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Abstract

The temporal instability of a developing swirling incompressible jet is considered. The jet
development (in the streamwise direction) is modelled by combining a near-field and far-
field approximation to the jet velocity profile into a one parameter family of basic velocity
fields. The single parameter in the jet velocity field then allows us to model the radial
spreading of the jet and the decay of swirl observed experimentally. Two distinct modes of
instability of this model profile are found. The first is that found from a stability analysis of
a fully developed swirling jet in the far field whilst the second is relevant to a “top-hat” jet
with an imposed rigid body rotation. We demonstrate that the effect of azimuthal swirl is to
destabilise both modes of instability. Additionally our results suggest that the near-nozzle
modes of instability will dominate; indeed the growth rates of these modes are significantly
larger than those found from previous studies of a fully developed jet in the far-field region.

1. Introduction

Our concemn is with the temporal stability of an inviscid swirling jet. We consider
a model problem in which the jet velocity field is constructed as a one parameter
family of solutions of the Euler equations of motion. This combination is chosen so
as to consist of a near-nozzle component and a far-field (a long distance downstream
of the jet nozzle) component; the variation of the single parameter appearing in the
unperturbed velocity profile then allows us to model the axial variation of the velocity
field observed experimentally.

The problem of the instability of jets, and subsequent transition to turbulence, has
received considerable attention in recent years due to their importance in the mixing
of fuel/air in jet engines of aircraft. Recent work has demonstrated that the addition
of a small amount of azimuthal swirl to the jet can increase the linear growth rates
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of small amplitude disturbances, leading ultimately to enhanced mixing within the
jet. This enhanced mixing can greatly increase the overall efficiency of jet engines
resulting in a decrease in fuel costs.

These is a considerable body of literature concemning the stability properties of
nonswirling jets, but only recently has attention turned to the problem of the stability
of swirling jets. Two distinct approaches to the stability of nonswirling jets have been
considered and a variety of basic velocity profiles have been considered. Early work
by Batchelor and Gill [1] considered the temporal stability of an asymptotic form of
an exact solution of the Navier-Stokes equations; such a solution being relevant to
the far-field (a long distance downstream of the jet nozzle) fully developed structure
of an axisymmetric jet. Such an instability analysis demonstrates that only the first
sinuous mode (that is, that mode with azimuthal wavenumber m = 1) is inviscidly
unstable. In contrast, the work of Michalke [10] (and others; see the review article
[10] for a full list of relevant publications) is concerned with the spatial instability of
a variety of model profiles which are constructed so as to model the jet velocity field
in the near-nozzle region. Such studies again demonstrate the instability (now spatial
in character) of these (model) velocity profiles.

The extension of these results to the problem of the stability of swirling jets has
been considered by a number of authors ([2,4,6-7,13-14]). The extension of the work
of Batchelor and Gill [1] to swirling jets has been considered in [4,6-7,13]. In this
case, the basic velocity profile for the swirling jet is given by the asymptotic solution
found by Loitsyanyskii [9] (see also Gortler [5], Rosenhead [12], pages 452-454)
and is a combination of the far-field form of Batchelor and Gill [1] together with an
asymptotic form for the azimuthal velocity component. The stability studies of this
profile by Khorrami [6-7] and Stott [13] (both within a compressible setting) are posed
in terms of a temporal stability analysis. Their results demonstrate that the addition
of a small amount of azimuthal swirl destabilises the non-axisymmetric modes with
negative azimuthal wavenumber and it is the first non-axisymmetric mode (m = —1)
which is the most unstable. When the azimuthal wavenumber is positive, the addition
of swirl stabilises these modes (in the sense of decreased growth rates, when compared
to the case of zero swirl) and for sufficiently large azimuthal swirl, these disturbances
may become completely stabilised.

In the near-nozzle regime, Coleman [2], motivated by astrophysical concerns,
considered the temporal stability of a compressible swirling jet. The jet profile
employed is a combination of a Rankine vortex superimposed upon a top-hat velocity
profile and as such is relevant to the near-nozzle regime. The findings of this work
demonstrate that disturbances with positive azimuthal wavenumber are stabilised by
small amounts of swirl whereas those with negative azimuthal wavenumbers persist
even when the imposed swirl is considerable. However, this work suggests that the
magnitude of the growth rates of these modes are substantially reduced with increasing
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swirl. Further work on this near-field profile by Wu et al. [14], who consider the
spatial stability, found that when the azimuthal wavenumber is negative the modes are
destabilised as the jet rotation is increased, thus contradicting the results of Coleman
[2].

The question as to which form of instability is relevant to jets (both swirling and
nonswirling) is as yet undecided. The literature, to date, is divided along the lines
of near-field profile/spatial stability analysis and far-field profile/temporal stability
analysis. The question as to which form of instability is relevant then becomes
a question of whether the jet velocity field is absolutely or convectively unstable.
To date this question has yet to be answered although some preliminary studies by
Foster [4], Lieb and Goldstein [8] and Papageorgiou [11] suggest that such flows are
absolutely unstable (at least for a range of system parameters). If such a result were
true for a general jet velocity field, it would be the temporal stability of the flow which
would be of the most physical relevance. It would then be of interest to consider a
temporal stability analysis of a developing jet in order to ascertain whether the near-
nozzle modes persist downstream of the nozzle and how, if at all, these modes are
related to those modes of instability found in studies of the fully developed profiles
valid in the far-field asymptotic limit. Such is the concern of this work.

The rest of this paper is structured as follows. In Section 2 we develop a model
velocity profile which incorporates both the, experimentally observed, radial spread
and decay of swirl in a real jet. We pose an inviscid, temporal, stability problem for
this model profile which is solved by standard numerical techniques. In Section 3 we
present our results and in Section 4 we present some conclusions which follow from
our work.

2. Formulation

We consider the instability of an incompressible swirling round jet. Assuming the
jet to be inviscid the governing equations are the Euler and continuity equations in
cylindrical polar coordinates. A suitable nondimensionalisation is found by taking
the jet nozzle radius as the characteristic length scale and the centerline axial velocity
as the characteristic speed. In nondimensional form we then have

d
a—:’ +v-Vy=-Vp, (2.1a)
V.v=0, (2.1b)

where v = (u, v, w) is the velocity field referred to cylindrical coordinates (x, r, 6)
(here x is the axial coordinate and € is the azimuthal coordinate). We assume the basic
flow is steady and of the form

(u,v,w, p) = UF),0, W), P(r)), .2)
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where U, W satisfy Euler’s equations and P is found from the second momentum
equation.

Our primary concern in this paper is to model the streamwise variation of the basic
flow. In particular, we wish to model two experimentally observed characteristics of
swirling jets: (i) radial spreading of the jet as a function of the axial coordinate x, (ii)
the decay of swirl in the jet as a function of the axial coordinate x.

In order to achieve this aim we construct a one parameter family of velocity profiles
in the form (2.2), where

(U, W) = (1 = b)(Up, Wy, 0) + b(U\, W, 0). (2.3)

The parameter b in (2.3) represents the axial position x in the flow; however, note that
if b were the axial position (2.3) would not satisfy the Euler equations. The specific
choice of profiles Uy, U; and Wy, W, appearing in (2.3) is effected by comparison with
experimentally measured velocity profiles. The work of Wu et al. [14] demonstrates
that near the jet nozzle the axial velocity closely resembles the “‘plug-flow” (or top-hat)
jet profile induced by a cylindrical vortex sheet while the azimuthal velocity resembles
that obtained from a rigid-body rotation within the nozzle radius. The far-field (in this
case several nozzle radii downstream of the jet nozzle) velocity field closely resembles
‘the similarity form found by Loitsyanskii [9] (see also Gortler [5] and Rosenhead [12]
pages 452-454). With these results in mind we define

Us=L[1+tanh@-ér)],  Wo=orl, (2.42)
1
U= G W =ort (249

Here we note that the profile U, corresponds to that used by Michalke [10]; in the limit
¢ — ooitreduces to the “plug-flow” velocity profile and as such approximates the near
nozzle axial velocity profiles measured experimentally. The addition of the azimuthal
component W, then gives a good approximation to the near nozzle azimuthal velocity
found in experiments. The second component of the basic velocity field (U;, W)
corresponds to the asymptotic similarity solution found by Gortler [5]. We can now
see the relevance of the parameter b in our basic flow (2.3). Setting b = 0 reduces
(2.3) to U = U, while for b = 1 we have U = U,. Thus varying the parameter b
between zero and one allows us to model the effect of the streamwise variation of
the jet velocity field from a near-field form to the far-field similarity form. In Figure
la we present a plot of U given by (2.3) as a function of b (for the particular choice
¢ = 6) from which we may readily observe the radial spreading of the jet as a function
of b. We note at this point that throughout this work we will choose, for definiteness,
the parameter value ¢ = 6; other larger values of this parameter were considered,
however its precise value had little effect on our subsequent stability calculations.
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In order to model the decay of swirl found experimentally we turn our attention
to the azimuthal component of the velocity field. In (2.4a,b), the parameter ¢ is a
measure of the mean flow angularity. Previous studies into swirling jets by Khorrami
[6] and Stott [13] have demonstrated that the stability of swirling jets is dependent on
the swirl ratio ¢, which is defined as the ratio of the maximum azimuthal velocity to
the maximum axial velocity; note that the maximum axial velocity given by (2.3) has
been normalised to be unity. The parameter ¢ in (2.4) is then chosen so that the swirl
ratio at b = 1, (that is, in terms of our model profile, this corresponds to the far field
similarity solution of Gortler [5], which is the basis of the studies by Khorrami [6]
and Stott [13]) is fixed at some prescribed value, ¢, say. Thus

o = q,/ max(rU,).

A plot of g versus b is given in Figure 2, which together with a plot of W versus r
at various values of the parameter b, given in Figure 1b, demonstrates that our model
profile (2.3) adequately models the decay of swirl as a function of the axial coordinate.

1.0 L\— —

b increasing

FIGURE 1. A plot of the jet velocity profile for various values of the parameter b; (a) the radial velocity,
(b) the azimuthal velocity.
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FIGURE 2. A plot of the swirl parameter ¢ as a function of b.

To proceed we take the basic flow to be given by (2.3) and consider perturbations
to this flow which satisfy the nondimensionalised Euler and continuity equations in
cylindrical coordinates. Consider then perturbations in the form of travelling waves
disturbances

v=V+4VE, p="P+8PE, (2.5)

where
E =expli(ax + mb — wt)],

and § < 1 is a small amplitude parameter. Substitution of the expansion (2.5) into
(2.1) and linearizing with respect to the unperturbed flow gives the following system
of equations for the perturbation quantities

2W dP

d
QU+V——U+ozP=0, —-QV — — W+ — =0,
dr r dr

dw vV dv w
vl veaw+Zp=0, aU+—-+Z2 470 20, 26)
dr r r r dr r

where Q is the group parameter given by Q = aU — w +mW /r. Eliminating U and

W from (2.6) then. gives
v ar?U +m (rW)’ 1 V4 (@*r* + m?) p
dr Qr? r Qr? '
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2Wr (rw) W
d—P ={Q - d (r vV — 2mW P,
dr Qr3 Qr2

2.7

where primes denote differentiation with respect to . The boundary conditions
appropriate to the disturbances quantities are found by modifying the arguments
presented by Batchelor and Gill [1], to account for the presence of the azimuthal
velocity component; in terms of P and V we have

PO)=0, m#0; P©0)=0 m=0,
V0)=0, Iml#1 V(@) =0, |m|l=1,
V), Pr) >0 as r — oo. (2.8)

The differential equations (2.7) together with the boundary conditions (2.8) then
constitute an eigenvalue problem for w = w(e, m, g, b), in the case of a temporal
stability analysis, or @ = a(w, m,q, b), in the case of a spatial stability analysis.
Previous results suggest that a spatial stability analysis is appropriate to the near nozzle
region, (in our model b « 1), whilst a temporal stability analysis is appropriate to the
far field region, (in our model this corresponds to b =~ 1). However, the question as
to whether the instability of a free jet is convective or absolute is still to be settled,
although recent results by Leib and Goldstein [8], Foster [4] and Papageorgiou [11]
suggest that the flow is absolutely unstable. If, indeed, such a result is generic the
temporal eigenvalue problem would be the most relevant to the problem of swirling
free jets. For definiteness, we will restrict our attention to the problem of temporal
stability (it is anticipated that the question as to the spatial stability of the basic flow
(2.2) will be considered in a future paper).

Thus, the eigenvalue problem posed by (2.7,8) will be considered in the following
form: given a real wavenumber o« determine the complex wavespeed w = ac =
a(c, + ic;) as a function of the swirl ratio q, the variational parameter b and the
azimuthal wavenumber m.

Eliminating V from (2.7) yields a single second order ordinary differential equation
for the pressure perturbation P in the form

CP'—[(D+A)C+C]P +[C'D-CD'+ACD - BC*]P=0, (2.9)

where
Ao ar’U +mGWY 1 B_ a?r? + m?
- Qr? r’ ToQrr
2Wr(rwWy 2mwW
c=q-"170 D=-"2
Qr3 Qr?

and the primes denote differentiation with respect to the radial coordinate r.
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A fourth order Runge-Kutta scheme is used to numerically integrate the second
order differential equation (2.9) coupled with a standard Newton iteration technique to
determine the eigenvalues. In order to take care of the singularity at r = 0 appearing
in (2.9), we make use of the Frobenius expansion of the solution of (2.9) atr = 0,

P = Py,r'™ + lower order terms as r— 0,

where we have chosen the solution which remains bounded as » — 0. (We note here
that the leading order behaviour of P as r — 0 is found to be P ~ r*™ and thus to
ensure boundedness of P as r — 0 we choose P ~ r™ form > 0 and P ~ r~™ for
m < 0). In the limit r — o0, we impose the asymptotic boundary condition

P ~ Ae™™ + lower order terms. 2.10)
Since the system (2.9) is linear in P, we are free to normalise P such that
P = r'™ 4+ lower order terms as r— 0. 2.11)

This normalisation was chosen solely for convenience; the precise form of the nor-
malization at » = 0 has no effect upon the eigenvalues found for (2.9).

The system (2.9) subject to (2.10) and (2.11) (where (2.10) is imposed at some
suitably large value of r = r,, ) then defines our eigenvalue problem for which the
complex wavespeed ¢ = ¢, + i¢; and the complex amplitude A are to be determined.
An initial guess is made for ¢ and A and (2.9) is integrated from r = r, to some fixed
point r = r,, (typically r,, = r/2 in all the calculations reported here). In addition
the system (2.9), subject to the initial condition (2.11), imposed at some suitably small
value of r = Ar (where Ar is the step-size used in the Runge-Kutta integration), is
integrated to r = r,,. Newton iteration is then employed on the unknowns ¢ and A
until matching of P and P, at r =r, is achieved (to within some desired tolerance).

In all the calculations reported here r., was chosen so as to give a suitable decay at
r = ry and the step-size Ar was reduced until the change in the calculated values of ¢
and A was negligible. In Table 1 we give some representative, convergence results for
the eigenvalues ¢, + ic; as a function of the number of grid points and the position r,,
(for the particular choice of parameters ¢ = 1.0, b = 0.0 and m = 0) from which we
observe that for r,, = 10.0 and N = 2000 the eigenvalues have converged to within
graphical accuracy. Thus, in all that follows we will take N = 2000 and a maximum
value of ro, = 10.0 (the precise value of r., used depends upon the wavenumber «;
for large wavenumbers a smaller value of r, is appropriate in light of the exponential
decay seen in (2.10)).
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TABLE 1.
TConvergence of eigenvalues as a function of 7,
roo N Cr Ci (ci —c)/ct)
10.0 | 2000 | 0.69657890 | 0.38279068 | 0.20951398(-04)
11.0 0.69657936 | 0.38279012 | 0.19488486(-04)
12.0 0.69657986 | 0.38278952 | 0.17921076(-04)
13.0 0.69658041 | 0.38278885 | 0.16170795(-04)
14.0 0.69658101 | 0.38278813 | 0.14289889(-04)
15.0 0.69658166 | 0.38278736 | 0.12278357(-04)
16.0 0.69658235 | 0.38278653 | 0.10110074(-04)
17.0 0.69658310 | 0.38278565 | 0.78111601(-05)
18.0 0.69658390 | 0.38278471 | 0.53554908(-05)
19.0 0.69658475 | 0.38278371 | 0.27430634(-05)
20.0 0.69658565 | 0.38278266*
*Convergence of eigenvalues as a function of N
Too N c, Ci (ci —ct)/ct
10.0 | 1000 | 0.69628713 | 0.38249592 | -0.27561332(-04)
2000 | 0.69657890 | 0.38279068 | -0.66093563(-05)
3000 | 0.69657769 | 0.38279215 | -0.27691268(-05)
4000 | 0.69657728 | 0.38279266 | -0.14368092(-05)
5000 | 0.69657708 | 0.38279290 | -0.80983738(-06)
6000 | 0.69657698 | 0.38279302 | -0.49635179(-06)
7000 | 0.69657692 | 0.38279310 | -0.28736150(-06)
8000 | 0.69657688 | 0.38279315 | -0.15674262(-06)
9000 | 0.69657685 | 0.38279319 | -0.52247533(-07)
10000 | 0.69657683 | 0.38279321*

t(all results fora = 1.0, b = 0.0, r,, =ro/2, m = 0)

3. Results

243

Throughout we will, in order to reduce the number of free parameters in the problem,
restrict our attention to the case when the parameter ¢, appearing in (2.4), is fixed at
¢ = 6. This value was chosen solely for convenience and is in no way of special
significance. The results found for larger values of ¢ are qualitatively similar to those
to be reported here, with the general trend that increasing ¢ causes a corresponding
increase in the growth rate.
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FIGURE 3. A plot of the growth rates of the most unstable mode as a function of a for b = 0; (a)
@1 =00,m=0(—),m=1(¢--)m=-1(¢---),b0q=0,m=0(—),|m|=1(---).

Firstly we examined the growth rates of the modes when b = 0, that is, in the
near-nozzle region. Spatial stability studies have been carried out on this profile for
nonswirling jets (see Michalke [10]). Swirling jets in the near-nozzle region have been
examined by Coleman [2] who considered the temporal stability of such flows and Wu
et al. [14] who studied the spatial stability problem. In both cases the flow considered
was a combination of a “top-hat” jet with an imposed Rankine vortex. Coleman [2]
found that for positive azimuthal wavenumbers the introduction of a small amount of
swirl temporally stabilises all modes. Wu et al. [14] also obtained this result for the
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spatial stability problem; in addition they found that when the azimuthal wavenumber
is negative, the introduction of swirl spatially destabilises modes. However the work
of Coleman [2] suggests, when considering temporal stability theory, that although
modes persist when the azimuthal wavenumber is negative even when jet rotation is
considerable, the growth rates of these modes is substantially reduced.

Figure 3(a) and 3(b) show plots of the growth rates of the most unstable mode versus
the axial wavenumber a with swirl (¢, = 0.04) and no swirl respectively, for the near
nozzle profile described in (2.4a). From these figures we can see that the inclusion of
swirl in the jet has a temporally destabilising effect on the modes (m = —1,0, 1) in
this near-nozzle region, which contradicts the results found by Coleman [2].

TABLE 2. Maximum growth rate as a function of azimuthal wavenumber m. Here b = 0 with swirl
ratio ¢, = 0.04. The terms in the braces correspond to the zero swirl case.

TMaximum growth rates ac;

m o ac;
-4 (2.0 0.3327
3125 0.4160
-2 |26 0.5109
-126 0.5773

0127 (3.0 (0583 (0.5113)
1|26 (26)| 05723 (0.5064)
2126 2704949 (0.4309)
3125 @7 ]03766 (0.3153)
4 122 (2.4)] 02468 (0.1900)
TAll results for b = 0, ¢, = 0.04.

In Table 2, we present values of the maximum growth rate as a function of the
azimuthal wavenumber from which we readily see a decrease in the maximum growth
rate as [m| increases.

The effect of swirl may also be clearly seen in Figure 4, where growth rate curves
for the most unstable modes are displayed with b = O for Figures (a)-(c) and b = 0.5
for (d)-(f). For each plot, g, is progressively increased from 0 to 0.1 in increments
of 0.02. It can be seen that when b = 0.5, the behaviour of the flow with respect to
the parameter g, is similar to the behaviour when b = 0; however the flow appears to
have become less unstable with its progression downstream.

In Figure 5, the eigenfunctions for the most unstable modes, for the case b = 0,
are shown. Three different values of m are displayed and for each plot the axial
wavenumber is increased at regular intervals. From these figures, it is apparent that
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FIGURE 4. A plot of the growth rates of the most unstable mode as a function of « for ¢, =
0.0,0.02,0.04,0.06,0.08,0.1 with(aym=1,b=0,(bym =0,b=0,(c)m=-1,b=0,(d)m =1,
b=05,m=0,b=05Em=-1,b=05.

the modes, when b = 0, become localised about some point r = ry, say, a finite
distance away from the centreline of the flow. Behaviour of this kind is indicative of
a ring mode structure; see Duck [3] for a description of the asymptotic structure of
these modes. Indeed, this behaviour was observed at all values of the parameter b in
the range 0 < b < 1. A structure of this type is also found in the fully-developed
jet profile (see Khorrami [6]). We note that, in all cases considered, the value of ry,
for the near-nozzle modes, is approximately equal to unity and thus is invariant to
changes in the parameters m and a.

We now turn our attention to Figure 6, which shows the growth rates of a number
of different modes obtained when b = 0, m = —1 and ¢ = 0.04. These modes are
classified, following Michalke [10], as regular or irregular according to whether ac;
tends to zero or a nonzero value asa — 0, respectively. The irregular modes (dashed
lines in Figure 6) are found to have significantly smaller growth rates compared to the
regular modes; we note that a family of regular modes also exists but the growth rates
of these higher order eigenvalues are much smaller than those of the first regular mode
(and also the first two irregular modes) and are localised in a small neighbourhood

https://doi.org/10.1017/50334270000007682 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007682

[13] The temporal stability of a developing jet: a model problem 247

0.0
14
-0.2
12
10 -0.4
" o-06
T @ decreasing %
% g E _os}
. 1o}
2 -1z}
[ " -1.4
10 20 30 40 00 1.0 20 30 40 .
25 2}
1
20
0
$ 38 g-1
= 5 E
& =10 = -z
-3
5
~4
0 . - s A .
. 00 10 20 30 40 00 10 20 30 40
r - B r
(a) b)
0.0
-0.1
-0z
~0.3
-0.4
-0.5
-0
00 10 20 30 40
1.5F
1.0
05
~
? 0.0
= o5
-1.0
-5
00 10 20 30 40
,
©

FIGURE 5. Plots of the eigenfunctions for the most unstable mode for b = 0, ¢, = 0.04 and
a=10,15,...,45with@m=-1,b)m=0,(c)ym = 1.

about « = 0. Due to the size of the growth rates of these modes an accurate
determination of their growth rates is difficult; for this reason we do not present
plots of them here. We note that the irregular modes of instability have previously
been obtained for a nonswirling jet in the near-nozzle region using a spatial stability
investigations (see Michalke [10]), however this study appears to be the first which has
demonstrated their existence in a temporal setting. The physical significance of the
irregular modes is as yet unknown, however it would appear that, judging from their
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small growth rates, they will be dominated by the first regular mode in any evolving,
swirling jet. Also, although not displayed here, it is possible to obtain irregular modes
of a similar type for all other nonzero values of m provided the swirl ratio is nonzero.
In the case ¢, = 0 (and arbitrary m) we were unable to locate any irregular modes.
The fact that such modes do not exist when ¢, = 0 is also suggested by the fact that
the regular modes do not jump as the upper neutral point is approached. This is unlike
the case when ¢, = 0.04, compared to Figures 3a and b.

0.6 -

0.4

Qacy

0.2~

FIGURE 6. Plots of the growth rates of the most unstable regular mode (—) and two irregular modes
(---ywhenb=0and m = —1.

In Figure 7, we show the eigenfunctions of the most unstable irregular mode shown
in Figure 6, for various values of «. Figure 7 demonstrates that, as in the case
of the regular modes, the eigenfunctions are localised about » =~ 1. Hence these
irregular modes can also be classified as ring modes. We note that the eigenfunctions
presented in Figures 5 and 7 undergo rapid variation in the vicinity of » = 1. Further
examination of the structure of the governing equations (2.7) demonstrates that this
rapid variation occurs where |$2] (€2 being the group parameter defined in Section 2)
attains its minimum value.

We now turn our attention to the behaviour of the modes with progression down-
stream, here modelled by varying the parameter b between zero and unity. This
behaviour is modelled in Figures 8 (a)-(d) by surface plots of growth rate, ac;, versus
« and b. By examining Figures 8(a) and 8(b), we see that two separate and distinct
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FIGURE 7. Plots of eigenfunctions for the first irregular mode when b = 0 and m = —1 and with
varying a.

modes are obtained; (i) a mode which emanates at a finite distance downstream from
the nozzle of the jet and then becomes increasingly unstable until it attains a maximum
value far-downstream (Figure 8a), and (ii) a mode in the near nozzle region of the
jet which decays with the progression of the flow downstream (Figure 8b). For the
remainder of this paper these modes will be referred to as modes of type I and I
respectively.

Figure 8(a) shows a surface plot of the development of the growth rates of the most
unstable type I mode against & and b when m = —1 and g, = 0.04. When the jet
is fully-developed in the far-downstream region of the flow, the results obtained here
agree with those found by Khorrami [6] and Stott [13]. Plots similar to Figure 8(a)
can be obtained when m = 0 and m = —1, but as noted by Khorrami [6], the effect
of swirl on these modes greatly reduces the magnitude of the growth rates and hence
determination of such modes by the technique described in Section 2 proved difficult
due to frequent occurrence of the phenomena of mode jumping.

Type II modes are those found in the stability analysis of a “top-hat” jet with an
imposed rigid body rotation. Figure 8(b)-(d) show surface plots of the growth rates of
the most unstable modes (type II) against b and o, for m = —1, 0 and 1 respectively
and in each case ¢, = 0.04. It may be seen from these figures that type Il modes decay
as b increases and eventually become stable at some finite distance downstream. The
particular location of the point (in terms of the streamwise parameter b) at which this
occurs is dependent on the axial and azimuthal wavenumber. The precise location
at which such modes become stable can be achieved by modifying our numerical
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scheme to deal with the critical layer encountered when the eigenvalue passes through
the point of marginal stability. As our main concern is with the instability of the basic
flow we do not consider the problem of neutrally stable eigenvalues here.

acCq

0.35

10.(,

FIGURE 8. A surface plot of the growth rates of the most unstable modes versus o and b for (a)
m = ~1, mode 1.

We also find from Figures 8(a) and 8(b) that the magnitudes of the growth rates of
modes of type II at b = 0 are much greater than those found for the fully-developed
jet far-downstream, where the type I modes reach their maximum value. This result
therefore suggests that modes in the near-nozzle region of the flow are the dominant
modes when the temporal stability of such flows is considered. Such a dominant
instability in the near-nozzle region would suggest that the far-field structure may
never be observed since at such large distances downstream of the jet orifice the initial
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instabilities appearing in the near field may well have rendered the flow fully turbulent.
4. Conclusions

We have presented a model problem in which the temporal stability of a swirling jet
is considered. The axial variation of the jet is modelled using a one parameter family
of jet velocity fields in which the free parameter represents the axial distance from the
jet nozzle. Our results demonstrate that there are two distinct modes of instability;
each relevant to a different asymptotic regime within the flow. In particular, this study
demonstrates that the modes considered by previous authors in their study of the far
downstream asymptotic structure of a swirling jet are not, in fact, the dominant mode
of instability. The dominant mode is that found to occur in the near-nozzle regime.
Such a result would then suggest that the far-field asymptotic structure considered
by previous authors is irrelevant in that the unstable modes present in the near field
regime (the type II modes discussed above) would be likely to render the jet fully
turbulent well before the far field asymptotic velocity field profile is attained.

Several important questions pertaining to the stability of jets, both swirling and
nonswirling, remain to be answered. The model problem considered in this work
goes one step towards settling the question as to whether the near-nozzle modes of
instability are, indeed the dominant ones. Further work is called for to fully answer this
question. To do so would require the ideas presented in this work to be put on a firmer
mathematical footing by solving the full, nonlinear governing equations (possibly
within a boundary layer context), together with some suitable “initial” conditions in
the vicinity of the nozzle, to determine the mathematically correct basic flow and to
then consider the inviscid instability of such a profile. It is hoped that the results of
such a study can be presented in the near future.
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