for the inference of material master
curves from parametrically self-similar data sets. Such responses are observed ubiquitously across the
field of soft materials science and have led to the development of effective but labor-intensive approaches
that are collected under the generic term: the method of reduced variables.Our new approach is inherently
flexible, as the negative log-posterior objective is independent of the transformations used to bring
different data sets into registry and can therefore accommodate a wide variety of data-shifting and
superposition transformations. It is also computationally efficient, with optimal values of the vertical
multiplicative shifts of (logarithmically scaled) data computed analytically. This allows for quick one-

σ
[P

a]

·γ [s−1]

Data

Prediction [σ( ·γ)]

Uncertainty [σ( ·γ) ± δσ( ·γ)]

Figure 7. Forward predictions of the steady flow curve for a castor oil-in-water emulsion with oil volume
fraction ϕ= 0:72. The value of ηbg = 4:5±0:2ð Þ×10�2 Pa�s is inferred during construction of a master
curve from the remaining data sets (ϕ = 0.68, 0.70, 0.74, 0.76, 0.78, 0.80). The yield stress σy = 9±1 Pa
and critical shear rate _γc = 6:7±0:1 s�1 are estimated from Gaussian process models fit to the auto-
matically inferred shift factors at the remaining states. The inferred master curve is fit to a Gaussian
process model, whose predictions are shifted to the ϕ= 0:72 state using the predicted values of σy, _γc, and
ηbg. The mean predicted values are shown with a solid line, and single standard deviation uncertainty
bounds are shown with a shaded region. Experimental data for ϕ= 0:72 from Dekker et al. (2018) are

shown by the solid circles.
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dimensional horizontal shifting and even outer-loop optimization of state-independent parameters (such
as we illustrated using the background viscosity in a model for emulsion rheology). The method is robust
to the presence of noise, as noise is handled explicitly by the GP model to which the data is regressed.
Finally, the uncertainty estimates of the shift parameters, together with continuous uncertainty bounds for
forward predictions, are obtained automatically from the method at minimal added cost, due to the
formulation of the superposition problem as one of statistical inference.

Our method for inferring master curves not only facilitates the automation of a popular method for
rheological data analysis and extrapolation that has endured for more than 80 years, but also represents the
development of a novel probabilistic, data-driven predictive and analytic tool. We may therefore readily
extend this method to new material systems, refine its predictions with more extensive data sets, and,
potentially, build an open shared library of predictive models that are unbiased by user preferences and
preconceptions. Moreover, this automation has been accomplished without sacrificing the physical
interpretability of the resulting models. As we have demonstrated, the learned models themselves often
provide valuable insight to the underlying physics governing thematerial systems under study. In all fields
of the physical sciences, the adoption of robust, open, and unbiased data-driven tools such as this will be
critical in developing both accessible and reproducible scientific insight across large data sets.
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A. Appendix. Time–Temperature Superposition by Other Methods
We compare the performance of our method in unidirectional multiplicative shifting (time–temperature superposition) against two
previously developed methods: the CFS algorithm (Gergesova et al., 2011) and the minimum arc length (min-δ) method (Maiti,
2016). The CFS algorithm derives a set of algebraic expressions for the logarithms of the horizontal shift factors lnaj obtained in
time–temperature superposition based onminimization of the area between linear interpolants of two data sets at consecutive states,
computedwithin the range of overlap in the y-coordinate. Therefore, it is a pairwise algorithm by nature, and is necessarily limited to
the case of logarithmically scaled multiplicative shifting in a single dimension. The min-δ method computes all shift factors
simultaneously by minimizing the vertical arc length of the master curve (i.e., the sum of vertical distances between points at
consecutive x-coordinates). This algorithm is similarly defined only for multiplicative shifting in a single dimension.

Table A1 presents the shift factors computed by these algorithms for the same data set as in Section 3.1, bothwith andwithout the
same synthetic 20%GWN added to the compliance. These shift factors were computed in 4ms by the CFS algorithm, and in 2.7 s by
the min-δ method, compared to the 1.6 s runtime of our automated algorithm. Upon comparison with Table 1, we see that our
algorithmmore accurately reproduces the manually inferred shift factors for nearly all temperatures compared to the CFS algorithm,
and similarly matches or exceeds the accuracy of the min-δ method for nearly all temperatures.

A comparison to manually inferred values may not represent the best evaluation of the accuracy of each method. Therefore, we
also evaluate the robustness of each method to noise in the data by adding 20% relative GWN and repeating the inference. Table A2
presents the relative deviation in the inferred shift factors relative to the values inferredwithout synthetic noise. TheCFS algorithm is
apparently very sensitive to noise in the underlying data, with a worst-case relative error of more than 600%, and an average error of
more than 100%. Themin-δ algorithm improves on the CFS algorithmwith a worst-case error of just over 60%, and an average error
of just over 20%. However, our method exceeds both cases, with a worst-case error of 25% and an average error just below 10%.

We have demonstrated that our algorithm outperforms the min-δ algorithm by more than a factor of two in both the average and
worse case for this example. It does this while also outperforming that algorithm in runtime by nearly a factor of two. Moreover, our
method provides uncertainty estimates for the shifts automatically, while both the CFS and min-δ methods provide only a single
estimate of these shift factors. Previous attempts to quantify uncertainty in these shift factors have required second-order bootstrap
resampling of the data, resulting in thousands of repeated calls to the subroutine implementing the algorithm. For 100 resampling
trials at each order, the min-δ algorithm has a runtime of 75 hr for this data set. Our algorithm need only be run once to obtain these
uncertainty estimates—therefore, the true speedup is more than five orders of magnitude compared to the min-δ algorithm. While a
single call of the CFS algorithm takes only 4ms compared to our 1.6 s runtime, this speedup comes at the cost of accuracy. To obtain
uncertainty estimates using the same second-order resampling procedure increases the runtime to more than 6 min. Thus, for
inference with uncertainty quantification, our algorithm represents a speedup of more than two orders of magnitude compared to the
CFS algorithm.

Table A1. The shift factors inferred by the closed-form shifting (CFS) and minimum arc length (min-δ)
algorithms for time–temperature superposition of recoverable creep compliance data for a polystyrene
melt (Plazek, 1965), both without and with 20% relative Gaussian white noise added to the raw

compliance data.

T ° Cð Þ aT (CFS) aT (min-δ) aT , 20% GWN (CFS) aT , 20% GWN (min-δ)

97.0 1:35 �101 1:35 �101 1:35 �101 1:35 �101
100.6 5:58 �10�1 5:98 �10�1 5:43 �10�1 7:20 �10�1

101.8 2:47 �10�1 2:71 �10�1 2:58 �10�1 2:71 �10�1

104.5 3:57 �10�2 4:22 �10�2 4:27 �10�2 3:66 �10�2

106.7 9:64 �10�3 1:04 �10�2 1:46 �10�2 1:32 �10�2

109.5 2:29 �10�3 2:84 �10�3 2:29 �10�3 2:84 �10�3

114.5 2:68 �10�4 3:19 �10�4 6:21 �10�4 2:65 �10�4

125.0 1:19 �10�5 1:62 �10�5 2:56 �10�5 1:48 �10�5

133.8 8:79 �10�7 1:26 �10�6 6:50 �10�6 1:91 �10�6

144.9 1:01 �10�7 1:02 �10�7 1:36 �10�7 4:02 �10�8

Note. All shifts are computed for a reference temperature of 100 ° C to match the convention in Plazek (1965).
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Table A2. The relative deviation ∣ΔaT ∣=a
0ð Þ
T = ∣a σð Þ

T �a 0ð Þ
T ∣=a 0ð Þ

T in the shift factors computed with 20%

relative Gaussian white noise (a σð Þ
T ) and without noise (a 0ð Þ

T ), relative to the noiseless values, for the
closed-form shifting (CFS) and minimum arc length (min-δ) algorithms, compared to the shifts

computed by the algorithm presented in this work.

T ° Cð Þ ∣ΔaT ∣=a
0ð Þ
T (CFS) ∣ΔaT ∣=a

0ð Þ
T (min-δ) ∣ΔaT ∣=a

0ð Þ
T (present work)

100.6 0.03 0.20 0.04
101.8 0.04 0.00 0.09
104.5 0.20 0.13 0.04
106.7 0.52 0.26 0.05
109.5 0.00 0.00 0.00
114.5 1.32 0.17 0.00
125.0 1.16 0.09 0.20
133.8 6.39 0.52 0.21
144.9 0.35 0.61 0.25
Average 1.11 0.22 0.10
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