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Abstract

It is well-known that quasi-Frobenius rings are characterized by the property that all propec-
tive right modules are injective, as well as by the property that all injective right modules are
projective. Similarly, either the property that every quasi-projective is quasi-injective or that
every quasi-injective is quasi-projective characterizes uniserial rings. Oshiro has given similar
characterizations for generalized uniserial rings. The purpose of this paper is to characterize
rings for which continuous right modules are discrete. We show that these rings are precisely
the uniserial rings. The property that every discrete module is continuous is also investigated.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 16 A 35, 16 A 36,
16 A 50, 16 A 51, 16 A 52.

1. Introduction

The purpose of this paper is to characterize rings for which continuous right
modules are discrete (that is, dual-continuous). We show that these rings are
precisely the uniserial rings (Theorem 3.3). For a ring R the property that
every discrete right /^-module is continuous is also equivalent to R being
uniserial when either R is right perfect or R is semiperfect with finitely
generated radical (Theorem 3.8). A comprehensive treatment of discrete and
continuous modules may be found in [15].
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2. Definitions and preliminaries

Throughout this paper all rings have 1 and modules are right unital unless
otherwise stated. The Jacobson radical of a ring R is denoted by J(R) or
simply by / . For any /?-module M, Rad(M), Soc(M), and E(M) denote
its radical, socle, and injective hull respectively. A module M is said to be
valuation (also called uniserial) if its submodules are linearly ordered under
inclusion. A ring R is said to be right serial if it is a direct sum of valuation
right .R-modules and serial if it is both left and right serial. An artinian
ring in which each one-sided ideal is principal is called a uniserial ring. It
is well-known that a uniserial ring is serial. Artinian serial rings are called
generalized uniserial.

For i?-modules N and M, we write N d M (N c e M) to denote that
N is essential in M (N is a summand of M). For a right module M,
consider the following conditions:

(C,) For every submodule N of M there exists Mx c e M with
N d M, .

(C2) For any summand M' of M, every exact sequence 0 —> M' —> M
splits.

(C3) If Mx and M2 are summands of M with M{n M2 = 0, then
M, + M2 is a summand of M.

A module M is called continuous (quasi-continuous) if it satisfies (Cj) and
(C2) ((C,) and (C3)). These conditions are dualized as follows.

(Dj) For every submodule N of M, there exists a decomposition M =
Mx © M2 such that M, c N and M2n N is small in M2 .

(D2) For any summand M' of M, every exact sequence M —> M' —> 0
splits.

(D3) If Mx and M2 are summands of M with Mx+ M2 = M, then
Mx DM2 is a summand of M.

A module M is called discrete (quasi-discrete) if M satisfies (D,) and (D2)
((Dj) and (D3)). Discrete (quasi-discrete) modules, have also been called
dual continuous (respectively quasi-dual continuous) ([13], [14]). It is easy to
see that (C2) implies (C3) and (D2) implies (D3). Therefore, the following
hierarchy exists:

Injective =» quasi-injective => continuous =*• quasi-continuous,

and

Projective =>• quasi-projective *> discrete ^ quasi-discrete.
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Notice that the condition (D,) is equivalent to
(D[) every submodule N of M can be written as N = N{ + N2 where

JV, c e M, and N2 is small in M.
We list below some well-known results which will be used frequently.

2.1. PROPOSITION [13, Propositions 1.2 and 1.5]. If M = ® £ A f , is
(quasi-) discrete then Mt is (quasi-) discrete and Mj-projective for i ^ j .

2.2. PROPOSITION [8, Proposition 1.7 and 1.12]. If M = ® £ A / , is
(quasi-) continuous, then each Mi is (quasi-) continuous and Mj-injective
for i^j.

2.3. PROPOSITION [7, Proposition 3.1]. If M is Mj-projective for all i e /
and M is finitely generated then M is

2.4. PROPOSITION [13, Theorem 2.2]. Every quasi-discrete module M has
a decomposition Af = ® £ A/(, where each Mt is indecomposable. Further,
this decomposition complements summands.

2.5. PROPOSITION [14, Theorem 2.3]. A ring R is right (semi-) perfect if
and only if every (finitely generated) quasi-projective R-module is discrete.

2.6. PROPOSITION ([5, Theorem 5.1] and [1, Proposition 2.6]). A ring R is
(generalized) uniserial if and only if every (indecomposable) quasi-projective
right module is quasi-injective, if and only if every (indecomposable) quasi-
injective right module is quasi-projective.

2.7. PROPOSITION [4, Theorem 25.4.2]. If R is a generalized uniserial ring
then each R-module is a direct sum of cyclic valuation modules.

3. Main results

We start by stating two of our main theorems.

3.1. THEOREM. For a ring R, the following are equivalent:
(1) R is uniserial;
(2) every quasi-injective module is quasi-discrete,
(3) every quasi-injective module is discrete,
(4) every continuous module is quasi-discrete,
(5) every continuous module is discrete,
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(6) every quasi-continuous module is quasi-discrete,
(7) every quasi-continuous module is discrete.

3.2. THEOREM. Let R be a semiperfect ring such that J — J(R) is finitely
generated. Then the following conditions are equivalent:

(1) R is a uniserial ring;
(2) every (quasi-) discrete R-module is quasi-injective,
(3) every (quasi-) discrete R-module is (quasi)-continuous;
(4) every finitely generated quasi-projective R-moduleis (quasi)-continuous;
(5) every quasi-projective R-module is (quasi-) continuous.

Before we prove these theorems we prove a lemma.

3.3. LEMMA. If R is a generalized uniserial ring then
(i) every quasi-discrete R-module is quasi-projective, and
(ii) every quasi-continuous R-module is quasi-injective.

PROOF. Let M be an .R-module. Since R is a generalized uniserial ring,
we write M = © £,- Mi, where each Mi is a cyclic valuation submodule.

(i) Assume M is quasi-discrete. Then by Proposition 2.1, Mi is AT-
projective for i / j . Also, since Af(. is indecomposable, Af(. is Af(-projective
by [4, Exercise 25.0.4(b)] and [10, Theorem 1.10]. Furthermore, because Mi

is cyclic, Mi is M = © £ -^-projective. But then M is also Af-projective,
that is, M is quasi-projective as desired.

(ii) Assume now M is quasi-continuous.
This implies Mi is A/;.-injective for / ^ j (Proposition 2.2). Again

as in (i), Mi is Af^-injective. Now, because R is noetherian, E(M) =
®J2iE(Mt). Let (f..) G End(E(M)) where <pu e Hom(E(Mj), E(Mt)),
and let J2xk e © £ ^ , - Then (9tJ)(£xk) = E<Pikxk e © E ^ , . since
M. is A/fc-injective. Hence M = 0 £ Mi is quasi-injective.

PROOF OF THEOREM 3.1. Since any one of the statements (3) through (7)
implies statement (2) and statement (1) implies all others (Lemma 3.3), all
we need to show is that R is uniserial if each quasi-injective /?-module is
quasi-discrete.

Assuming (2), we have that R must be generalized uniserial [16, Theorem
2]. It then follows from Lemma 3.3 that every quasi-injective R module is
quasi-projective, and hence R is uniserial.

PROOF OF THEOREM 3.2.

(1) => (2). If M is (quasi-) discrete then M is quasi-projective (Lemma
3.3) and therefore M is quasi-injective since R is uniserial.

(2) => (3) is trivial.
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(3) =>• (4). Now M is finitely generated quasi-projective so M is discrete
(Proposition 2.5), and hence M is continuous.

(4) =>• (1). Since R is semiperfect, we can write R = 0 £ e , . R ,
where e(R is indecomposable and e^j = djjei for i, j = 1 , ... , n. Now,
(e/i?)/(el/

m) is a finitely generated quasi-projective module. Thus by hypoth-
esis, {eiR)/{eiJ

m) is quasi-continuous and hence uniform. We proceed to
show that {e^R)l{etJ

m) is valuation and noetherian.
Set / " = n£ l , / * • Let 0 ^ A/e^" C efi/ej™. There exists a pos-

itive integer A: such that A <t_ etJ
k. Choose the smallest s such that

A <£ e(j
s. Therefore, A c ejJ

s~i. Furthermore, Rad^V*"1) = etJ
s, since

R is semiperfect. Also, (eiJ
s~x)/(eiJ

s) is a completely reducible R/J- (and
hence R-) module which must be simple since eft/e^ is uniform. This
yields that e{J

s is the unique maximal submodule of etJ
s~x which is small

since / and hence etJ
s~x are finitely generated. Thus A + e(J

s = etJ
s~x

implies A = etJ
s~x. Therefore, every nonzero submodule of efi/e^J™ is

of the form (e / y
i ) / (^ l /

w ) . This yields that eiRleiJ
(0 is noetherian and val-

uation. Therefore, R/Jw is a right noetherian right serial ring. Moreover,
by hypothesis, R/Jw x R/Jw is quasi-continuous. Therefore, by Proposition
2.2, R/J03 is self-injective and so it is quasi-Frobenius. This implies that
there exists t > 0 such that

But then, by the Nakayama Lemma, Jl = 0 , which yields Jw = 0. Conse-
quently, R is quasi-Frobenius. Furthermore, for any ideal A of R, R/A
is also self-injective since R/A x R/A is quasi-continuous. This gives that
R/A is quasi-Frobenius. Hence, R is uniserial [4, Proposition 25.4.6(B)].

Finally, (1) => (5) follows from the fact that over uniserial rings quasi-
projectives are quasi-injective, while (5) => (4) is obvious. This completes
the proof.

The following example shows that the hypothesis that / is finitely gener-
ated may not be removed from Theorem 3.2.

3.4. EXAMPLE. Let F be a field. Let Q = {/ c R+ U {0}| / is well-
ordered}. Let T be the set of formal power series J2atx' o v e r F > with
/ e f t . It is well known that for every nonzero ideal A of T, T/A is self-
injective [11]. Let R = T/xT; then R is a local, non-noetherian, commuta-
tive ring satisfying the condition that every one of its homomorphic images
is self-injective. Since any finitely generated quasi-projective i?-module M
is a direct sum of copies of R/B, where B is an ideal of R [10], we obtain
that M is quasi-injective. Therefore, R is a non-uniserial ring satisfying
statement (4) of Theorem 3.2.
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In the next theorem we trade the hypothesis of having a finitely generated
radical for that of being perfect.

3.5. THEOREM. For a ring R the following conditions are equivalent:
(1) R is uniserial;
(2) every (quasi-) discrete R-module is quasi-injective and R is right perfect;
(3) every (quasi-) discrete R-module is (quasi-)continuous and R is right

perfect;
(4) every quasi-projective R-module is (quasi-)continuous.

PROOF. Note (1) =*• (2) follows by Lemma 3.3, (2) =>• (3) is trivial and
(3) =>• (4) follows from Proposition 2.5. Thus we only need to verify (4) =•
(1).

Assume (4). Let A be an ideal of R and S a direct sum of copies of
R/A. Since S is quasi-projective, it is quasi-continuous. It follows from
Proposition 2.2 that every free R/A module is injective. This implies that
R/A is quasi-Frobenius and so R is uniserial.
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