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We present a versatile framework that employs Physics-Informed Neural Networks
(PINNs) to discover the entropic contribution that leads to the constitutive equation for
the extra-stress in rheological models of dilute polymer solutions. In this framework the
training of the neural network is guided by an evolution equation for the conformation
tensor, which is GENERIC-compliant. We compare two training methodologies for the
data-driven PINN constitutive models: one trained on data from the analytical solution
of the Oldroyd-B (OB) model under steady-state rtheometric flows (PINN-rheometric),
and another trained on in silico data generated from computational fluid dynamics (CFD)
simulations of complex flow around a cylinder that use the OB model (PINN-complex).
The capacity of the PINN models to provide good predictions is evaluated by comparison
with CFD simulations using the underlying OB model as a reference. Both models are
capable of predicting flow behaviour in transient and complex conditions; however, the
PINN-complex model, trained on a broader range of mixed-flow data, outperforms the
PINN-rheometric model in complex flow scenarios. The geometry agnostic character of
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our methodology allows us to apply the learned PINN models to flows with topologies
different from those used for training.

Key words: rheology, viscoelasticity, non-Newtonian flows

1. Introduction

Rheology aims to predict the complex flows of viscoelastic fluids using balance equations,
equations of state (EOS) and constitutive equations. These equations can be solved once
initial and boundary conditions are provided. While balance equations are universal, EOS
and constitutive equations are system specific. Therefore, models for the EOS, relating
temperature and pressure to mass and energy densities, and for the constitutive equations,
relating stress and microstructural conformation tensors are required. The exact functional
form of these models is generally unknown (Bird et al. 1987; de Pablo & Schieber 2014).

Traditionally, physical models are postulated based on physical intuition and are
characterized by a small number of parameters that, ideally, can identify physical constants
and material properties (Dyson 2004). In particular, rheologists have dedicated huge
efforts to find good models that describe complex flow properties and behaviour (Oldroyd
& Wilson 1950; Thien & Tanner 1977; Larson 1988; Herrchen & Ottinger 1997; Kroger
2010). Once a model is proposed, model parameters are typically determined through
simple experiments (i.e. in rheology shear or extensional steady-state viscometric flows).
These experiments are designed to fit or ‘learn’ the model’s parameters in order to achieve
good predictions. Models with a minimal number of parameters enable their determination
with a limited amount of data from a few simple flow experiments involving shear or
extensional steady-state viscometric flows. A fundamental problem in rheology is whether
viscometric flow experiments are sufficient to obtain the parameters of a model to be
applied in complex flow situations. A good physical model should describe a wide range
of flow situations beyond those used to fit the parameters. However, there is no guarantee
that a model performing well in simple flows will excel in complex flow situations. When
the model fails, it must either be improved or replaced by a new one that incorporates
additional physical insight. This process often entails identifying key physical features,
such as finite extensibility, constraints imposed by entanglements, etc., that better capture
the system’s behaviour. The systematic process of model refinement by including new
physics, however, might be time-consuming, and we may also end up with something that
looks very different to a good physical model with a small number of parameters (Dyson
2004).

An alternative, is to use a model with a sufficiently large number of parameters to fit
the elephant (Dyson 2004). We lose the physical intuition concerning the behaviour of
the model but, provided that a sufficiently large amount of data are available, we may
automatize the entire process. Thanks to the universal approximation theorem (Hornik,
Stinchcombe & White 1989), we may use a neural network (NN) to represent the functional
form of a model with enough flexibility. The model is given by the composition of
functions with very simple functional forms (like sigmoidal functions), resulting in a
generic functional form depending on a large number of parameters. Using NN as the
model, we may fit its parameters (train the network) in any region of the space of variables,
be it the region of viscometric flows, or in arbitrary regions of complex flows. This allows
us to simply retrain the NN model with new information when we require predictions for
flow simulations of increasing complexity. Graphically, we hammer the function against
data as a blacksmith would hammer a sheet of metal to shape it.
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Traditional NNs have been used in multiscale simulation methods to retain the
microscopic molecular fidelity at the macroscale (Lei, Wu & Weinan 2020). Neural
networks, while powerful function approximators, often disregard established constitutive
modelling principles and thermodynamic constraints. As any interpolation method, NNs
will give good predictions in the vicinity of training points and will fail extrapolating
to regions far from their training data (Bonfanti ef al. 2023, 2024). Furthermore, NNs
typically require large data sets to achieve a decent training (Rackauckas et al. 2021).
In the context of rheology, data-driven approaches have been used to model nonlinear
viscoelastic materials at small strains using NNs, requiring only stress and strain paths
for training. These NNs can be tuned to satisfy some physical feature (i.e. convexity of
the learned functional) to facilitate the handling of large data sets and noisy stress data
(Rosenkranz et al. 2024).

Several lines of research aim at leveraging the potential advantages of machine
learning methodologies in the field of rheology. Young et al. have employed scattering
microstructure data to develop low dimensional constitutive models using a dimensionality
reduction scheme (Young et al. 2023). Zhao and coworkers have employed yet a different
machine learning methodology — Gaussian process regression — to learn constitutive
models from microscopic simulations under simple shear flows. These constitutive models
can then be used in macroscopic simulations (Zhao et al. 2018, 2021). However, an
important limitation of these studies is that they set arbitrary constraints to the functional
form of the learned rheological model. For example, setting the viscosity as function
of shear rate alone (Zhao et al. 2018) or, having the microstructure description relying
on a predefined FENE-P model to incorporate viscoelasticity (Zhao et al. 2021), thus
these approaches lack generality. A more general, yet similar in the ad hoc choice of the
functional form of the constitutive model is the work by Seryo et al. (2020). Gaussian
process regression is also used to learn a constitutive model that introduces history-
dependent viscoelasticity by considering the time derivative of the polymeric stress as
a function of the flow velocity gradient and the stress (Seryo et al. 2020). However, as
the model becomes more general the dimensionality also tends to grow. For example in
Seryo et al. work, the derivative of the stress d7/d¢(Vv, T) with a priori six independent
components for three-dimensional (3-D) problems should be learned from the velocity
gradient Vv with nine independent components and the symmetric stress T with additional
six independent components (i.e. mapping 15-dimensional space into six-dimensional
space), making the approach difficult to apply in complex 3-D flows. A more effective,
yet general, physics-informed dimensionality reduction is thus required to study complex
3-D flows.

Another alternative is to utilize Physics-Informed NNs (PINNs) (Raissi, Perdikaris &
Karniadakis 2019), a novel family of NNs which are able to inherently satisfy kinematic,
thermodynamic and physical constraints (Linka & Kuhl 2023). PINNs are NNs that
incorporate model equations, such as partial differential equations (PDEs), directly into
their structure. PINNs are currently employed to solve forward and inverse PDE problems
(Raissi et al. 2019), fractional equations (Pang et al. 2019), integral-differential equations
(Yuan et al. 2022) and stochastic PDEs (Zhang et al. 2019). These innovative functions act
as a multitask learning framework where the NN simultaneously fits observed data and
minimizes the residual of the selected PDE (Cuomo et al. 2022; Mahmoudabadbozchelou
et al. 2022b). The introduction of governing equations in the loss function enables PINNs
to offer a powerful framework for solving forward and inverse problems in fluid mechanics,
where the solutions to momentum balance equations that incorporate complex constitutive
models are produced as predictions of the NN (Karniadakis et al. 2021). However, most of
the studies using PINNs have focused on predictions of specific flow simulations (i.e. using
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the network to solve momentum balance equations) and then choose the right constitutive
model from a selection of ‘known’ analytical constitutive models rather than learning
‘unknown’ constitutive models (Meng et al. 2020; Lin et al. 2023). For example, Thakur
et al. used PINNs to select among several viscoelastic constitutive models (Oldroyd-B
(OB), Giesekus or linear PTT) and learn the stress field from a velocity field (Thakur,
Raissi & Ardekani 2022). In Saadat, Mahmoudabadbozchelou & Jamali (2022) and
Mahmoudabadbozchelou et al. (2022a), the authors have proposed the rheology-informed
NNs (RhINNSs) for forward and inverse metamodelling of complex fluids. The RhINNs are
employed to solve the constitutive models with multiple ordinary differential equations by
proposing a penalization based on a thixoviscoelastoplastic model for the stress, where a
few model parameters are learnt. Again, the framework used to encapsulate the physics is
over-restricting for general complex fluids.

Nevertheless, PINNs present a significant advantage over traditional data-driven models
by ensuring that the NN solutions adhere to fundamental physical principles. This
feature is particularly beneficial in the context of rheology, where the complexity of the
flow behaviour demands models that respect the underlying physics while adapting to
diverse and nonlinear phenomena. In this context a number of studies have employed
PINNs to advance rheological modelling. An interesting use regarding the problem
discussed above is to employ PINNs to model viscoelastic materials using deep NNs to
approximate rate-dependent and nonlinear constitutive relationships (Xu et al. 2021). One
way to impose a minimal set of thermodynamics-based constraints (i.e. first and second
laws of thermodynamics) on constitutive models, still retaining generality, is through
the application of the so-called GENERIC (General Equations of Non-Equilibrium
Reversible—Irreversible Coupling) framework (Ottinger 2005). Hernandez et al. proposed
structure-preserving NNs (Herndndez et al. 2021). Zhang et al. proposed a GENERIC
formalism informed NNs (GFINNSs) that adhere to the formalism symmetric degeneracy
conditions. GFINNs consist of two modules, each with two components, modelled by NNs
specifically designed to meet these conditions. This componentwise architecture allows
flexible integration of physical information into the networks (Zhang et al. 2022).

In this work, we present a general approach for polymer solutions using PINNs to
determine the polymeric entropy leading to the constitutive equation for the stress in
rheological models. Instead of training PINNs to predict arbitrary solutions of specific
flow simulations, we aim to leverage their universal approximator nature to capture the
general functional relation between the eigenvalues of the conformation tensor ¢ and the
polymeric entropy for ‘a priori’ unknown viscoelastic models. The approach is not only
GENERIC-compliant but also significantly reduces the problem dimensionality making
model learning more efficient. In fact, it only requires learning a scalar state function (the
entropy) as a function of the two or three eigenvalues (depending on space dimension)
of the conformation tensor ¢. We evaluate the traditional methods using limited regions
of the available conformation space (i.e. limited data from steady-state theometric flows)
to establish rheological models that then can be used to predict properties and behaviour
of more complex flows. We propose two types of data sets to train our PINN models: a
first one — in analogy to classical rheological calibrations — with steady-state rheometric
flows (later denoted as ‘PINN-rheometric’); and a second one, with data from steady-
state solutions of complex flow around a cylinder (later denoted as ‘PINN-complex’). We
study the application of the PINN models to finite volume (FV) simulations of complex
flows coupling the learned models with an OpenFOAMs RheoTool solver (Alves, Pinho &
Oliveira 2001; Pimenta & Alves 2017). We find that a PINN model trained in steady-state
rheometric flows data can be used to produce reasonable predictions in moderate transient
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or complex flows. However, in order to reproduce complex flows more accurately, data
retrieved beyond viscometric flows are required for training.

In order to evaluate the quality of the PINN model predictions, we analyse the
relative errors of the entropy and the stress in the space of the eigenvalues of ¢. We
generate in silico conformation-tensor data according to analytical and accurate RheoTool-
discretizations of an OB model in simple and complex flows. Data are provided to the
PINN for training, whereas its application to complex flow is agnostic of the underlying
model used to generate them, therefore providing an optimal and controlled framework
for fair numerical comparisons. The PINN model presented here can effectively learn
unknown forms of the polymeric entropy and integrate their GENERIC-guided NN
representation into RhecoTool to perform data-driven flow simulations. The only data
required to train these models are the conformation tensor and velocities fields in complex
flow. These kind of datasets can be obtained, for example, in experiments through
combined use of particle image velocimetry and flow-induced birefringence measurements
(Haward et al. 2021), X-ray scattering measurements (Mao, McCready & Burghardt 2014;
McCready & Burghardt 2015) or, in the case of multiscale applications, from independent
mesoscale polymer computations (Simavilla & Ellero 2022; Simavilla et al. 2023). Thus,
we aim to leverage the potential of PINNs to provide rheologists with more effective,
thermodynamics-guided ways to discover constitutive equations from data and, at the same
time, applying them directly to fluid mechanics simulations using CFD.

2. Methods
2.1. The GENERIC-guided approach to model constitutive equations

In the present work, we are interested in the modelling of polymeric solutions. Within the
GENERIC framework, a general polymer model can be cast into a set of PDEs including
the mass and momentum balance equations

V.v=0, 2.1

9
p<8—;’+v-w>—V-(%(W+WT)):—V;;+V-T, 2.2)

where v is the velocity vector field, p is the pressure and T is the non-Newtonian
extra-stress term coupled with an evolution equation for the conformation tensor c,
which represents the microstructure generated by the polymers (Ottinger 2005). For
a polymer solution undergoing affine deformation, the conformation tensor generally
evolves according to (Vazquez-Quesada et al. 2009b; Simavilla et al. 2023)

2

9c=—v-Ve+c-k+kl c+——¢-
1 + + +/lpnpkBT

o, (2.3)

where A, is the polymeric characteristic relaxation time, n,, the polymer number density
(i.e. the number of chains per unit volume), kp is the Boltzmann constant and 7' the
temperature. The first three terms in (2.3) are reversible in nature, describing the kinematic
evolution of the conformation tensor under the influence of the velocity gradient k = Vo .
The application of (2.3) is limited to dilute polymeric solutions where the fluid can be
considered a suspension of non-interacting polymers. In GENERIC, the most general
formulation of the governing equations where the polymer contributions are given by the

1016 A11-5


https://doi.org/10.1017/jfm.2025.10325

https://doi.org/10.1017/jfm.2025.10325 Published online by Cambridge University Press

D. Nieto Simavilla, A. Bonfanti, I. Garcia-Beristain, P. Espaiiol and M. Ellero

conformation tensor takes the form (Ottinger 2005)
3,C=—U'VC+C‘K+ICT‘C+R22,00’, 2.4

where R» is a fourth-order tensor connected to the dissipation or friction matrix. In the
scope of this manuscript we will focus on dilute polymeric solutions. For this kind of
system, it has been shown (Vazquez-Quesada et al. 2009a), that the Wiener process
leads to R> o ¢ and therefore (2.3). There are a number of ‘entropy’ models that are
typically used for dilute suspensions of non-hydrodynamically interacting polymers where
the evolution of the conformation tensor is well represented by this equation (Ottinger
2005). Learning general anisotropic models for concentrated systems requires determining
R>(c), which in turn necessitates incorporating additional physical information or data.
The last term in (2.3) describes the general irreversible evolution of the conformation

tensor. This term is characterized by the thermodynamic force o (c), defined as the
derivative of the polymeric entropy density s,(c) with respect to the conformation tensor
¢, that is

o 0sp

= ¢ (2.5)
Finally, the momentum balance equation contains, in addition to the solvent viscous stress,
a polymeric stress given by (Vazquez-Quesada et al. 2009b)

T=-2c-0 (2.6)

which satisfies the dynamics—thermodynamics compatibility (i.e. consistency with the
microstructural evolution given by (2.3)). Therefore, the knowledge of the entropy function
directly provides the closure in a thermodynamic-consistent constitutive equation for a
dilute polymeric suspension.

Since the entropy is invariant under rotations, it can only depend on the invariants of
the conformation tensor ¢, that we choose to be the eigenvalues cy, ¢, c3 and therefore,
sp(€) =sp(cy, 2, c3). Observe that the tensors ¢ and o commute (Vazquez-Quesada et al.
2009b) and diagonalize simultaneously. This implies that we may write (2.5) as

O _ O5p, @.7)
T 0Cy
where oy,(¢ =1, .., D) are the eigenvalues of o. Because of the large reduction of
arguments of the entropy due to rotational symmetry, it proves convenient to express
the dynamics in terms of eigenvalues and eigenvectors. The decomposition of (2.3)
into eigenvalues and eigenvectors (i.e. c=)_, cauau};) leads to two coupled PDEs
(Vazquez-Quesada et al. 2009D),

0=0/cq +vj0jCcqy — 2Cakaq — == CaOu, (2.8)

0=y +vjdjuy — »_ Hygup, 2.9)
8

where Ky =Uqy - K - Uy 1S the velocity gradient in the eigenbasis of the conformation
tensor, and the antisymmetric matrix H,g is given by

(Cakap + CKBa)- (2.10)

o,

H .=
ey — cp

The kinematics of the flow in (2.9) has been used by the authors in Simavilla et al.

(2023) to establish the non-affine characteristics of polymer flow by introducing a mixed
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derivative of the Gordon—Schowalter type. This allows for the unambiguous separation
of reversible/irreversible terms in the dynamics, enabling to split non-Newtonian effects
related to non-affine deformation, with irreversible effects intrinsically associated with
the polymeric entropy s, (c), which is crucial to apply safely the model to arbitrary flows.
For simplicity, non-affine motion is not considered here as it will be the subject of future
refinements of the methodology. Note that the entropy appears only in (2.8) through o,.
Equation (2.8) will be used below to construct the residuals and the loss function in the
PINN model.

In this paper, we address the following problem: given that the dynamics of the polymer
solution are described by (2.3) or its equivalent, (2.8), and that we have explicit data for
the fields v(r, t) and c(r, t), our objective is to develop a Physics-Informed NN (PINN)
representation of the specific entropy function s,(¢). This PINN model should ensure
that the measured fields align with the governing equation (2.3) dictated by GENERIC.
It should be also noticed that our approach diverges from the usual application of PINNs
where the NN represent the fields v(r, ¢) and ¢(r, t) directly (Karniadakis et al. 2021). In
contrast, in this paper, we focus solely on employing a single NN to model the functional
form of the entropy. From this knowledge alone, s, can be used to provide all the necessary
stress predictions in CFD simulations (i.e. using RheoTool).

2.2. The NN

To demonstrate the methodology, this paper focuses on two-dimensional (2-D) flows, with
the extension to 3-D flows being straightforward. We aim at representing the functional
form of the entropy s,(C): R? — R as a function of the eigenvalues C = {c1, c3} € R?
through a NN of the form

5,(C) =n,kp5s(C) 2.11)

where n, is the polymer number density and the dimensionless NN is
56C)=[WL-¢(- Wi -¢(WoC+bo) +b1)--)+b](C—Cp)®  (212)

where Wy € RM>/—1 and b, € R" denote, respectively, the weights and biases of the
kth hidden layer, with k € (0, - - - , L). The number of nodes of the kth layer is hj;. The
collection of all trainable parameters of the network is identified as 6 = {Wj, bk},fzo. The
activation function ¢ : R — R is a smooth nonlinear function that is applied elementwise
to a multivariate argument. The choice of the function is arbitrary and often problem-
dependent, with common selections for ¢ including the hyperbolic tangent or the
sine function, chosen in this work. Finally, the factor involving the equilibrium value
Ceq = {1, 1} of the conformation tensor’s eigenvalues is a common approach followed
when implementing PINNs in order to impose exact satisfaction of boundary and/or initial
conditions (Sukumar & Srivastava 2022; Arzani, Cassel & D’Souza 2023). In particular,
we ensure that 5,(C.,) =0 and 0, (Cey) = {0, 0}. This requirement is necessary because
a non-zero entropy at the equilibrium will often result in unstable flow predictions once
the NN is coupled with RheoTool. Additional information on the expressions for s, and
therefore o, for simple models are discussed in Appendix A.3.

A graphical description of (2.12) is shown in figure 1, where it is also indicated how
the eigenvalues oy, are obtained from automatic differentiation of the NN entropy function
with respect to C.

The final ingredient of a NN is the loss function whose minimization produces
the parameters of the network. The loss function in PINNs is constructed in terms
of residuals of the PDE. The definition of the residuals ey(cy; 6) follows from the
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Figure 1. Sketch of the PINNs architecture.

GENERIC-consistent PDE (2.8) that already uses the NN representation in (2.11),

2 359
eq(Cq; 0) =0,cq +Vj0jCqy — 2CqKaa — ca 5e (2.13)
o
where o =1, 2 for 2-D problems and the partial derivative of the NN §p is computed
through automatic differentiation (Paszke et al. 2017). The residuals in (2.13) can be
obtained through any dataset — produced either by simulation or experiments — for the
velocity gradient and the microstructure (i.e. the conformation tensor).

The residuals can be further simplified when the model is trained exclusively on the
steady state line. Therefore, when training the PINN with synthetic viscometric data
(PINN-rheometric), we will use the residual

2 0%p

ey(cq; 0) = —2cokgqy — —Coqg—. (2.14)
Ap ~Ocy

With either of the residuals defined by (2.13) and (2.14), we define the loss function
N

.. 1 . .
£(ch. 5. 0) =+ Z(/l]Hel (ch; 0)11> + Aallea(ch; 9)||2) (2.15)

i=1

where {(c’i, cé)} IN: | represents the dataset with N points used for the training of our model.
The parameters A1 and A, represent two scalars whose purpose is to balance the interplay
between the two residuals. Unbalanced loss components are known to be detrimental for
the training process of PINNs, which can lead to slow or unfeasible convergence (Wang,
Yu & Perdikaris 2022). We established the values of the two scalars based on the heuristics
proposed in Schmid et al. (2024), where their value is given as the proportion of the two
residuals at the first iteration. For the specific models we train in our study, we notice
that this approach generally yields a ratio A; /A, ~ 10~*. Finally, by minimizing the loss
function in (2.15), we identify the optimal NN entropy function that ensures the dynamic
equations in (2.13) to be consistent with the data. We train our models by the Adam
optimizer (Kingma & Ba 2014), which is an enhanced first-order stochastic optimization
algorithm ubiquitous in the machine learning community.

One of the main benefits of using a PINN to approach the minimization of PDE residuals
is the flexibility of the training formulation. Indeed, all the physical quantities included
in (2.13) can be obtained through high-fidelity numerical simulation, or experimental
measurements and all those data can be introduced in the same training scheme.

2.3. Data-driven CFD: coupling PINN with RheoTool

The macroscopic flow simulations in this article have been performed using the
RheoTool library. RheoTool is an extension for OpenFOAM (FV), a popular open-source
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’ Solve continuity equation ‘

’ Solve momentum equation ‘ | Compute eigenvalues and eigenvectors of ¢ |

’ Solve conformation tensor equation ‘ | Obtain entropy and o values using PINNs |

¥
’ Execute Python script

Update 7 and o Compute T

Figure 2. Flowchart of the procedure for macroscopic flow simulations using RheoTool and Python script
PINN integration. Orange boxes refer to RhedTool actions. Purple boxes refer to actions in python script.

computational fluid dynamics (CFD) software, designed specifically for simulating non-
Newtonian flows. The software RheolTool was developed by Pimenta et al. to provide
advanced viscoelastic numerical methods to the OpenFOAM community (Pimenta &
Alves 2017). The software RhedTool is publicly available and incorporates various
constitutive models for non-Newtonian fluids including power-law, Carreau, Cross,
Bingham, Herschel-Bulkley and viscoelastic models like OB, Giesekus and FENE-P,
among many others.

In this paper, we use a modification of the rheoFoam uncoupled solver that incorporates
a python script where the PINN model is executed using PyTorch. The RheoTool-PINN
interaction is achieved using the PythonPal interface (Rodriguez & Cardiff 2022), a
header-only library that provides high-level methods for OpenFOAM (C++) to Python
communication. For example, it provides ready-to-use methods such as the constructor
for the python script, a passToPython function that creates a NumPy array in the
Python interpreter from OpenFOAM data, and the execute command to run the python
script. After initiating the PyTorch library and setting required variables in the modified
solver, the following steps are executed at each time iteration (see the flowchart in
figure 2). First, the continuity equation (2.1) and momentum equation (2.2) are solved
using a SIMPLEC type iteration. The term (1;/2)(Vv + Vo) represents the diffusive
term of the solvent stress contribution, which is solved implicitly. In contrast, V -t
is handled explicitly. The momentum equation is solved using RheoTool’s coupling
both-sides-diffusion stabilization technique. After the SIMPLEC iteration on continuity
and momentum equations is completed, the constitutive equation for the symmetric
conformation tensor c is solved in a semi-implicit form, where the right-hand side of the
equation is solved explicitly,

2

—c- 2.16
/lpnpkBTc ? ( )

e+ @-Ve)y=(c-k+k’-¢c)+
Next, a python script is executed which involves the following steps. First, the eigenvalues
{c1, c2} and normalized eigenvectors {u|, u>} of the conformation ¢ are computed in each
cell and sorted by size, where ¢| > ¢;. Then, {01, 02} values in each cell are obtained
through automatic differentiation of the PINN entropy representation computed from
{c1,c2}. As a next step, conjugate variable o is reconstructed using the eigenvalues
{01, 02} and eigenvectors {u1, us} as

o= Z aauauoTl. 2.17)
* 1016 A11-9
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Finally, the non-Newtonian extra-stress T is computed from (2.6) as

2
1=——"" _(c.q) (2.18)
ApnpkpT
or equivalently
Np 059
=——\|c-— ). 2.19
' A <c ac ) .19

The computed stress is then used back in the SIMPLEC iteration of RheoTool, closing
the time step loop. A graphical sketch of the structure of the algorithm is shown in figure 2.

3. Numerical results
3.1. The PINN-rheometric: training

To validate the present methodology, we first use data produced by the analytical solution
to (2.3) with (2.1), (2.2) in steady-state rheometric flows. We denominate the PINN trained
with this dataset: PINN-rheometric. Since all steady-state theometric flow solutions using
the OB model fall on the same line in the c;—c; space, we choose to implement our
training with data for the simplest analytical solution, i.e. steady-state extensional flow
characterized by extensional rate €. For the OB the analytical expression for the entropy is
given by (Ottinger 2005)

k
Sp(Cl,C2)=78(2—Cl —cy+1Incy +1ney) 3.1

which represents the ground truth solution to target with data, whereas in extensional flow
the eigenvalues of the conformation tensor ¢, at a given Wi are

1
= : 3.2

T 2w G2
_ ! (3.3)

2 1w '

where the Weissenberg number Wi=¢€A4,. For this flow, we have computed in
Appendix A.l the velocity gradient in the eigenbasis k4 in (A10) and the residuals read

. 0%
ey (cq; 0) = —[Wil; — — (3.4)

0Cy
where the dimensionless residual e}, (cq; 0) = Apeq(ca; 0)/2¢cq, [Wil; € [0, - - - 0.5) with
i=1,---, N where N =60000 is the number of data points, distributed uniformly in the

interval. Equations (3.2) and (3.3) show that the two eigenvalues c1, ¢ can be parametrised
with Wi. Furthermore, in the inset of figure 3, we show that the data generated from steady-
state rheometric solutions of (2.3) lie on a single line in the c;—c; plane. We train our
models by the Adam optimizer (Kingma & Ba 2014), which is an enhanced first-order
stochastic optimization algorithm ubiquitous in the machine learning community, and we
limit the training to a maximum of 3 x 10° iterations.

Figure 3 shows the prediction of the entropy over the training domain (steady
viscometric line). As expected, the PINN model is in very good agreement with the ground
truth OB model over the training domain. Predictions for the entropy and ¢ outside the
training domain are compared with the OB model in § 3.1. The inset to figure 3 shows the
entropy surface s(cy, ¢2) in the (c1, ¢2) domain. The surface displays the paths explored
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Figure 3. Entropy as a function of Wi along the steady-state viscometric line. The inset shows the whole
entropy surface (3.1) as a function of ¢; and ¢;. The lines over the surface correspond to steady-state rheometric
flows (extensional (red), simple shear (blue) and Poiseuille (green)). These lines all coincide.
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Figure 4. (a) True entropy. (b) Predicted entropy given by OB model in (3.1). (¢) Relative error in the
prediction of the entropy for the PINN-rheometric model.

by rheometric flows, with extensional flows highlighted in red, simple shear in blue and
Poiseuille flows in green. They all fall on top of each other.

Figure 4 shows a comparison of the PINN-rheometric prediction and the ground-truth
OB model over the entire (c1, c2) plane. As already shown in figure 3, predictions are
excellent over the steady-state flow line that is used for the training. The quality of the
prediction is reduced as the distance to the training line is increased. It is important to
note that some of the areas in this graph might not be physically relevant. For example,
we cannot increase c¢; keeping ¢ =1 and vice versa. Typically, when a flow becomes
more ‘transient’ or more ‘complex’ the line representing steady-state rheometric flows
(figure 3) will start to widen leading to an area around said line. Notably, transient
extensional and shear flows only explore the region below the steady-state rheometric line
(see Appendix A.3), while complex flows explore both regions above and below.

Finally, figure 5 shows the relative error in the predictions of the eigenvalues of o.
The relative error in o7 is in general much lower than in 2. This is a result of the low
curvature of the entropy surface and the different ranges covered by c¢; =[1, 100] and
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Figure 5. (a) Relative error in the prediction of the first eigenvalue of a. (b) Relative error in the prediction
of the second eigenvalue of o. The eigenvalues of ¢ are determined through automatic differentiation of the
PINN-rheometric model entropy in figure 4.

c» =11, 0.5] during training. This significant difference was limited during the training
using augmentation in the computation of the loss function as described in §2.2.
Nevertheless, we can observe that, while the relative error in oy is kept below 5 % over
the entire studied domain, the error in o3 increases over 50 % at a relatively short distance
from the training line. This will have important consequences in the simulation of complex
flows that explore wider regions of the c;—c» space.

3.2. The PINN-rheometric: flow around a cylinder

The validation of the RheoTool software for a flow around cylinder has already been
reported by Alves et al. (2001) in a detailed description of the computational set-up
required to simulate upper convected Maxwell and OB fluids. In this work the fluid
characteristic values to replicate the cited case have been used, that is p =1, ny = 0.59,
np =0.41. A sketch of the flow geometry is presented in figure 6(a). Full domain length
is 50 times the cylinder radius, and only half of the domain is discretized as described in
Alves et al. (2001). The channel height is discretized with 70 cells at an expansion ratio
of 3. The employed structured mesh contains 119422 points following the same
discretization strategy as in their article. Figure 6(b) shows the mesh employed.

Fluid enters from the left-hand patch with a parabolic profile and maximum velocity
U = 1. On the walls, no-slip conditions are used for velocity, linear extrapolation for the
conformation tensor and zero-gradient for pressure. Fluid exit is achieved by setting a zero-
pressure value on the right-hand patch and zero gradient for the rest of the variables. The
Weissenberg number is defined consistently with the work in Alves et al. (2001) using the
average inlet velocity (Wi = UA/R). In order to validate the model, simulations are run
leading to a cylinder drag coefficient C4; = 118.94 obtained at Wi = 0.5, consistent with
the original work (C; = 118.838) (Alves et al. 2001; Claus & Phillips 2013), where C; is
calculated as

1
C;= __/(T,m—pl) -n-idS. (3.5)
nU Js

Here 7, is the sum of both the non-Newtonian and the Newtonian viscous contributions
to the stress, I is the identity tensor, n is the outward cylinder surface unit normal vector,
p is the pressure and 7 is the unit vector in the x direction. In the rest of this work,
the magnitudes of tensors are evaluated using the Frobenius norm, that is 1 = /7 : 7,
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Figure 6. Sketch (a) and mesh example (b) near the cylinder in the flow around cylinder case.

whereas relative errors are computed by normalizing them by the Frobenius norm of
the FV RheoTool reference solution. To prevent the relative error from diverging when
the reference solution approaches zero, a threshold value is added in the denominator.
Specifically, the error in the stress variable is computed with an exponential decay factor
for values of t such that /7,4, < 0.05.

Figures 7 and 8 show the simulation results for flow around a cylinder comparing
predictions of the PINN-rheometric model and the ground-truth OB model. For this
comparison, we monitor the fields ¢y, ¢z, the magnitude of the velocity and stress fields
in the simulation domain. The PINN-rheometric model flow predictions errors are below
2 % for the stress and <1 % for all other fields at low Wi = 0.067 as shown by figure 7.
However, as Wi is increased to Wi = (.15 (see figure 8) significant relative errors up to
7.5 % for the stress and up to 7 % for c; are observed. This is a result of the large error in
oy reported in figure 5. The errors in the stress and o, are linked to the spreading of the
region of the conformation space explored during simulation (see figure 9b).

These results can be better appreciated in figures 9(a) and 9(b). For low Wi, the
conformation tensor eigenvalues are very close to the steady-state line. As Wi increases,
the explored region in the c;—c, plane becomes wider and separates from the steady-state
line. The error in o is larger in this region where the PINN model is extrapolating away
from the steady viscometric training domain. As a result, the poor estimation of the stress
in the simulation numerically propagates these errors, which in turn contribute to create an
even wider region of the mapped conformational space (i.e. the maximum for c; is higher
and the minimum for ¢ is lower than the ground truth OB solution).

Solutions for the stress on the symmetry plane and around the cylinder are also reported
following the benchmark studied in Alves et al. (2001). It can be observed in figure 16
that at high Wi number the stress on top of the cylinder is increased due to high error
associated with large c¢; values. From these results, it can be concluded that in order to
investigate regions outside the line in the ci—c2 space explored in rheometric steady-state
flow, one should train the network with data from non-rheometric flows (i.e. either complex
or transient flows cases able to map a wide range of the conformation space). Examples
of the conformational space explored in complex flow around a cylinder are presented
in figure 9, whereas the cases corresponding to transient extensional and shear flows are
presented in Appendix A.3.
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Figure 7. RheoTool simulation with steady-state rheometric training (PINN-rheometric) versus standard
RheoTool simulation of the OB model at Wi = 0.067.

3.3. The PINN-complex: training

In this section, we study a PINN constitutive model trained with data from macroscopic
simulations. This allows us to include the training values outside the line explored by
rheometric steady-state flows. To that end, the data obtained for the steady-state flow
around cylinder at Wi = 0.45 has been processed to evaluate the residuals in (2.13).
Effectively, we mimic the procedure that would be followed in the application of our
learning protocol to experimental data (i.e. with the conformation tensor measured by
X-ray scattering (Mao et al. 2014; McCready & Burghardt 2015) and velocity field
measured via particle image velocimetry (Haward et al. 2021)). In Appendix B, we have
included the anisotropy factor and the orientation angle computed from conformation
tensor components that could alternatively be used to train the PINN from this kind of
experiments. Here the PINNs model is trained exclusively using the discrete in silico data
obtained from CFD RheoTool simulations of the OB model, but notably, the PINN is
agnostic of the ‘true’ constitutive model behind the training data.

The procedure starts by computing the eigenvalues and eigenvectors from the
conformation tensor. As we work with steady-state flow the time derivative is zero for
steady-state converged solution, ky, is computed using (A9). The required gradients of
these vectors are computed using a linear Gauss method. With all terms evaluated, the
derivative of the entropy with respect to the conformation tensor is computed by (2.13).
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Figure 8. RheoTool simulation with steady-state rheometric training (PINN-rheometric) versus standard
RheoTool simulation of the OB model at Wi =0.15.

Effectively this is equivalent to computing o, which is then used for the PINN-complex
training with PyTorch.

In figure 10 we compare the entropy predictions of the PINN-complex model with the
ground-truth solution given by the OB model. As in the PINN-rheometric model, the
predictions for the entropy given by the PINN-complex are very accurate in the training
area of the conformational space and a relative error is consistently below 10 % even in
regions far from the training area.

Figure 11 shows the relative error achieved by the PINN-complex model for the
prediction of the eigenvalues of o. The relative errors in oy and o3 are again affected by
the low curvature of the entropy surface due to their different training ranges c; =[1, 90]
and ¢y =[1, 0.5]. However, we notice that introducing training data from complex flows
can largely benefit the accuracy of prediction and goodness of extrapolation for the value
of o5.

3.4. The PINN-complex: flow around a cylinder

In this section we compare the accuracy of the RheoTool flow simulations using the PINN-
complex model discussed in the previous section with the PINN-rheometric model and the
ground truth OB solution (i.e. the OB model used to generate the training datasets). We
consider here two cases: Wi = 0.15 where significant errors in the stress and conformation
tensor fields were observed when using the PINN-rheometric model, and Wi = 0.45 to
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(a) Wi = 0.067 (b) Wi=0.15
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Figure 9. The c1—c> region covered in simulations of flow around a cylinder with Wi =0.067 (a) and
Wi =0.15 (b). Green crosses represent the results using the PINN-rheometric model, red crosses represent the
OB implementation in RheoTool (FV) and the black solid line represent the analytical solution for steady-state
rheometric flows where the training has been applied.
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Figure 10. (a) True entropy given by OB model in (3.1). (b) Predicted entropy. (¢) Relative error in the
prediction of the entropy for the PINN-complex model. In all three maps, the light blue points represent the
training data and the white dashed line represents the steady-state rheometric flow solution.
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Figure 11. (a) Relative error in the prediction of the first eigenvalue of o. (b) Relative error in the prediction

of the second eigenvalue of o. The eigenvalues of ¢ are determined through automatic differentiation of the
PINN-complex model entropy in figure 4. The light blue points represent the training data.
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Figure 12. Comparison of RhedTool simulation results for PINN-complex and OB models at Wi = 0.15.

demonstrate the better accuracy of the PINN-complex model at larger Wi and away from
the steady-state rheometric line.

The new RheoTool results using the PINN-complex model are reported in figures 12
and 13. Comparing these results with the previous ones in figure 8, we can clearly observe
a significant overall improvement in accuracy in the predictions for the eigenvalues of
the conformation tensor and the stress. In order to show the model flexibility, equivalent
results but using a PINN-complex network trained with data generated using an alternative
FENE-P model have been included in Appendix A.4. At Wi = 0.15, the relative error in ¢
shows the maximum error in the complex case located on top of the cylinder (where c; is
also the maximum) with a value of 5.4 %, while for the PINN rheometric in figure 8 it was
around 6.5 %. The error in the rest of the domain for the PINN-complex is generally below
1 %, far better than the PINN-rheometric simulation that has an error exceeding 5 %. Also
the PINN-complex simulation results for ¢, are significantly better, with a relative error
less than 0.5 %. In contrast, the PINN-rheometric case in figure 8 shows an error as large
as 1.4 %.

The reasons behind the improvement of the constitutive modelling using complex flow
data can be further analysed by comparing figures 9(b) and 14. Here, the regions covered
in the c;—cy space using the different training datasets are compared. Figure 9(b) reveals
the widening of the c;—c; space of the PINN-rheometric predictions outside of the area
explored by the ground-truth RhecTool solution for the OB model. This result reveals how
the larger error in the stress has a strong effect on the conformational space that is explored
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Figure 13. Comparison of RheoTool simulation results for PINN-complex and OB models at Wi = 0.45.

in a given simulation. In contrast, no widening of the explored area in the c;—c» space is
observed in figure 14 (i.e. PINN-complex simulation results for ¢; and ¢; throughout the
simulation domain are in very good agreement with the OB model simulation results). The
maximum error occurs at the top of the cylinder, where ¢ reaches its peak, approaching
the maximum c; value used for the training data. This result clearly confirms that the
training with the complex flow data better captures the underlying constitutive model
(OB) in terms of consistent conformation space mapping for a complex flow problem.
The small discrepancies between the PINN-complex model and the OB model in the
c1—c2 map comparison in figure 14 are likely to be due to the specific PINN training
approach. The PINN is trained using residuals derived from the FV solver rheoTool, which
provides cell-averaged rather than pointwise values. Reconstructing pointwise residuals
from these averages — via interpolation and gradient calculations using Gauss’ theorem —
introduces numerical errors. These errors lead to minor inconsistencies when the PINN-
complex is validated against the training data. Integrating the PINN directly within the FV
solver could reduce these errors, enhancing both accuracy and the method’s applicability.

We must remark that it is important not to mistake the region of the c;—c; space explored
by a specific flow simulation with the flow geometry used in said simulation. In principle,
the same (or very similar) regions in the cj—c, space can be explored through completely
different geometries. In figure 15, we present examples of the regions explored by different
flows at a nominal Wi = 0.2: cross-slot, flow around a cylinder and contraction flow. Note
that the Wi number is defined differently in all three flows, so the comparison between the
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Figure 14. The c1—c, region covered in simulation of flow around a cylinder with Wi = 0.45. Green crosses
represent the results using the PINN-complex model, red crosses represent the OB implementation in RheoTool
(FV), whereas the black solid line represent the analytical solution for steady-state rheometric flow.
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Figure 15. The c1—c; region covered in simulation of cross-slot, flow around a cylinder and contraction flow
with Wi = 0.2.

three ought to be qualitative. To obtain a good NN model of the entropy (or stress) in the
region where the three flows overlap, we can train a NN with either of the flows. Assuming
the same number of similarly distributed data points, the resulting model network from all
three geometries should offer equivalent predictions. From this figure one might conclude
that cross-slot geometry is better suited to explore wide areas of the c;—c; space. An
interesting approach will be to train the network in the regime of elastic instabilities.
Elastic turbulence could possibly offer a better (or at least alternative) calibration of the
data-driven PINN-complex approach (Shaqfeh & Khomami 2021).

Finally, in figure 16 we examine the stress values along the channel midplane and
on the cylinder surface. The figure presents numerical results using three approaches:
PINN-complex, PINN-rheometric and the reference FV OB solution computed with the
standard RheoTool. As expected, for Wi = 0.067 (red) both models, PINN-rheometric and
PINN-complex, provide a good representation of the OB model reference solution. This is
explained by the complex flow simulation staying close to the steady-state rheometric flow
line where PINN-rheometric is trained. At Wi = 0.15 (black), the PINN-complex model
shows significantly improved results compared with the PINN-rheometric model. This
improvement is due to more accurate predictions of the PINN-complex model as the space
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Figure 16. Comparison of stress on cylinder and symmetry plane. Inset shows the line over which the stress is
computed.

explored in the c;—c; map starts to widen. At larger Wi = 0.45 (blue), only PINN-complex
is able to offer meaningful predictions.

3.5. The PINN-complex: flow around an array of cylinders

One important advantage of the data-driven procedure to model the constitutive equation
for the stress using PINNs presented in this work is that the resulting PINN models
are geometry-agnostic. This means that generalization to new geometries is in principle
straightforward since it does not require extra training. In order to assess this feature of
the model, in this section we applied the PINN-complex model to a new geometry set-up:
the flow around a periodic array of cylinders (PAC) (Ellero & Adams 2011; Simavilla &
Ellero 2022). In this case a single cylinder is simulated within the unit cell and periodic
boundary conditions on the left/right faces are activated, making therefore possible for the
cylinders to interact hydrodynamically. This will be important, since for significantly close
cylinders, a topological change of the flow occurs, therefore enabling the assessment of
the PINN accuracy in a different flow scenario. Two different separation lengths between
cylinders L are used for our analysis: L = 3R and L = 2.5R. In the latter case a topological
change with a flow separation instability in the space between cylinders occurs. Figure 17
shows the geometry and mesh details. In figure 18(a) the region explored by the simulation
results of the PAC flow for PINN-complex and RheoTool of OB model (FV) are shown for
Wi = 0.35. At this Wi, the explored area in the ¢; — c2 space for the new PAC geometry
is ‘mostly’ within the training region (PINN hull) that is represented by the dashed line in
figure 18(a). The limitation to Wi = 0.35 is motivated by the small region near c; = 5 and
¢y = 0.8 where a significant number of points are outside of the PINN training hull. This
effect is accentuated as the distance between the cylinders is reduced.

Figure 19 shows a comparison of the different field (cy, ¢z, U, t) in simulations for the
PAC flow with L =3R. The PINN-complex predictions demonstrate good accuracy, as
indicated by the relative errors in c¢; and ¢ remaining below 2 %. The relative errors in
stress and velocity are also small. However, it is important to note that the relative error
for U is extremely sensitive near stagnation lines.
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Figure 17. Periodic array of cylinders (PAC) test case geometry representation.
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Figure 18. The ¢;—c region covered in a PAC flow at Wi = 0.35 at (@) L = 2.5 R and (b) L = 3 R for the
PINN-complex model (green crosses). Red crosses represent the OB implementation in RheoTool (FV), and
the black solid line represent the analytical solution for steady-state rheometric flows. The convex hull of the
PINN-complex training range in a flow around a single cylinder is also shown with a dashed line.

The same analysis is performed in the case of closely interacting cylinders for L =2.5R.
In figure 20, we analyse the relative error with the PINN-complex applied to this new flow
scenario. In this situation, a topological change of the flow occurs due to the recirculation
area generated in the region between cylinders, as observed by the new streamlines.

The relative errors found in this flow type are of the same order of magnitude as for
the L =3R case and follow a similar distribution over the fields. The only noteworthy
difference is the increase in relative error up to 0.3 % in the c¢; field within the recirculation
area, adjacent to the cyclic inlet/outlet. Note that, the plot ranges for ¢ are kept the same
as the L = 3R case to facilitate a direct comparison.

The excellent solution of the PINN-complex model verifies the capacity of the model to
be geometry agnostic when the explored c1—c> space is contained within the training-hull
as shown in figure 18.

4. Conclusions

We have developed a GENERIC compliant framework that employs PINNs to learn
the polymeric contribution to the entropy, which determines the rheological constitutive
model. In this approach, the NN training is guided by a general evolution equation
of the conformation tensor in dilute polymeric solutions. The model captures the
polymeric contribution to the entropy as a function of the eigenvalues of the conformation
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Figure 19. Comparison of RheoTool simulation with PINN-complex and OB models at Wi = 0.35 in a PAC
for L =3R.

tensor. This functional approximator can then be easily differentiated using automatic
differentiation to compute the stress contributions required in CFD simulations.

Our results compare two different methods for training the PINN constitutive models.
The first model (PINN-rheometric) is trained with data generated from the analytical
solution of the OB model with the fluid subjected to steady-state rheometric flows. The
PINN-rheometric model is physics-informed, and its training relies exclusively in the min-
imization of the residuals derived from the evolution equation for ¢(2.3). The second model
(PINN-complex) is trained with in-silico data generated directly from CFD simulations of
complex flow around a cylinder that use OB or FENE-P as constitutive models. Both PINN
models are capable of predicting flow behaviour in transient and complex flow conditions
that explore regions of the conformational space that are not too far from the domain
covered by the training data. However, the PINN-complex model outperforms the PINN-
rheometric model in complex flow simulations. Our results highlight the importance of
the regions used to train both models: the wider region used to train the PINN-complex
model results in better predictions than the narrow region (a line) used to train the PINN-
rheometric model. Furthermore, we apply the PINN-complex model to demonstrate a key
advantage of our method being geometry agnostic by performing simulations of flow
around a periodic array of cylinders in the conditions in which the flow topology is
affected by the hydrodynamic interactions in between cylinders. We are able to capture
this phenomenon as well as the underlying OB model does. Another key advantage of the
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Figure 20. Comparison of RheoTool simulation with PINN-complex and OB models at Wi = 0.35 in a PAC
for L=2.5R.

presented methodology is that it bypasses the need for learning tensorial functionals that
depend on the velocity gradients (nine variables) — that are flow specific — together with
the conformation tensor (six variables). Instead, our method focuses on learning a scalar
function — the entropy — that depends uniquely on the evolution of the eigenvalues of the
conformation tensor (three variables). This results in better efficiency due to the significant
reduction in the dimensionality of the learning problem. The PINNs powered modelling
framework presented in this manuscript has the potential to change the way constitutive
models are created by leveraging data, thermodynamics and physical knowledge and could
be in principle applied to other complex fluids, such as suspensions, provided that a
GENERIC framework is available to provide thermodynamically consistent constraints.
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Appendices

In these appendices, we present supporting results concerning some of the known
constitutive models discussed in the main text of the manuscript: OB and FENE-P models.

Appendix A. The OB and FENE models

For a system with chains modelled as Hookean dumbbells, the entropy per unit volume as
a function of the conformation tensor is given by OB model

sple) = I%B (tr(I — ¢) + In(det(c))) . (A1)

The entropy can be expressed in terms of the eigenvalues of the conformation tensor
c1 and ¢p,

k
sp(cl,cz)=73(2—cl —cy+Inc+1Iney). (A2)

If instead the chains are modelled with finite extensible springs of the FENE type, the
entropy is (Ottinger 2005)

sp(e) = ]%B (bIng(c) +1Indetc), (A3)

b+ D b+2
$(c) = L—— tr(e) = i——(cwcz) (A4)

where dimensionality is given by D= 2. Finally, b is the finite extensibility parameter
related to the spring constant. Note that as b — oo, the FENE model converges to the OB
model.

The thermodynamic force o defined in (2.5) for the OB model it is given by

o =kpT(c' —1); (AS5)
while for FENE
_ -
o =kgT <c ¢(C)). (A6)

At equilibrium, the entropy is maximal, implying o = 0. This occurs in both models for
¢.q = 1. The corresponding entropy value at equilibrium is zero.

A.l. Steady-state extensional flow
For steady-state extensional flow, the velocity gradient takes the form in 2-D,

e 0
K= [0 _éi| (A7)
and the conformation tensor is independent of space and time and takes the form
1
1 0
c— |:1—2Wt 1 :| . (A8)
0 T+2Wi

In order to construct the residual (2.14), we need to express the velocity gradient in the
eigenbasis u; = v;/||v;| of the conformation tensor. The components in this basis are as
follows:

KaﬁEllg'IC-ll/g. (A9)
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Note that you can multiply e. by 4, so that everything is given by Wi. As a result, kup
are given in terms of the Wi number,

Apk1n = Wi, (A10)
Apkn =—Wi, (A1)
Apk12 = Apk21 =0 (A12)
and the residual equations become
&l = —2¢1 K1 — €161, (A13)
&2 = —2cxdpk2y — €267 (Al4)
(A15)

A.2. Steady-state shear flow

In this flow the velocity gradient k, the conformation tensor ¢ and the thermodynamic
forces o are

0y (A16)
K= ,
0 o0
1+2Wi Wi
c= (A17)
Wi 1
and
o _ 1, 1| -wi —Wi ALS)
— = — = .
kgT 1+ Wi | -Wi W2
The eigenvalues and non-normalized eigenvectors of the conformation tensor are
c1 =14+ Wit + WiV 1 + Wi, (A19)
ey =1+ Wit — WiV 1 + Wi2, (A20)

. )
)y [me/le n 1} | a2

. 5
vy = Wi Wi 41 (A22)
1
while the eigenvalues of o are
o1 Wi
=+ , (A23)
ksT (14 wi2)'?
Wi
2 - — (A24)
keT (14 wi?)
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A.3. Transient solutions to start-up extensional and shear flows

Start-up uniaxial extension

The velocity/deformation vector is generally given by v = (éx, —1/2éy, —1/2¢éz) for
t > 0. However, for our simplified 2-D model, we are looking at planar extension. In that
case, v = (¢x, —¢&y) and the velocity gradient is given by

Vo= [8 _08} . (A25)

The evolution of the conformation tensor using the OB model for start-up extensional
flow (i.e. at time ¢ = O stretching begins at strain rate ¢) is

Crx = m{2Wi exp [QWi — 1)t/2,] — 1}, (A26)
1 . .

Cyy = Wit 1{2Wl exp [— QWi+ Dt/A,] + 1}, (A27)

Cxy =0. (A28)

Note that these expressions are limited to Wi < 0.5. Furthermore, these expressions have
the right limits: for # = 0 we have ¢,y = ¢y, = 1 and for  — 00 we arrive to the steady state
extensional flow solution,

1
- A29
T T owi (A29)
_ ! (A30)
W awn

Start-up shear flow.
The OB start-up shear flow (i.e. walls start to move at t =0 with shear rate
v = Vyair/H) for t > 0. The velocity gradient is given by

0 vy
Vuv= . (A31)
0 0
The analytical solution for the evolution of the conformation tensor is given by
t
Crx = 1 +2Wi? (1 -7 exp [—t/r,,] — exp [—t/xl,,]) , (A32)
14
cxy=Wi (1 —exp[—1/2,]). (A34)

Here again, the expressions have the right limits for # = 0 and for t — oo with the steady-
state solution

Cox = 1+ 2Wi%, (A35)
cyy =1, (A36)
Cxy = Wi. (A37)
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Figure 21. Start-up and steady-state shear and extensional flow analytic solutions for the OB model.

For shear flow,

Wiz + Wiv Wi2 + 1

Apk1l = , (A38)
b EE
WiZ — WiV Wiz + 1
Appery = - VAT H L (A39)
lvz |
WiZ — WiV Wi + 1
Apkiy = , (A40)
v [l l[v2l
Wiz + Wiy Wiz + 1
Apica) = (A4l)
vt [zl

where we have used u; = v;/||v;||, where v; are the eigenvectors in (A21) and

oyl =\/2[1+Wi2+Wi\/Wi2+ 11, (A42)

Joall = v/ 201 + W2 — Wi/ WE 111, (Ad3)

Analytic solutions for shear and extensional steady-state and start-up flows are shown in
figure 21.

A.4. PINN-complex applied to FENE-P model at Wi = 0.5

Using the same geometry in §3.4 of the manuscript, we have validated the training
of a PINN-complex network with data from a simulation of flow around a cylinder
with RheoTool FENE-P implementation with & = 100 (see figure 22). The training was
performed with data from a FV simulation at Wi = 0.6 and the validation of the model is
down at Wi = 0.5.

It is noteworthy that in the c;—c, map, we observe better agreement between the
region covered by the model PINN-complex (FENE) and RheoTool implementation. When
comparing figure 23 with the analogous figure 14 for OB, we observe that for FENE the
regions explored by PINN-complex and FV in the c¢j—c; map are more consistent for
FENE. This is explained by a contraction of the ci—c2 map as a direct result of the finite
extensibility.
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Figure 22. Comparison of PINN-complex (FENE) and RhecoTool simulation results at Wi = 0.5. The stress
relative error has been plotted with exponential decay when the magnitude of the true value is lower than 5 %.
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Figure 23. The c¢j—c; region covered in simulations of flow around a cylinder with Wi =0.5. Green crosses
represent the results using the PINN-rheometric model, and red crosses represent the implementation of FENE-

P in RheoTool (FV).
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Figure 24. Anisotropy factor (AF) for flow around a cylinder at Wi = 0.2.
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Figure 25. Orientation angle () for flow around a cylinder at Wi = 0.2.

Appendix B. Anisotropy factor and orientation angle

The two typical metrics used in X-ray scattering are the anisotropy factor and the
orientation angle as follows (Mao et al. 2014; McCready & Burghardt 2015):

AF = \/(cn — )2 +4c2, =ue2 —4dete=+/(c1 + )2 —4cica,  (Bl)

1 2c12
x = —arctan [ ————— | . (B2)
2 ci— 2

These are computed from a measurement like the scattering vector ¢ in X-ray scattering
(or the polarization vector p in birefringence). In order to compare such measurements
with the conformation tensor, we are assuming that these two properties are proportional to
the end-to-end vector r of the polymer strands and therefore the second moments of these
(i.e. (gqq) or n = (pp) are proportional to the conformation tensor ¢ = (rr)). Figures 24
and 25 present a comparison of these two metrics for PINN-rheometric and the OB model
for flow around a cylinder at Wi = 0.2. The orientation angle has been computed with the
function arctan2 since it tracks the quadrants.
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