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ABSTRACT

Let K be a complete discrete valuation field of mixed characteristic (0, p), with possibly
imperfect residue field. We prove a Hasse—Arf theorem for the arithmetic ramification
filtrations on G, except possibly in the absolutely unramified and non-logarithmic case,
or the p =2 and logarithmic case. As an application, we obtain a Hasse—Arf theorem
for filtrations on finite flat group schemes over O

1. Introduction

1.1 Main results

This paper is a sequel to [Xial0], in which we proved a comparison theorem for the arithmetic
ramification conductors defined by Abbes and Saito [AS02] and the differential ramification
conductors defined by Kedlaya [Ked07]. In that paper, a key consequence was that one can use
the Hasse—Arf theorem for the differential conductors to obtain a Hasse-Arf theorem for the
arithmetic conductors in the equal characteristic p > 0 case.

In this paper, we combine the ideas from [Ked07, XialO] with the techniques of non-
archimedean differential modules in [KX10] to give a proof of the following Hasse—Arf theorem
for the arithmetic ramification conductors in the mixed characteristic case.

THEOREM. Let K be a complete discrete valuation field of mixed characteristic (0,p) and let
Gk be its absolute Galois group. Let Fil*Gg and Fill'ogG K denote the ramification filtrations

defined by Abbes and Saito [AS02].

(1) (Hasse-Arf theorem.) Let p:Gg — GL(V,) be a continuous representation of finite
monodromy, where V, is a finite-dimensional vector space over a field of characteristic zero.
Then the Artin conductor Art(p) (defined using Fil*G ) is a non-negative integer if K is not
absolutely unramified; the Swan conductor Swan(p) (defined using Fil},,Gk ) is a non-negative

integer if p > 2, and Swan(p) € %220 ifp=2.

(2) The subquotients Fil*Gg /Fil*T G for a >1 and FilfogGK/FﬂfngrGK for a >0 of the
ramification filtrations are trivial if a ¢ Q and are abelian groups killed by p if a € Q, except in
the absolutely unramified and non-logarithmic case.

This theorem summarizes the results of Theorems 4.3.5, 4.5.14, and 4.7.3.
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L. X1a0

We do not know whether Swan(p) may fail to be an integer when p = 2 in general; exclusion
of the absolutely unramified and non-logarithmic case seems to be essential.

The theorem was conjectured implicitly in [AS02], and Abbes and Saito proved that the
subquotients of the filtrations are abelian groups, except in the absolutely unramified and non-
logarithmic case. After that, Hattori [Hat06, Hat08] gave some partial results on the first part of
the theorem for the case where the corresponding field extension can be realized by a commutative
finite flat group scheme. After the first draft of this paper was written, Saito [Sai] independently
proved the second part of the theorem in the logarithmic case; it follows that Swan(p) € Z[1/p].

The technique used in this paper is very different from the approaches above, except that
we need a small technical lemma (see §3.4) borrowed from [AS03]. This paper shares some core
ideas with the first paper in the series, [Xial0], but is logically independent of that paper.

1.2 Idea of the proof

To best convey the idea of the proof, assume that we are not in the excluded cases listed in
the main theorem. We will come back to the reasons for excluding these cases later. We start
with a naive approach to the above theorem in the non-logarithmic case. One easily reduces the
situation to the following case.

Let L/K be a finite totally ramified and wildly ramified Galois extension of complete
discrete valuation fields of mixed characteristic (0, p). Let Ok, mx and k denote the ring of
integers, a uniformizer and the residue field, respectively. Assume that dimgr k < +00. There are
elements by, . . ., b, € k such that l_)lf o bim for iy, ..., i, €{0,...,p— 1}, form a basis of k as
a kP-vector space; let by, ..., by, be lifts of by, ..., b, in Og. Our representation p is assumed
to be absolutely irreducible, and it factors exactly through the Galois group Gy r. We need to
prove that b(L/K) - dim p € Z, where b(L/K) is the ramification break, i.e. the maximal number

b such that Fil’Gy x = G Fil’Gk /Gy # {1}.

Step I AS =TS theorem (make the Abbes—Saito space more functorial). Roughly speaking, the
ramification break b(L/K) is defined as follows. For the extension L/K and any rational number
a € Qso, Abbes and Saito [AS02] defined a rigid analytic space AS® together with a finite
morphism I’ : AS® — AT0, |mx|?] (of degree [L : K1), where A7:T(0, |7|?] denotes a (closed)
polydisc over K of radius |mx|%. The ramification break b(L/K) is the infimum among all a € Q<
such that the number of geometric connected components #75 " (AS®) is equal to [L: K]. A
problem associated with this rigid analytic space is that it is not functorial under the operation
of replacing K by a (not necessarily finite) complete extension K’, which we shall refer to as a
base change later on.

Pretend for the moment that we have a continuous homomorphism ¢ : O — Og[do, - . ., Om]
such that ¥ (7mg) =g + oo and ¥(b;) =b; + d; for i =1, ..., m. We define a new rigid analytic
space, called the thickening space, to be

a —a —a 1T m a
TSL/K = Spm(L QK 1 K<7TK 50, N 5m>) — AK+1[07 |7TK’ ]7

where II is the projection to the second factor.

We can prove that AS“:TS%/K as rigid analytic K-spaces (see Theorem 3.3.3); this
isomorphism does not respect the morphisms II and II' to the polydisc. The rigid analytic
space TS - also carries the information of the ramification break b(L/K); together with II, it
is functorial under base change.

416

https://doi.org/10.1112/50010437X1100707X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100707X

RAMIFICATION FILTRATIONS

Step 11: generic p>th roots (a procedure to reduce to the perfect residue case). It is natural to
make the following observation. Let a be a rational number slightly bigger than b(L/K); then
TSk (= AS?) is geometrically the disjoint union of [L: K] (poly)discs. What often happens is

that if you increase the radius only on certain d;, then n§""" (TS /) stays the same even when

the radius goes beyond the cut-off point |7TK\b(L/ K) In contrast, if one increases the radius along
some other &;, 75" (TS, / k) will change as soon as the radius reaches ”]TK’b(L/ K) In the latter
case, we say that the corresponding ¢; dominates. We remark that if we change the lift of b; from

bj to bj + 7k, then whether the ‘uniformizer direction’ dp is dominant may change as well.

The ideal situation is when &g is dominant. In this case, we can ‘forget’ about other directions,
or, more concretely, we can make the residue field perfect by simply adding in all p-power roots
of b; for all j (and then completing). We will talk about this procedure in more detail in the
next step. As remarked above, for this to happen, we need to find the ‘correct lift” of each b;.

Following the idea of Borger [Bor04], we consider the notion of generic rotation. Let x1, . .., xp, be
transcendental over K, let K’ be the completion of K (z1, . .., x,,) with respect to the (1, ..., 1)-
Gauss norm, and let L' = K'L. Tt easy to see that b(L'/K’) = b(L/K). The upshot is that if we set
the p-basis of K’ to be {b; + x17k, . . S b+ TR, T Zm }, then the uniformizer direction

is going to be dominant. So, if we set K to be the completion of the field obtained by adjoining
to K’ all p-power roots of b; + x;7 and x;, we should have b(KL/K) = b(L/K) and are reduced
to the classical situation because K has a perfect residue field.

Step 111: ramification break versus radii of convergence for differential modules (where differen-
tial modules come into the picture). Since we ‘pretended’ earlier that we have a homomorphism 1),
the morphism H:TSCL‘/K—>A%+1[O, | |®] is étale; we can then push forward the ring of
functions on TS /i to get a differential module £ on the polydisc (compatible as a varies).
Consider the naive extension of scalars to A7'H0,|7x|?]. Tt is not hard to show that
T (TSE /i) =I[L: K] is almost equivalent to the differential module & being trivial over
A0, |79 (see Proposition 3.5.2).

A good thing about radii of convergence is that they are quite computable under base change.
When making the base change from K to K, we should have a Cartesian diagram

STk /%
ln lnf( (1.2.1)

A0, ] <L AZHIO, || ]

where f is induced by some map f*:Okl[do,...,dn] — Oxlno, ..., n2m] characterized by
frov=vglk :Ox — Oglno, ..., n2m]. It is very easy to compare the radii of convergence

of £ with the radii of convergence of f*€, and the comparison of b(L/K) and b(LK /K) follows.

Step IV: logarithmic filtration (a trick to deal with logarithmic filtration). We briefly discuss
the idea behind the proof in the logarithmic case. We do not expect that we can always make
the uniformizer direction ‘log-dominant’. Instead, we expect a dichotomy:

— if the uniformizer direction is log-dominant, we are good anyway;
— if the uniformizer direction is not log-dominant, we expect that, after a large tame base

change to K, = K(?T}(/n) and then a generic rotation for K, as in Step II, b(L],/K]) =

nbiog(L/K) and the uniformizer direction is non-log-dominant. Here the multiple n comes
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from the normalization; the key is that after the follow-up generic rotation, the non-log
ramification break is one less than the log ramification break.

Thus, we can always deduce that n-Swan(p) € Z for n>0 and ptn. Taking two coprime
numbers n; and ng will imply that Swan(p) is itself an integer.

We now come back to real life and discuss where the naive approach fails and how we can
fix it.

(1) The first thing to notice is that the desired homomorphism 1 never exists, as we cannot
make ¥ (p) =p and (7)) =7k + do happen at the same time. As a remedy, we take 1) to be
a function, which becomes a homomorphism if we modulo the ideal Ix = p(do/7K, 1, - -, Om)
(Proposition 3.2.8). When K is absolutely unramified or, in other words, vx (p) = 1, this condition
is significantly weakened. This is the only hindrance to extending our main result to the absolutely
unramified and non-logarithmic case (see also Remark 3.2.9).

We define the space TS} K by writing down the equations generating the extension Or,/Ok
and applying ¢ termwise. When considering the effect of adding a generic pth root (instead
of p>°th root; see Remark 4.2.14), we similarly require that f o1 and ¢z only agree modulo
Iz=p(o/Tz M, -, N2m). We have to carefully keep track of the error terms due to the non-
homomorphism ¢ and non-commutativity of f o ¢ and ¥ z. In particular, if we still want (1.2.1)
to be a Cartesian diagram, we need to modify TSCIif{/f( (see Theorem 4.3.4); this is the most
difficult theorem of the paper. Luckily, the modification made here is not too serious, so that we
still have AS =TS (Theorem 3.3.3) for the modified thickening space.

(2) Since we have a problem with defining ¢, the morphism II: TS} ;- , — A0, 7|9 is
only finite and étale if a > b(L/K) — € for some € > 0. This is the only technical point for which
we need to refer back to Abbes and Saito’s approach, namely [AS02, Theorem 7.2] (and [AS03,
Corollary 4.12] in the logarithmic case). This étaleness statement validates the construction of
differential modules. The auxiliary étale locus given by e enables us to find the exact loci where
the intrinsic radii are maximal (or, equivalently, the loci where the differential module is trivial)
and hence identify the ramification break.

(3) Since ® fails to be a homomorphism, we have a minor technical issue when using
differential modules. We have to study the generic radii of convergence over polydiscs instead
of over one-dimensional discs (as was done in [Xial0]); this makes essential use of the recent
results on p-adic differential modules from [KX10]. As a result, the proof in the logarithmic case
is slightly more complicated, and for p =2 we can only prove that Swan conductors lie in %Z
instead of in Z.

1.3 Who cares about the imperfect residue field case, anyway?

In algebraic geometry, if one wants to measure the ramification of an l-adic sheaf along a divisor,
it is natural to pass to the completion at the generic point of the divisor; this would naturally
give rise to a complete discrete valuation field with imperfect residue field, provided that the
dimension of the divisor is not zero.

It is natural to ask how the ramification information varies from one divisor to another.
Kedlaya started an interesting study in [Ked1l1] along this line, inspired by the semicontinuity
results of André [And07] in complex algebraic geometry. In [Kedll], Kedlaya took an F-
isocrystal on a smooth surface X overconvergent along the complement divisor D of simple
normal crossings, in a compactification of X. If we blow up the intersection of two irreducible
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components of D, we may realize F over this new space and measure the Swan conductor along
the exceptional divisor. This process can be iterated. Kedlaya proved in [Ked11] that, after
suitable normalization, the Swan conductors along these exceptional divisors are interpolated by
a continuous piecewise linear convex function. This result also holds for general smooth varieties
of arbitrary dimension (see [Ked11]), as well as for lisse l-adic sheaves.

An interesting question is: does the same phenomenon happen for a noetherian complete
regular local ring Og[ti1,...,t,], where Ok is a complete discrete valuation ring of mixed
characteristic?

Another application is to the study of finite flat group schemes via ramification filtration
initiated by Abbes and Mokrane in [AMO04]. Hattori conjectured that one can give a bound on
the denominators of ramification breaks. This can be proved by an analogous Hasse—Arf theorem
for finite flat group schemes. Thus, as a consequence of the main theorem of this paper, we obtain
a Hasse—Arf theorem for finite flat group schemes in the mixed characteristic case by an argument
originally due to Hattori.

1.4 Structure of the paper
In §1, we recall some results on p-adic differential modules from [KX10].

In §2, we set up the framework for proving the main result. The definition of ramification
filtrations is reviewed in §2.2.

In §3.1, we introduce the standard Abbes—Saito spaces. In §§3.2-3.5, we define the function
1) mentioned earlier and construct the thickening spaces and associated differential modules; the
alm is to translate the question about ramification breaks into a question about the intrinsic
radii of convergence. In § 3.6, we discuss a variant of thickening spaces.

The proofs of the main results, Theorems 4.3.5, 4.5.14, and 4.7.3, occupy the whole of §4. In
the first three subsections, we deduce the Hasse—Arf theorem for non-logarithmic ramification
filtration. In §4.4, we apply the Hasse—Arf theorem for Artin conductors to obtain a Hasse—Arf
theorem for finite flat group schemes. In § 4.5, we deduce the integrality of Swan conductors from
that of Artin conductors by tame base change. In the final two subsections, we use a trick due
to Kedlaya to prove that the subquotients of the logarithmic filtration (on the wild ramification
group) are abelian groups killed by p.

1.5 Notation

Owing to the technical details involved, the notation in this paper is particularly complicated.
Here we list a few important terms together with short explanations and the locations of first
appearance. We hope that this will help to make the paper more accessible.

K complete discrete valuation field of mixed characteristic of absolute ramification degree
Brk; L = finite extension; 0 = |7x|.

K (4.2.1) K with generic pth root added.

K, (45.9) K with ﬂ}{/n and generic pth roots added.

K, (4.6.1) an ‘Artin-Scheier’ extension of K.

IN(V (4.7.1) K, with generic pth roots added.

J=A{1,...,m} and J* = JU{0} are used to index a p-basis.
b1, ..., by or by (3.1.6) lifts of a p-basis of k.

€1, ..., Cm or ¢y (3.1.6) lifts of a p-basis of [.
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UQ, - - -, U, (3.1.6) proxies for c+.
D0, - - -, Pm OF D+ (3.1.6) relations of the extension Of, over Ok with generators ¢y and 7.
N® (3.1.5) set of elements of O [u;+] with norm less than or equal to 6.

AST /i (log) and ORs.1/K (log) (3.1.9) (standard) Abbes-Saito spaces and their rings of
functions.

Rk = Oxkl[do/7K, 5] (3.2.4); similarly for Rz (4.2.5).

Vi : O — Ok[d;+] € Rk (3.2.1); similarly for Vi (4.2.5) and other fields.

Sk =Ric(uy+) (3.2.12).

R+ (3.2.12) elements of (§;+)Sk representing the error terms with error gauge >w.
TS“L/K(’IOg)JRJ+ and (’)E}S’L/K(’log)ﬁﬁ (3.2.13) thickening spaces and their rings of functions;
similarly for the standard ones TS} (., ,, and O%s.1./ K (Jog) v (3.2.13).

A:Sk/(W(pse) + Ryr) — O {ugt)/(ps+) — O (3.1.6) and (3.2.16); A is its reduction.
ETr kR, or BTy K (3.4.1) étale locus over which the thickening space is étale.

€0,15 €A, 10,15 UA; Po.15 Pas Ok, Ro,r, R, N, ... (8§3.6) recursive versions of the above.

A&k /(W(por) + Ror, (pa) + Ra) — Ok (uor, un)/(po.r, pa) — OL (3.6.1) and (3.6.3).

€0,1, €A, Uo7, BA, U, Po 1, Pas O, S 7, Ro,1, R, R, ... (proof of Theorem 4.2.9) recursive

versions for K.

2. Background review

2.1 Differential modules

We recall some recent results from the theory of p-adic differential modules. This subject was
first studied by Christol, Dwork, Mebkhout and Robba [CD94, CM00, CR94]. Recently, Kedlaya
and the author improved some of the techniques in [Ked10, KX10]. We record some useful results
from these sources.

Convention 2.1.1. Throughout this paper, p > 0 will be a prime number. By a p-adic field we
mean a field K of characteristic zero, complete with respect to a non-archimedean norm for
which [p| = 1/p. In particular, the residue field of K has characteristic p.

Convention 2.1.2. For an index set J, we write e or (es) for a tuple (e;);e.s. For another tuple
by, we write b5 =[], b;j if only finitely many of the e; are non-zero. We also use ) " _, to
mean the sum over e; € {0,1, ..., n} for each j € J, allowing only finitely many of them to be
non-zero. To simplify the notation, we may suppress the range of the summation when it is clear.
For a set A, we write e; C A or (e;) C A to mean that e; € A for any j € J.

Notation 2.1.3. From now on, let K be a p-adic field and fix an element 7x € K* of norm 0 < 1.
When K has discrete valuation, we take mx to be a uniformizer.

Notation 2.1.4. For an interval I C [0, +00], we denote the n-dimensional polyannulus with radii
in I by A% (I). (We do not impose any rationality condition on the endpoints of I, so this space
should be viewed as an analytic space in the sense of Berkovich [Ber90].) If I is written explicitly
in terms of its endpoints (e.g. as [a, ]), we suppress the parentheses around I (and write, e.g.,

Afla, 8]).
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Notation 2.1.5. For a complete topological ring R, we use R{ui,...,u;,) to denote the
completion of the polynomial ring R[ui, . .., u,] with respect to the topology induced from R.
When R is a complete O-algebra, we let R(7 61, ..., 7" 0p) denote the formal substitution

of R(ui,...,up) via u;= WI_(aj(Sj for j=1,...,m, where ai,...,a, €R. In particular,
K(m ™61, ..., "™ 8,y,) is the ring of analytic functions on A} [0, 691] x - - - x A}[0, §7m].

We use K[T]o to denote the bounded power series ring consisting of formal power series
> icz., iT" for which a; € K and |a;| are bounded.
Notation 2.1.6. In this subsection, let J={1,...,m} and J* =J U {0}.

DEFINITION 2.1.7. For s;+ C R, the 6°s+ -Gauss norm on K[);+] is the norm given by

e+
Z Qe 0 74

€+ S+

. 06080+-~~+emsm}_

= max{|a. , |

It extends uniquely to K(d;+); we denote the completion by Fs . This Gauss norm
also extends continuously to K(m "0, ..., 7" 6m) if s; € [aj, +00) for all j € J". Hence,
K(m "0, ..., m"™0m) embeds into Fs .

Convention 2.1.8. Throughout this paper, all (relative) differentials and derivations are
continuous and all connections are integrable. For simplicity, we may suppress the continuity
and integrability.

DEFINITION 2.1.9. Let F' be a differential field of order one and characteristic zero, i.e. a field
of characteristic zero equipped with a derivation 0. Assume that F' is complete for a non-
archimedean norm | - |. Let V be a differential module with differential operator 0. The spectral
norm of @ on V is defined to be

. 1/n
|0sp,v = HETOO 0™y

One can show that |0|sp,v = |0]sp,r (see [Ked10, Lemma 6.2.4]).
Define the intrinsic 0-radius of V to be
IRo(V) = [0lsp,r/|0|sp,v € (0, 1].

Ezample 2.1.10. For s;+ C R, the spectral norms of d;+ on Fy , are as follows:

‘aj\psﬁ sp —p Ye-Dg=si  for jeJt.
Remark 2.1.11. If F'/F is a complete extension and 9 extends to F’, then for any differential

module V on F, V ® F’ is a differential module on F’. Moreover, if |9|sp, 7 = |0|sp, 7, We have
IRs(V) =1Rs(V @ F).

Notation 2.1.12. Let aj+ C R be a tuple and let X = AL[0, 0] x - - - x AL [0, 6] be the closed
polydisc with radii %+ and with J 7+ as coordinates.

Notation 2.1.13. A differential module over X (relative to K) is a finite locally free coherent
sheaf £ on X together with an integrable connection

V:E—EQoy (@ oX.d5j>.

jeJt

Let 07+ = 0/00 7+ be the dual basis of dd ;+; these elements act commutatively on £. A section
v of € over X is said to be horizontal if 9;(v) =0 for all j € J*. Let HY(X, £) denote the set of

421

https://doi.org/10.1112/50010437X1100707X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100707X

L. X1a0

horizontal sections on £ over X. A differential module is said to be trivial if there exists a set
of horizontal sections which forms a basis of £ as a free coherent sheaf.

Let s; € [aj,+00) for je€ Jt. For je Jt, let IR;(E; s7+) denote the intrinsic d;-radius
IRy, (€ ®ox Fs,, ). Let IR(E; s+) = minje 7+ {IR;(€; s5+) } be the intrinsic radius of £. If s;r = s
for all j' € J, we simply write IR;(&; so, s) and IR(&; so, s) for the intrinsic 0;-radius and intrinsic
radius, respectively. Moreover, if so = s, we may further simplify the notation to IR;(£; s) and

IR(E; s).

LEMMA 2.1.14. Fix j € JT. There exists a unique continuous K-homomorphism genj - Fa, 4 —
Fo, [ Tjlo such that f},, (8;0\(3) = 6.00\(5y and fio, (6;) =65+ Tj.

Proof. See [KX10, Lemma 1.2.12]. O

LEMMA 2.1.15. Write F = F, , for short. The pullback fg., ;(€ ®oy F') becomes a differential

module over AL[0,0%) relative to F. Then, for any r € [0,1], IR;(E;ay+) =7 if and only if
sen (€ ®ox I) is trivial over AL, o).

Proof. This is essentially because the Taylor series > .-, or, (v) - TP/ (n!) =302 97 (V) -

17/ (n!) converges when [T;[ <rf% for any section v if and only if IR;(£; ay+) > r. For more

details, see [KX10, Proposition 1.2.14]. a

We reproduce some basic properties of intrinsic radii, starting with the following off-centered
tame base change, which is a fun exercise in [Ked10, ch. 9, Exercise 8]. For the sake of readers
who may not be familiar with differential modules, we give a complete proof here.

Construction 2.1.16. Fix n € N prime to p. Assume for the moment that m =0 (and a = ay), i.e.
we consider the one-dimensional case X = A}[0, 0%]. Fix g € K such that |zo| = 6° > 6% (b < a).
In particular, the point dg = —xg is not in the disc X. Write K, = K (x(l)/ "
/

, where we fix an nth
1
root x " of xp.

—a+b(n—1)/n

Consider the K-homomorphism f;; : K (7 *00) — Ky (my no) sending dy to

n—1 i
1/n n _ (n=1)/n n Mo
" = =af (3 (1) ()

1=0

where the term in parentheses on the right has norm 1 and is invertible because |ac(1)/ "> |nol.

Hence f; extends continuously to a homomorphism F, — F, - where F’ is the

n—1)/n’ a—b(n—1)/n

completion of K, (ng) with respect to the go—b(n=1)/n_Gauss norm.
Also, f gives a morphism of rigid K-spaces f, : Z = A}(n [0, ga—b(n=1)/n] _ X = AL (0,609 Tt
is finite and étale because the branching locus is at §y = —xq, outside the disc X. Thus, for a
differential module £ on X, its pullback f;€ is a differential module over Z via
fn€ —— fa(€ ®oy Ox ddp) — € ®o, Oz dno,

/

where the last homomorphism is given by ddg — n(a;(l) "+ no)" Ldny.

ProposITION 2.1.17. With the above notation, we have

IRy, (fn€;a—b(n—1)/n) =1Ry,(E; a).
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Proof. The proof is essentially the same as that of [Ked05, Lemma 5.11] or [Kedl0,
Proposition 9.7.6]. Lemma 2.1.14 gives the commutative diagram

F, sent Fo[m " Tolo
lf; if?{
/ ;nqo —a+b(n—1)/n
Fabn-1)/m Fopinymlmi Tglo

where f* extends f;; by sending Tp to (370/ +no + 15" — (zq n m0)".
We claim that for r € [0, 1], fn induces an isomorphism

Fy oy 1yjn X f5.Fa (AR, [0,70%)) = Al [0, bl =D/m),

a a—b(n—1)/n
Indeed, if |T}| < rg2~bM=1/" < gb/" then
(o] = (g™ + o + T5)" = (g™ +mo)"
— ]nT(')( 1/n + 10 )n 1‘ < rf% b(n—1)/n (Gb/n)n [
Conversely, if |Ty| < r0?, we define the inverse map by the binomial series
1/n 00 i
1 To 1/n T,
Téz(ﬂco/n+ﬁo)'[—1+<1+1/n> ]:Z(/>1/n01
("™ +mo)” =1 N b (g A o)™
The series converges to an element with norm less than rgo—t(m—1/n
Therefore, Lemma 2.1.15 implies that for r € [0, 1],
IRs,(E;a) >
= faen,0(€ ®oy Fa) is trivial over Ap [0, r@a)
— f;fgen,O(g R0 a) f en, O(f & ®OZ a— b(n 1)/n)
is trivial over A}, _ [0, rga=b(n=1)/ny
a—b(n—1)/n
1Ry, (fr€ia—bn—1)/n)>r
The proposition follows. O

Similarly, we can study a type of off-centered Frobenius.

Construction 2.1.18. Let b> 0 and 0 < a < min{—loggp + b, pb}, and let 5 € K be an element
of norm 1. Let L be the completion of K (z) with respect to the #%-Gauss norm.

Let f:Z = AL[0,6°] — AL[0, 6] be the morphism given by f*: 3y — (3 +n0)P — P + x. By
our choices of a and b, the leading term of f*(dy) is x, which is transcendental over K. Hence
f* extends continuously to a homomorphism F, — F}, where F} is the completion of L(1g) with
respect to the §°-Gauss norm. Moreover, f *Q}( = le because the branching locus is at 79 = —g,
outside the disc. Thus f*€ becomes a differential module over Z = A} [0, 6°] via

& L2 1€ @0y Ox dbo) — 7€ @0, O d,
where the second homomorphism is given by ddg +— p(8 + 10)?~! dno.
ProposiTION 2.1.19. Keeping the notation as above, we have

IRy, (f*€;b) = Ry, (€; a).
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Proof. As in Proposition 2.1.17, we start with the following commutative diagram from

Lemma 2.1.14.
Fy —% > F, 7 Tolo
; B
Fy—=% > FnTilo

where f* extends f* by sending Ty to (3 + 1o + T3P — (B +no)P.
For r€][0,1], by Lemma 2.1.20 below we have that |Tj|<r8® implies |Tp|<
max{rPgr p~lrga} < ro®.
Therefore, Lemma 2.1.15 implies that
IRy, (E;a) =71
= foen0(€ ®oy o) is trivial over A}?a [0, r0%)
= f*fgen,O(g ®OX Fa) = ggn,O(f*E ®OZ FI;)
is trivial over A};}; [0, 6

< 1Ry, (f*E;0) =

The proposition follows. O

LEMMA 2.1.20 [Ked10, Lemma 10.2.2(a)]. Let K be a non-archimedean field and let b,T € K.
Forr € (0,1), if |b—T| < r|b|, then

[P — T?| < max{rP |, p~*r[b|"}.

Remark 2.1.21. A stronger form of Proposition 2.1.19 above for (straight) Frobenius can be
found in [Ked10, Lemma 10.3.2] or [KX10, Lemma 1.4.11].

Now, we study the variation of intrinsic radii on polydiscs.

DEFINITION 2.1.22. An affine functional on R™*! is a function \:R™*! =R of the form
Mz, ...y Tm) = apxo + - - - + amTm + b for some ag, ..., am,bER. If ag, ..., an €Z, we say
that A is transintegral (short for ‘integral after translation’).

A subset C C R™ T is polyhedral if there exist finitely many affine functionals A1, . . ., A, such
that

C={zecR™: \(x)>0fori=1,...,r}
If the A\; can all be taken to be transintegral, we say that C' is transrational polyhedral.
PROPOSITION 2.1.23. Let ay+ C R be a tuple and let X = A}[0, 0%] x - - - x AL[0, 0] be the
polydisc with radii 8%+ and coordinates 0 ;+. Let £ be a differential module over X. Then
the following properties hold.
(a) (Continuity.) The function logyIR(E; sy+) is continuous for s; € [aj, +o0) and j € J 7.
(b) (Monotonicity.) Let s; > s > a; for all j € J*; then TR(E; s5+) = IR(E; 5'1,).

(¢) (Zero loci.) The subset Z(E)={sj+ € |ag, +00) X - -+ X [Am, +00) | IR(E;s5+) =1} is
transrational polyhedral; moreover, it contains [af, +00) X - -+ X [a},, +00) for ay, ..., a,
sufficiently large.
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Proof. Statements (a) and (c) follow from [KX10, Theorem 3.3.9]; Z(£) contains [af, +00) X

- % [al,, +00) for ag, . .., a), sufficiently large because the intrinsic radii are always non-zero.
For (b), by drawing zig-zag lines parallel to axes linking the two points s;+ and s’,,, it suffices
to consider the case where s; = s; for j € J"\{jo} and sj, > 89-0. In this case, we may perform
a base change to the completion of K (J+\;,}) with respect to the s;+\(j,1-Gauss norm. The
result follows from [KX10, Theorem 2.4.4(c)]. O

2.2 Ramification filtrations

In this subsection, we sketch Abbes and Saito’s definition of ramification filtrations on the Galois
group G of a complete discrete valuation field K of mixed characteristic (0, p). For more details,
the reader can consult [AS02, AS03].

In this subsection, we temporarily drop Notation 2.1.6.

Notation 2.2.1. For any complete discrete valuation field K of mixed characteristic (0, p), we
denote its ring of integers and residue field by Og and k, respectively. Let 7 denote a uniformizer
and mg the maximal ideal of Ok (generated by 7). We normalize the valuation vk (-) on K so
that vg (mx) = 1. The absolute ramification degree is defined to be fx = vk (p). We say that K
is absolutely unramified if B = 1. For an element a € O, we write its reduction in k as a; a is
called a lift of a.

We choose and fix an algebraic closure K€ of K; all finite extensions of K are taken inside
K®#. Let Gk denote the absolute Galois group Gal(K?8/K). If L is a finite Galois extension
of K, we denote the Galois group by G, /ix. We use N i (x) to denote the norm of an element
x € L. If L is a (not necessarily algebraic) complete extension of K and is itself a discrete valuation
field, we use ey, to denote its naive ramification degree, i.e. the index of the value group of K
in that of L. We say that L/K is tamely ramified if pf ey x and the residue field extension [/k
is algebraic and separable. If, moreover, e,/ = 1, we say that L/K is unramified.

Notation 2.2.2. From now on, K will denote a complete discrete valuation field of mixed
characteristic (0, p), and L will be a finite Galois extension of K of naive ramification degree
e=er k- Set 0 = |rk/|; this agrees with the convention in the previous subsection.

DEFINITION 2.2.3. Take Z = (2;)jes C Of to be a finite set of elements generating Oy, over O,

i.e. Okluy]/T —— O mapping uj to zj forall j € J={1,...,m}. Let (fi)i=1,...n be a finite set
of generators of Z. For a € Q¢, define the Abbes—Saito space to be
AST gz ={(u1, .. um) € AR[0, 1] : [fi(uy)| < 0% for 1 <i<nj.

We denote the set of geometric connected components of AS7 /, , by W%eom(AS“L/KZ). The
highest ramification break b(L/K) of the extension L/K is defined to be the minimal b € R>
such that for any rational number a > b, #m5*°" (AS] . ;) =[L: K].

DEFINITION 2.2.4. Keep the notation as above. Take a subset P C Z and assume that P, and
hence Z, contains 7. Let e; =vr(2;), with z; € P. Take a lift g; € Og/[uy] of zj/w% for each
zj € P; take a lift h; j € Og[u,] of zjel/zfJ for each pair (z;, z;) € P x P. For a € Q, define the
logarithmic Abbes—Saito space to be
|filuy)| <0% for1<i<n
AS%/K,lOg,Z,P =< (uy) € AR[0,1] |u§ — ﬂ'%gj\ <6te forall z; € P
G — ;" hij| < goteici/e for all (2, 2j) € P x P
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Similarly, the highest logarithmic ramification break biog(L/K) of the extension L/K
is defined to be the minimal b& R>g such that for any rational number a >0b we have

#ﬂ'geom(AS%/KJog,Z,P) =[L:K].
We reproduce several statements from [AS02, AS03].
PROPOSITION 2.2.5. The Abbes—Saito spaces have the following properties.

(1) For a € Qsg, the Abbes—Saito spaces AS“L/KZ and AS“L/KJOg’ZJ; do not depend on the
choices of generators (f;)i=1,..n of T and lifts g; and h; j for i,j € P (see [AS02, § 3]).

(1') If, in the definitions of both Abbes—Saito spaces, we choose polynomials (f;)i=1,..n as
generators of Ker (O (uy) — Op) instead of Ker (Ok[u;] — Or), the spaces do not change.

(2) If we use another pair of generating sets Z and P satisfying the same properties, then we
have a canonical bijection on the sets of the geometric connected components 75 (AS$ K z)
and 75" (ASY K log.Z, p) for different generating sets, where a € Q. In particular, both highest
ramification breaks are well-defined [AS02, § 3].

(3) The highest ramification break (respectively, the highest logarithmic ramification
break) gives rise to a filtration on the Galois group Gy consisting of normal subgroups
Fil*Gg (respectively, Filj,,Grc) for a > 0 such that b(L/K) = inf{a | Fil"Gx C G} (respectively,
bog(L/K) = inf{a | Filj,,Gx C GL}); see [ASO2, Theorems 3.3 and 3.11]. Moreover, for L/K
being a finite Galois extension, both highest ramification breaks are rational numbers [AS02,
Theorems 3.8 and 3.16].

(4) Let K'/K be a (not necessarily finite) extension of complete discrete valuation fields. If
K'/K is unramified, then Fil*G g = Fil®Gk for a > 0; see [AS02, Proposition 3.7]. If K'/K is
tamely ramified with ramification index e < oo, then Filij, G o = Filj,, G ¢ for a > 0; see [AS02,
Proposition 3.15].

(4") More generally, let L/K be a finite algebraic extension and let K'/K be a complete
extension of discrete valuation fields with the same valued group and linearly independent of L.
Write L' = K'K. If O, = Or, ®0, Ok, then b(L/K) =b(L'/K"); see [AM0, Lemme 2.1.5].

(5) For a>0, define Fil""Gg = U, Fil'Gx and Filiyl G = U, Fill,,Gx. Then, the
subquotients Fil®Gg /Fil*T G are abelian p-groups if a € Q1 and are 0 if a ¢ Q, except when
K is absolutely unramified (see [AS02, Theorem 3.8] and [AS03, Theorem 1]). The subquotients
FililogGK/FilfOZGK are abelian p-groups if a € Qs and are 0 if a ¢ Q (see [AS02, Theorem 3.16]

and [AS03, Theorem 1]).

(6) For a >0, Fil*"'G g C Fill Gk C Fil®Gy (see [AS02, Theorem 3.15(1)]).

(7) The inertia subgroup is Fil®G for a € (0, 1] and the wild inertia subgroup is Fil'T Gy =
Fil?OEGK (see [ASO2, Theorems 3.7 and 3.15]).

(8) When the residue field k is perfect, the arithmetic ramification filtrations agree with the
classical upper numbered filtration [Ser79] in the following way: Fil*Gx = Filfo_glGK = G‘}(_l for
a > 1, where G is the classical upper numbered filtration on Gk (see [AS02, §6.1]).

a
log

Proof. Only the proof of (1') has not already appeared in the literature, but the proof of (1)
can be used verbatim to prove this assertion. For a brief summary of the proofs of the other
statements, one may consult [Xial0, Proposition 4.1.6]; although the statements there are stated
for the equal characteristic case, the proofs work just fine. O
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Remark 2.2.6. To avoid confusion, we point out that in the proof of our main theorem, we do
not need (5) and the second statement of (3) on the rationality of the breaks from the proposition
above. Therefore, we will prove these properties along the way of proving the main theorem.

Remark 2.2.7. Recently, Saito [Sai] gave a proof of the fact that Filj,, G/ Filﬁjg'G K are abelian
groups killed by p for a € Q. We will prove this independently in our main theorem (which in
fact appeared before his preprint).

DEFINITION 2.2.8. For b>0, we write Fil’Gp i = (G[Fil’Gk)/Gy and Fil},Gp/x =
(G LFilngG k)/Gr. We call b a non-logarithmic (respectively, logarithmic) ramification break of
L/K if FileL/K/Filb+GL/K (respectively, Fﬂ?ogGL/K/Fﬂfo-EGL/K) is non-trivial.

DEFINITION 2.2.9. By a representation of G we mean a continuous homomorphism p: Gx —
GL(V,) where V,, is a finite-dimensional vector space over a field F' of characteristic zero. We
allow F' to have a non-archimedean topology; hence the image of G may not be finite. We say
that p has finite monodromy if the image of the inertia subgroup of G is finite.

DEFINITION 2.2.10. For a representation p : Gxg — GL(V,) of G with finite monodromy, define
the Artin and Swan conductors of p as

Art(p) = Y a-dim(VFICx jyFItGr), (2.2.11)
a€Qxo
Fil'*t G g .G
Swan(p) ef Z a-dim(Vpllog K/VPFllog . (2.2.12)
a€Q>o

In fact, they are finite sums.

CONJECTURE 2.2.13 (Hasse-Arf theorem). Let K be a complete discrete valuation field of mixed
characteristic (0, p), and let p: Gx — GL(V,) be a representation with finite monodromy. Then:

(1) Art(p) and Swan(p) are non-negative integers;

(2) the subquotients Fil°G i /Fil®" Gk and Fil GK/FililO;GK are abelian groups killed by p.

a
log
In Theorems 4.3.5, 4.5.14, and 4.7.3, we will prove this conjecture except in the absolutely

unramified and non-logarithmic case, or the p =2 and logarithmic case.

ProproSITION 2.2.14. When the residue field k is perfect, Conjecture 2.2.13 is true.

Proof. By Proposition 2.2.5(8), this result follows from the classical Hasse—Arf theorem [Ser79,
§ VI.2 Theorem 1]. O

3. Construction of spaces

In this section, we construct a series of rigid analytic spaces and study their relations; in
particular, we prove that the Abbes—Saito spaces are the same as thickening spaces, and hence
translate the question on ramification breaks to a question on generic radii of differential modules.

3.1 Standard Abbes—Saito spaces

In this subsection, we introduce the standard Abbes—Saito spaces by choosing a distinguished
set of generators of Or/Ok-.
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DEFINITION 3.1.1. For a field k of characteristic p, a p-basis of k is a set by C k such that b/,
where e; € {0,1,...,p— 1} for all j € J and e; = 0 for all but finitely many j, form a basis of &
as a kP-vector space. For a complete discrete valuation field K of mixed characteristic (0, p), a
p-basis is a set of lifts by C Ok of a p-basis of the residue field k.

HypPoOTHESIS 3.1.2. Throughout this section, let K be a discrete valuation field of mixed
characteristic (0, p) with separably closed and imperfect residue field. Assume that K admits
a finite p-basis. Also, let L/K be a wildly ramified Galois extension of naive ramification degree
e = ey k- In particular, L/K is totally ramified and b(L/K) > 1, biog(L/K) > 0.

Remark 3.1.3. In case there is confusion over the terminology here, by wildly ramified extension
we mean a finite extension which is not tamely ramified, i.e. it can have a tamely ramified part.

This is a mild hypothesis because the conductors behave well under unramified base changes,
and the tamely ramified case is well-studied.

Notation 3.1.4. For the rest of the paper, we reinstate Notation 2.1.6, namely, let J =
{1,...,m} and J* = JU{0}. We will reserve j and m only for indexing p-bases and related
variables, and j = 0 will refer to the uniformizer.

e+

Notation 3.1.5. We define a norm on Ogluj+]| as follows: for h=> u where

Qe
€r+ g+ Jt
e, €Ok, set |h| =max. , {|ac . |- 9°/¢}. For a € (1/€)Zso, let N® be the set of elements

with norm less than or equal to 6%; it is in fact an ideal.

The following construction provides a good set of generators for the extension Op/Ok.
Essentially, we just need some generators and relations with no redundancy which we can write
down and work with.

Construction 3.1.6. Choose p-bases by C Ok and ¢y C Of, of K and L, respectively. Let kg =k
with p-basis (b;);es. By possibly rearranging the indexing in by, we can filter the extension [/k
by subextensions k; = k(¢éi, . . ., ¢;) with p-bases {¢1, ..., ¢j, bjt1, ..., by} for j € J. Moreover,
if [kj : kj—1] =p'7, then Efrj ckj_1.

Write A : O (uy+)/Zrxk — O, mapping u; to ¢; for j € J and ug to mr, where Z,/ is
some proper ideal. Let A be the composite of A with the reduction O, — [. Hence,

{uj‘f lej€{0,...,p"" —1} forall j€ Jand eg € {0,...,e —1}} (3.1.7)

forms a basis of O (u;+)/Zr/k as a free Ox-module. We choose a set of generators py+ of Zp /i

by writing each u?TJ (for j € J) or uf (for j =0) in terms of the basis (3.1.7). We say that p;

corresponds to c;. Obviously, p+ generates Zy . Moreover,

pj € u?rj —bj(uy, ..., uj1) + NY¢ Okluye] for jeJ,

po € uf —d(ui, ..., um)mx + 7NV O lug+],
where l;j(ul, oo, uj—1) € Oglu, ..., uj—1] with powers on wu; smaller than p™ for all i=
L,...,j—1and d(u1,...,un) € Oglui, ..., Uy is a polynomial such that d(c1, . . ., ¢n) € OF.
Remark 3.1.8. Tt is not possible to avoid introducing Ej(ul, oo ui—) and d(ui, ..., Up).

Counterexamples were provided and communicated to the author by Shun Ohkubo; see [Xial0,
Remark 3.3.6 and Example 3.3.10]. However, to best convey the idea of the proof, we invite the
reader to pretend that these two elements are trivial, which is already quite general.
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DEFINITION 3.1.9. The (standard) Abbes-Saito spaces AS] i for a € Qs1 and AS} e, for
a € Q¢ are defined by taking the generators to be {cs, 71} and the relations to be pj+; see
Proposition 2.2.5(1’). In particular, their rings of functions are

Ohs.p/x = K, " Vi) [(po(ug+) = Vo, .o pm(ug+) — Vin)
and

OZS,L/K,log = K(uy+, n[;“—lvo, T Vi (po(ug+) — Vo, oo, pm(ug+) — Vin).

3.2 The ¥-function and thickening spaces

In this subsection, we first define a function (not a homomorphism) ¢ : Ox — Ok[do/7K, d1],
which is an approximation to the deformation of the uniformizer mx and p-basis as in [XialO,
Theorem 3.2.7]. Then, we introduce the thickening spaces for the extension L/K (see [XialO,
§3.1] for motivation).

As a reminder, we assume Hypothesis 3.1.2 for this section; we fix a finite p-basis (by) and a
uniformizer mg of K.

Construction 3.2.1. Let r € N and h € Oj. An rth p-basis decomposition of h involves writing
h as

pr—l o0 Ar,ej,n
h=> b7 (Z( > af&hn,n,)n’g) (3.2.2)
ey=0 n=0 * n/=0
for some ¢, nn € (’)IX< U{0} and some A,c,n € Z>o. Such expressions always exist but are
not unique. For 7’ >r, we can express each of o ¢, in (3.2.2) using an (' — r)th p-basis
decomposition and then rearrange the formal sum to obtain an r’th p-basis decomposition.
For he O}, we say that an r'th p-basis decomposition is compatible with the rth p-basis
decomposition in (3.2.2) if it can be obtained in the above manner.
We define the function ¢ :Og — Og[ds+] as follows: for each he Op\{1}, we fix a
compatible system of rth p-basis decompositions for all r € N, and define

p’“—l (e’ )\r,eJ,n
G(h)= lim > (bs+38,)" (Z( > af,ej,n,nf> (Tx + 50)”>; (3.2.3)

e;=0 n=0 n'=0

this expression converges by the compatibility of the p-basis decompositions. Define (1) =1,
which corresponds to the naive compatible system of p-basis decompositions of the element 1.
For h € Ok \{0}, write h = 7§ ho for s € N and hg € Of. Define ¢(h) = (7x + 00)°¢' (ho), where
Y’ (ho) is the limit as in (3.2.3) with respect to a compatible system of p-basis decompositions
of hy (which does not have to be the same as the one that defines ¢ (hg)). Finally, we define

(0) =0.

Most of the time, it is more convenient to view 1 as a function on Ok which takes values in
the larger ring Ok [do/7K, 0.5]-

We can extend 1 naturally to polynomial rings or formal power series rings with coefficients
in Ok by applying ¥ termwise.
Notation 3.2.4. For the rest of the paper, let Rx = Ox[do/7Kk, d1].

Caution 3.2.5. The map 1 is not a homomorphism, nor is it canonically defined. This is because
one cannot ‘deform’ the uniformizer in the mixed characteristic case. Moreover, since K will
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not be absolutely unramified in applications, a p-basis may not deform freely either. However,
Proposition 3.2.8 below says that v is approximately a homomorphism.

Remark 3.2.6. In the p-basis decomposition (3.2.2), we allow extra freedom given by n’. So, we
have the freedom of writing 1 + p as itself or as 1+ 1+ .- -+ 1. This is one of the places where
the above ambiguity arises. Allowing this extra freedom in n’ is in fact not necessary, except in
Construction 4.6.11 where we need the diagram (4.6.12) to commute.

DEFINITION 3.2.7. For two Og-algebras Ry and Ry and an ideal I of Ry, an approximate
homomorphism modulo I is a function f:R; — Ry such that for h; € W%Rl and hs € W%Rg
with a1, as € Z=o, we have ¥(hihs) — ¥ (h1)Y(ha) € 71'?(1+a2f and ¥(hy + he) — ¥(h1) — ¥(he) €

min{a1,a2}
T I

Moreover, if R} and R}, are two Ok-algebras, a diagram of functions

!/

Ry ——= R,

b
Ry . Ry

is said to be approzimately commutative modulo I if for any h € n% R} we have ¢'(f'(h)) —
flg(h)) e i 1.

PROPOSITION 3.2.8. For h € Ok, we have ¥)(h) —h € (05+) - Ok [d+]; and, modulo the ideal
Ik =p(do/7K,07)RK, ¥(h) does not depend on the choice of the compatible system of p-basis
decompositions. Moreover, 1 is an approximate homomorphism modulo Ik .

Proof. First, 1p(h) — h € (65+) - Ox[[05+] is obvious from the construction. Next, we observe that

. . I A(r),e o T
when p" > Bk, in any rth p-basis decomposition for h € O, the sum anz)o 7 o/()r) ey mn Tk for

any ey and n in (3.2.2) is well-defined modulo p. So the ambiguity of defining ¢ lies in I.

For hy, ho € Oy, the formal sum or product of compatible systems of p-basis decompositions
of hi1 and hsy is just some compatible system of p-basis decompositions of hi + hy or hihs.
Thus, ¥ (h1) + ¥ (h2) and 1 (hy)1(he) are the same as 1(h1 + he) and 1 (hihs) modulo Ix. The
statement for general elements in Ok follows from this. O

Remark 3.2.9. From Proposition 3.2.8, we see that the ideal case is where G > 1. In contrast,
when Sg =1, Ix = (dp, pdy). The above proposition does not give us much information about
1. This is why we are not able to prove Conjecture 2.2.13 in the absolutely unramified and non-
logarithmic case. This reflects the constraints in [AS03] from a different point of view, where
Abbes and Saito formulated the dichotomy as follows:

P k- db; if B =1,
by jz, o k=177
S Pk-dbj@k-dng if B > 1.
jeJ

HypPoTHESIS 3.2.10. For the rest of the section, assume that K is not absolutely unramified,
that is, Bx > 2.

LEMMA 3.2.11. Let h € Og. Write dh = Bod@( + hidb; +---+ hpndb,, when viewed as a
differential in Q%?K/Zp ®oy k. Then ¥(h) —h = hodo + - - - + hyndy, modulo (k) + (80/7k, 6.5)?
in Rg.
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Proof. For an rth p-basis decomposition (with > 1) as in (3.2.2), we have, modulo the ideal
(7TK) + (6J+)(50/7TK7 5J)a

P —1 oo Ar)esm

W)y =h=3" %" > (br+onaly, o (wx +80)" =5 al, )

ej=0n=0 n'=0

7100 'r)eJn
5o e1d s\ )
—§j§j > o N (R L I = 1000 + - - - + FunOom.
(r),ez,m,mn’ by b

T
e;j=0n=0 n’/=0 K

Taking the limit does not break the congruence relation. O

DEFINITION 3.2.12. Write Sg =Rk (uy+). For we (1/e)NNJL, fk], we say that a set of
elements (Ry+) C (05+) Sk has error gauge >w if Rg€ (N¥8y, N“T16;)- Sk and Rj €
(N“=169, N“§;) - S for all j € J. We say that (R;+) is admissible if it has error gauge >1.

DEFINITION 3.2.13. Let a € Q1. We define the standard (non-logarithmic) thickening space (of
level a) TS} LK of L/K to be the rigid space associated to

Ofs 1k = K650 )(wy+) [ ((ps+))-

For (Rj+) C (05+) - Sk admissible, we define the (non-logarithmic) thickening space (of level a)
TS“L/K R\ to be the rigid space associated to

Ots./k.r,. = KT 00 ) (uge) /(Y (pg+) + Rye)-

Similarly, for a € Qso, we define the standard logarithmic thickening space (of level a)
TS“L/K log,ib of L/K to be the rigid space associated to

OTSL/Klogq/; K(m a15077TKa5J><UJ+>/(¢(PJ+))-

For (Rjy+) C (6;+) - Sk admissible, we define the logarithmic thickening space (of level a)
TS“L/KJOg’Rﬁ to be the rigid space associated to

O%S,L/K,log,RJ_;,_ = K<7T1_<a_1507 7T1_<Q5J><UJ+>/<¢(PJ+) + Ry+).

Let TSL/KRJ+ :Ua€Q>O TS%/KJOg’Rﬁ. Then we have the following natural Cartesian
diagram for a € Q.

+1
SaL/K R, TS%/K,log,RJ+ C TSr/k.R,,

ln ln i

ATFL0, 991 — AL [0, 09H1] x AT[0, 69] —— AL[0,0) x AT[0, 1)

Here II denotes the natural projection to the polydiscs with coordinates § j+.

Remark 3.2.14. The error gauge is supposed to measure how ‘standard’ a thickening space is.
Unfortunately, a standard thickening space itself depends on a very non-canonical function .
The upshot is that, by Proposition 3.2.8, the notion of having error gauge >w does not depend
on the choice of ¢ if w € [1, Bk|; note that the terms in py are all divisible by mg, except uf.

Remark 3.2.15. The reason for introducing non-standard thickening spaces (or, rather,
thickening spaces which do not have error gauge >fk) is, as we will show later, that adding
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a generic pth root results in the error gauge of (R ;+) dropping by one; the comparison theorem,
Theorem 3.3.3, guarantees that as long as the (R;+) are admissible (i.e. 8 > 1), the thickening
spaces still compute the same ramification break. In the same vein, if Sx = 1, we cannot afford
to drop the error gauge; this is why we are not able to prove Conjecture 2.2.13 in the absolutely
unramified and non-logarithmic case (see also Remark 3.2.9).

Notation 3.2.16. Let (Ry+) C (0+) - Sk be admissible. With an abuse of notation, we shall still
use A to denote the composite

mod(do/7x,07)
"

Sk/(W(pys) + Ry+) Ok )/ (py) == Or.

We remark that ¢(p;+) — pj+ + R+ are in fact contained in the ideal of Sk generated by
d7+. We denote the composition of A and the reduction O, — [ by A.

LEMMA 3.2.17. Let (Rj+) C (07+) - Sk be admissible. Then
{uejf lej€{0,...,p"" —1} forall je€ J and eg € {0, ..., e —1}} (3.2.18)

is a basis of Sic /(Y(py+) + Ry+) over Rx. As a consequence, it also gives a basis of Ofg LIK.R, .

) g
over K(m;*0;+) for a € Q-1 and a basis of (’)E}S’L/KJog’Rﬁ over K(Wl}a_léo, . 007) for a € Q.
In particular, the morphism I1: TSy kg . — AL[0,0) x A™[0,1) is finite and flat.

Proof. Given an element h € Si/(¥(ps+) + Ry+), we first take a representative h € Sg. Then
we simplify it by iteratively replacing u§ and u? " by, respectively, u§ — ¥ (po) — Rp and

u?rj —1(pj) — R; for j € J. This procedure converges and gives an element with power of g
smaller than e and power of u; smaller than p"7 for j € J. O

3.3 AS = TS theorem

In [Xial0], the essential step linking the arithmetic conductors and the differential conductors is
the comparison theorem (see [XialO, Theorem 4.3.6]), which asserts that the lifted Abbes-Saito
spaces are isomorphic to the thickening spaces. In the mixed characteristic case, we do not have
to lift the Abbes—Saito spaces. Instead, in this subsection, we prove a (slightly more general)
comparison theorem over the base field K.

Remember that we continue to assume Hypotheses 3.1.2 and 3.2.10. We start with a lemma.

LEMMA 3.3.1. Let (Rj+) C (0;+) - Sk be admissible. Then
det <8(¢(Pz‘) —Pi + Ri))
i,jeJt

€ (Ok(uyt)/(ps+))* = OF.

8 74+=0

a5,

Proof. The proof is quite similar to that of [Xial0, Lemmas 4.3.1 and 4.3.3]. We also remark that

the proof becomes very technical in order to deal with the appearance of Bj(ulj ..., uj—1) and
d(ui, ..., un) and, partially, R;+ (see Remark 3.1.8). If we could have taken b;(uq, ..., u;j—1)
and d(uq, ..., up,) to be 1 and R;+ =0, the lemma is almost immediate because the leading

term in each ¥ (p;) — p; is just &;, and the matrix becomes the identity matrix modulo 7.

It is enough to prove that the matrix is of full rank modulo 7. By Lemma 3.2.11 and the
admissibility of R ;+, modulo 7y, the first row will be all zero except for the first element, which
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is d(¢1, ..., ¢n) € k] . Hence, we need only look at
O (pi) — pi O (bi) — bi
<(¢(pa;p)> mod (TFL,(50/7TK,5J): <(¢(a§)> mod (7TL,50/7TK,(5]),
j ijed j ijed
o (3.3.2)
where b; = b;(u1, ..., u;—1) in Construction 3.1.6. Let a;; € [ denote the entries in the matrix on

the right-hand side of (3.3.2), where we make the identification Og (u+)/(p+, uo) — I. Under
this identification, b; will become ¢ * for all 7 € J. It suffices to show that the ith row is [-linearly
independent of the first i — 1 rows, for all i. If we set

7‘0 1 T‘7, 11

1 —€i—1
E E Aet,.eir € Ci—1
e1=0 e;—1=0

where 5\61,,_761.71 € k, then we would have, modulo 7,

pro—1 pli—l— 1

T 1 €i—1
bi(ula---auj 1 E E 517 e Uy U g

e1=0 e;i—1=0

Hence, if we set dj\ely---yei—l = ﬂel,...,ei_l,ldgl + -4+ ﬂel7_,,7ei_1,md5m, then by Lemma 3.2.11 we

get

pT0—1 pli—1-1
@1 dby + -+ - + Qi dbry, = Z Z uft - ug S (fleyes 1 dby - - fleyei_y,m dbi)

e1=0 e;_1=0

= d(@") modulo (déy, . .., de; 1)

in Q \JFy it is, in fact, non-trivial because déy, . . . , dé,, form a basis for Q /F» and hence there
should not be any auxiliary relations among d¢y, . . . , d¢,, in Qk B, But we know that the sums
@ dby + - - - 4 @rmdby, for i’ < i all lie in the subspace of Q \JFy generated by déy, . .., d¢;_1.

Hence the ith row of the matrix in (3.3.2) is (k;_1-)linearly 1ndependent of the first i — 1 rows.
The lemma follows. ]

THEOREM 3.3.3. If (R;+) C (0;+) - Sk Is admissible, we have the following isomorphisms of
K-algebras:

Ods.o/x = Otsp/rr,, HacQs,
Ois.i/k1og = OTs,1/Kog,R,, 1T 0 € Q>0
Ezample 3.3.4. Before proving the theorem, we illustrate the idea using an example.

Assume p > 2. Let K be the completion of Q,((p)(b) with respect to the 1-Gauss norm
on b(=b1); we take mg =, — 1. (Strictly speaking, Hypothesis 3.1.2 requires K to have
separably closed residue field; in fact, however, Theorem 3.3.3 holds without this assumption.) Let
L= K((brg)"P)((b+ 7x)'/P); it is a Galois extension with inseparable residue field extension
and naive ramification degree p. We take the uniformizer of L to be 7 = (brg)'/? and
we take c= (b4 mx)'/P; these generate the extension Or/Of with relations po(ug,u;) =
po(uo) = ub — b and p1(ug, u1) =p1(u1) =u} —b— k. For a >0, the Abbes-Saito space is
given by

O‘stL/K - K<u0’ ui, WI_(Q‘/(), ﬂ-l_(avl>/(u102 - bﬂ_K - ‘/07 u117 —b— TK — Vl)
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We take the function 9 :0xg — Okl[do,d1] so that ¢(b)=0b+01 and ¢(brg)=
(b+ 61)(wx + do). Then the standard thickening space is given by

Ofg 11,y = K {uo, ur, w00, w01) /(ufy — (b+ 61)(wx + 60), uf — b — 01 — T — Jo).-

We will identify these two algebras by matching ug and w; from the two algebras. To
do this, we first construct a (continuous) homomorphism x; : OZ& LK~ O%s, LK such that
x1(uo) = up and x1(u1) = uy; then we are forced to send Vj to x1(uf — brg) = mxd1 + bdy + dod1
and V7 to x1(u] —b—mg) =08 + 1. For x1 to be well-defined, we need to check convergence,
which is quite obvious from the way it is written in this particular example.

Conversely, we want to construct the inverse (continuous) homomorphism yso : Ofg ; IR
OZS’L/K. Again, we need x2(u1) =wu; and y2(ug) = ug. It is less obvious where we need to send
0o and d1. But we know that the images x2(dp) and y2(d1) must satisfy

bxz2(00) + Trx2(01) = x2(ub — bk — dod1) = Vo — x2(00)x2(61)
and

x2(0) + x2(01) = x2(uj — b — 7k) = V1.
Thinking of these as a system of linear equations, we have

G)-C 1) ()

We can determine the value of x2(dg) and x2(01) by iteratively plugging the left-hand side
of (3.3.5) into its right-hand side. In our special case, one can check by hand that this process
will converge eventually to two elements of OKS’ LK which will be the images of x2(dy) and
x2(d1), respectively. For the general case, however, it is better to employ a ‘fixed-point theorem’
argument.

We now prove Theorem 3.3.3.

Proof. The proof is similar to that of [Xial0O, Theorem 4.3.6]. We will match up wu;+ in the two

rings.
We first observe that
{u7' Jej€{0,...,p"" =1} forall j€ J and eg € {0, ..., e — 1}} (3.3.6)

forms a basis of Ofg; , (respectively, Ofq; o) over K(mVyr) (respectively,
K(m* W, mxVy)) as a finite free module. Given

!
er+1,%+ a : a
h= E Qe,pel uf Vil € Ojs ke (respectively, O%s.1/K Jog)
eJ+7ei]+

written in terms of this basis, where « L€ K, we define

8J+76i]
‘h’AS@ = mag( {’O[ . 9a€6+"'+aefm+eo/e}

/

e € ‘
Jto

Crt€rt Al

(respectively, |h|AS log,a = max {|a |- 9(a+1)66+ae/1+.--+ae’m+eo/e}>‘

/

€4 ,e
JHC 5+
€t+:€r+ 7

It is clear that Ofg, K (respectively, O%g K 1Og) is complete and submultiplicative
for this norm (i.e. |hihalase < |hi|asalh2]as,e and |h1ha|asiog.a < [P1]AS log,alP2|AS 10g,q); the
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requirement a > 1 in the non-logarithmic case guarantees that upon replacing ug by ug — po — Vo,
the norm does not increase.

Similarly, by Lemma 3.2.17, (3.3.6) also forms a basis of Ofg L/K.R,+ (respectively,

O%s.1./ K og, RJ+) over K (m*0;+) (respectively, K (m 3" 8o, mx6)) as a finite free module. Given

€+ 1+ a . a
Z eyl Uyt 5 € OTS,L/K,RJ+ (respectively, OTS,L/K,log,RJ+)

’
eJ+7eJ+

written in terms of this basis, where « € K, we define

/
€€+

|h|rsa = max {|a . gueit-tacieo/ey

’

€+, |
Jt

€j+,€ J+

(respective]y7 |h|TS,log7a = maX {|ae e J+| . g(a-i-l)86+a€/1+..-+ae;n+eo/e}>.

€j+-€ J+

It is clear that OTS L/K.R,+ (respectively, O%s’ L/K Jog, RJ+) is complete and submultiplicative for

this norm. The requn"ement a > 1 in the non-logarithmic case guarantees that upon replacing ug

by u§ — ¥ (po) — Ro, the norm does not increase.

Define a continuous homomoprhism y; : O% AS,L/K (’)TS L/K.R,+ (respectively, xi:

As,L/K10g — Ofs L/KJog,R 4 ) by sending u;+ to uy+ and hence Vj to pi(ug+) =pj(us+) —

Y(pj(ug+)) — R; for all jeJ -+ . We need to verify the convergence conditions for all V;. Indeed,
Proposition 3.2.8 and the admissibility of R ;+ imply that

pj —¢¥(pj)|rs,e <O and |Rj|rsq <6 for all jeJ*

) gatl1 j=0 9a+1+1/e j=0
<respect1vely, |pj (pj)|TS log,a X {ea je J and ’R |TS log,a X {Qa—l—l/e je J>

Now we define the inverse x3 of xi1. Obviously, we should send u j+ back to uj+. We need to
define x2(d,+) properly. Let A = (Ayj); jes+ denote the unique matrix in O [u+] such that

A= <3(¢(pz) + RZ)) mod (07+) - Sk.
85]‘ i,jeJt

By Lemma 3.3.1, the image of A in Mat,,11(Ox{us+)/(ps+)) = Maty,+1(Or), denoted
by A, is invertible. Let B denote the (m +1)x (m+1) matrix with coefficients in

@20_:10 163:1:61 e 2::;01 Oru 7" whose image in Maty, 1 (O (uy+)/(py+)) is the inverse of
A. Then we have
BA-1T¢€e Matm+1((pj+) : OK<'LLJ+>), (337)

where [ is the (m + 1) x (m + 1) identity matrix.
Define the subset

(O%s L/K)®(m+1) rjlasa <O°Vie T}
S(m+1) .

A:{t(xo,...,xm)E
(respectively, A = {!(xg, ..., 2m) € (Os L/K, log)

|$O|AS,log,a < 0°+! and ‘$j|AS,log,a <o Vje J})
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It carries a norm | - [z defined by taking the maximum of |- [as,q (respectively, | - |as log,a) OVer
its entries. Consider the function F : A — A given by

T x0 (¥(po) + Ro)(uy+, x5+)
F| : |=|:|-B : (3.3.8)
Tm Tm (Y (Pm) + Run) (e, T 5+)
To
— (I — BA)
LTm,
(¥(po) + Ro)(uy+,z5+) — po xo Vo
_ B ; — Al || =8| | 339
(Y (pm) + Bm) (ug+, T g+) — Dm T Vin

where (¢(pj) + Rj)(uy+, xs+) is the formal substitution of z; for §; for any j € J*.

To see that F is well-defined, we need to bound the norms of each term in (3.3.9) when
Yo, ..., 7m) €A By (3.3.7), I — BA (viewed as an element in ORs,n i O, respectively,
OXS, L K,log) has norm less than or equal to 8%. Hence, in the non-logarithmic case, the first term
of (3.3.9) has norm less than or equal to 62%; in the logarithmic case, the first term of (3.3.9)
has norm less than or equal to 6??, except for the first row, which has norm less than or equal
to 62971, By the definition of A, the second term of (3.3.9) has entries in (6;+)%Sk, except for
the first row, which is in (6,;+)2Sk N (23, Tx20)Sk (because of how pg is defined). Hence, in the
non-logarithmic case, this term has norm less than or equal to 627! in the logarithmic case,
this term has norm less than or equal to 62, except for the first row, which has norm less than
or equal to min{#*+2, §2a} < o+2.

Hence, we see clearly that F does map A into A. Moreover, we observe that F is contractive,
that is, there exists € € (0, 1) (in fact, e = #*~! in the non-logarithmic case and ¢ = g™*{e1} in
the logarithmic case) such that for x =%(zq, ..., z,) and y = (yo, . . ., ym) € A, we have

|F(x) —F(y)|la <e|x —y|an (respectively, |F(x) — F(y)| <elx —y|a)-
Therefore, F has a unique fixed point in A, denoted by x =%(zq, . .., Zm) € A.
Now, we define a continuous homomorphism Yz : K{(u;+, 7"0+) — O%g /K (respectively,
X2 : K<UJ+, 7@“‘160, 771_{“(5J> — OXS,L/K,log) by )ZQ(Uj) = uj for j € JT and )22((53) =Zj.
We now check that x2(¢(p;) + R;) =0 for all j € JT. Indeed, by (3.3.8) we have
X2(¥(po) + Ro) (¥(po) + Ro)(uy+, x+) o o 0
: - B z = |-F|: |=]|:
X2(¥(pm) + Rim) (V(Pm) + Bm)(ug+, v 5+) Lm Lm 0
Hence, x2 factors through a continuous homomorphism 2 : ngs, L/KR,, OXS, L/K
1 . a a
(respectively, xa : (’)TS’L/KJOg’RJ+ — OAS,L/K,log)'
Finally, we claim that yo and x; are inverse to each other. One may check this directly from
the definition. Alternatively, observe that by our definition, they are inverse to each other on a
dense subset K [u;+] (the density is proved in Lemma 3.3.11 below); therefore, they have to be

inverse to each other, and give an isomorphism between the ring of functions on the Abbes—Saito
space and the ring of functions on the thickening space. O

B
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Remark 3.3.10. An alternative way of understanding this theorem is to think of the
thickening spaces as perturbations of the morphisms AS? K —>A%+1[O, 6¢] and AS¢ K log
AL [0, 0971 x A™[0, 69]. Abbes—Saito spaces will behave better under base change using the new
morphisms.

Lemma 3.3.11. Let (Ry+) C (05+) Sk be admissible. Then K(uy+] is dense in Ofg ;g p
. ’ Aty
and OX&L/K for a € Q<1, and in O%SjL/KJOg,Rﬁ and OZS,L/KJOg for a € Q.

Proof. Since Vj =pj(uy+) € Kluy+] for all je J*, the density of Kluj+] in O%g 1k and
Of\s, L/K log is obvious from the definition. We now prove the density for the thickening spaces.
It is enough to show that §;+ can be well-approximated by elements of K[u;+|. We keep the
notation as in the proof of Theorem 3.3.3. Consider a variant of (3.3.9):

do do (¥(po) + Ro) — po do Do
c |=UI-BA)| : | -B : —Al : -B| | (3312
Om Om (w(pm) + Rm) — Pm Om Pm
Note that I — BA € Maty,+1((py+) - Or(uy+)) implies that the first term in the right-hand side
of (3.3.12) has representatives in (8o/7x, 0.7)2Sk under the quotient S — Sk /(¥ (p+) + Ry+).
The second term in the right-hand side of (3.3.12) is already written in terms of elements
in (0o/7mK,0s)?Sk. The third term in the right-hand side of (3.3.12) is a vector of
elements in K[uj+].

So, this means that we can approximate &+ using K[uy+] up to elements in (5o /7, 87)%Sk.
We can use the same approximation to approximate d;0; for j,j € J in the previous
approximation and hence get an approximation of 7+ by elements in Kluj+] up to
(60/7K, 07)3Sk. Iterating this construction, we see that Kluj+] is dense in Ofg LJKR,, for

) g
a € Q-1 and dense in O%S,L/K,log,Rﬁ for a € Q9. O

3.4 Etaleness of thickening spaces
In this subsection, we will study a variant of [AS02, Theorem 7.2] and [AS03, Corollary 4.12].
Remember that Hypotheses 3.1.2 and 3.2.10 are still in force.

DEFINITION 3.4.1. Let (R;+) C (6;+) - Sk be an admissible subset. Let ETy, ;¢ p | be the rigid
analytic subspace of AL[0,71) x AT[0, 1) over which the morphism II defined in Definition 3.2.13
is étale. When there is no confusion over the choice of R+, or if the choice is not important, we
abbreviate ETL/KRJJr to ETp k.

THEOREM 3.4.2. Let b(L/K) be the highest non-logarithmic ramification break of L /K. There
exists e € (0,b(L/K) — 1) such that b(L/K) — € € Q and, for any admissible (Rj+) C (05+) - Sk,
Ao, P/ K= C ETr/k R, -

Proof. The proof is essentially the same as that for [AS02, Proposition 7.5]. The essential point is
the ‘congruence’ (¢ (p;) + R;)/0u; = 0(p;)/Ou; over the said locus. For the reader’s convenience,
we include the proof here.

Recall from [AS02, Proposition 7.3] that

2, j0, =D O/77' 0L with a; < e(b(L/K) — ¢) (3.4.3)
=1
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for some € >0 and r € N. It does not hurt to take e <b(L/K)—1 and b(L/K)—e€ Q. Let
J = (0(¢(pi) + Ri)/0u;); je s+ be the Jacobian matrix of TS%/K’RJ+ over ATt10, 0], whose

entries are elements in O = O (uy+, 70 5+) /(Y (ps) + Ry).

Let a=b(L/K) — € € Q. Suppose that x € AL [0, 0%] is a K*8-point at which det(J) vanishes;
it gives a homomorphism O%S, L/KR,. K8 We let 27+ and v+ denote the images of u+
and &7+, respectively; we have z;,v; € Ogae and |vj| < 0%, for all j € Jt. Hence, we have
Ipj(z5+)| <0 for all j € JT.

Now, we have the following two Og-algebra homomorphisms.

©: 0L =0klug, ..., un)/(Pos---\DPm) Ogcatg /1% O galg
h(ug+) h(z j+),
eVt O = Ogclugs 5% )/ (0(p) + o) O
h(ug+, 05+ ) hzy+,vy+).

Here ¢ is well-defined because |p;(x;+)| < 6.

We consider the following commutative diagram of linear maps.

evy m mod ¢ a m ® m
pemtt) 2% O+ o (O 75O 2D oy
l 7 lev,((y) (9pi/Bu;); je s+ mod mie i@m/ us)ijer+
v m mod w¢ m
OB(m+1) S5 B T (Oats /5 O g 2 H) <—F 4D

(3.4.4)
Here, commutativity is clear except for the one in the middle, which follows from the simple but
key fact that |v;+| < 7% = evx(J) = (Opi/Ou;); jes+ mod T

Now, on the one hand, (3.4.3) implies that the cokernel of the right vertical arrow in (3.4.4) is
isomorphic to @gzl Or/ 772” Op. Since ea > «; for any ¢, the cokernel of the third vertical arrow
in (3.4.4) is isomorphic to @;_; Ogals /77 O ag.

On the other hand, we have assumed that det(evx(J7)) =0; this implies that the cokernel
of the second vertical arrow in (3.4.4) has a torsion-free constituent. Therefore, we know that
the the cokernel of the third arrow must have a direct summand isomorphic to Opaig /75 O ae;
this contradicts the claim in the previous paragraph. So we have étaleness as stated. O

Remark 3.4.5. Theorem 3.4.2 (as well as Theorem 3.4.7 later) states that the étale locus
ETr kR, isa bit larger than the locus where TS? KR4 (respectively, TS} /K log, RJ+) becomes
a geometrically disjoint union of [L : K| discs. This is crucial for the proof of Corollary 3.5.4.

The following lemma is an easy fact about logarithmic relative differentials. This is not a good
place to introduce the theory of logarithmic structure. For a systematic account of logarithmic
structures and log-schemes, one may consult [KS04, §4] and [Kat89].

LEMMA 3.4.6. If we provide Op and Ok with the canonical log-structures 7T§‘—>0L and

W[N( — Ok, respectively, then the logarithmic relative differentials are such that
dug d(po) dmi
Q}oL/OK(log/log) = @ Or du; ® (’)Lu—o (d(pJ), ot dx for xz € Ok |.

jedJ
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THEOREM 3.4.7. Let biog(L/K) be the highest logarithmic ramification break of L/K. Then
there exists € € (0, biog(L/K)) such that biog(L/K) — €€ Q and, for any admissible (Rj+) C
((5J+) : SK, we have A}(- [O, leog(L/KH—l_E] X A% [O, leog(L/K)_E] - ETL/K,RJ_»,_'

Proof. The proof is similar to that of Theorem 3.4.2, except that we need to invoke [AS03,
Proposition 4.11(2)] to give a bound on Q}% Ok (log/log); the explicit description of

Q%,)L 0K (log/log) in Lemma 3.4.6 singles out dy and gives rise to the smaller radius §91. ]

3.5 Construction of differential modules

In this subsection, we set up the framework for interpreting ramification filtrations by differential
modules.

We remind the reader that we are still assuming Hypotheses 3.1.2 and 3.2.10.

Construction 3.5.1. Let (Ry+) C (6,+) - Sk be admissible. By Lemma 3.2.17, IL: II"Y(ET, 5 ) —
ET} K is finite and étale. We call £ = H*(On—l(ETL/K)) a differential module associated to L]/ K;
it is defined over ETf /f, and the differential module structure is given by

Vi€ lL (Qll_lfl(ETL/K)/K) ~& ®OETL/K QlETL/K/K =¢ ®OETL/K < @ Orr, d5j>‘
jeJt

Thus, we can define the actions of differential operators 9; =9/9d; for j € J* on & and talk
about intrinsic radii IR(£; s;+) as in Notation 2.1.13 if A}[0,6%] x - - - x Ap[0,0°"] CETy k.
PROPOSITION 3.5.2. The following statements are equivalent for a € Qs (respectively, for

a € Q).

(1) The highest non-logarithmic (respectively, logarithmic) ramification break satisfies
b(L/K) < a (respectively, biog(L/K) < a).

or any (some) admissible (R;+) C Sk and any rational number o’ > a,
2) F dmissible (R S d ional ber a’
#wgeom(TS‘z//KvRﬁ) =[L: K] (respectively, #ﬂ(g)eom(TS‘zl/KJog’Rﬁ) =[L: K)).

(3) For any (some) admissible (Ry+) C Si, A7[0, 67 C ETr/kr,, (respectively, Al[0, 1]
x AR[0,0° CET kR, ) and the intrinsic radius of £ over AT[0,609 (respectively,
AL [0, 6971 x A™[0, %)) is maximal:
IR(E;a) =1 (respectively, IR(E;a+1,a) =1).

Proof. The proof is similar to that of [XialO, Theorem 3.4.5].
(1) <= (2) is immediate from Theorem 3.3.3.

(2) = (3): for any rational number a’ > a, (2) implies that for some finite extension K’ of K,
TSY x g K' (respectively, TS9 x g K') has [L : K] connected components and is
L/K,R, L/Klog,R

hence forced to be [L : K] copies of A7%[0, 0] (vespectively, AL,[0,07+1] x A™,[0, 6%]) because
IT is finite and flat; in particular, IT is étale there. Therefore, £ @ K’ is a trivial differential
module over A7%[0, 0] (vespectively, AL, [0, 091 x A%,[0,0]). As a consequence,

IR(&;d) =TR(E®@ K';d') =1 (respectively, IR(E;a’ +1,d") =IR(E @k K';ad’' +1,d") =1).

Statement (3) follows from the continuity of intrinsic radii in Proposition 2.1.23(a), upon taking
a’ to be sufficiently close to a.

439

https://doi.org/10.1112/50010437X1100707X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100707X

L. X1a0

(3) = (2): statement (3) implies that, for any rational number o’ > a, £ is a trivial differential
module on A;?H[O, 9“,] (respectively, A}[0, 9“,“] x AR[0, 9“/]). Indeed, we have a bijection

HY(ATY0,07],€) = €ls,, o (respectively, HY(AL[0, 09 F1] x AR[0,07], &) — &l5,, —o),

(3.5.3)
whose inverse is given by a Taylor series. (The convergence of the Taylor series is guaranteed by
the condition on the intrinsic radii.) This is in fact a ring isomorphism by basic properties

of Taylor series. The left-hand side of (3.5.3) is a subring of (’)%/S L/KR .+ (respectively,
b b J
o ), while the right-hand side is just K (u+)/(ps+) ~ L. Thus, after the extension of

TS,L/Klog,R ;+

scalars from K to L, we can lift the idempotent elements in L @ L ~ [] L, to idempotent

9€GL /K
elements in (9%/57]4/}(73]+ ®K L (respectively, OS‘}IS’L/KJOngﬁ ®x L). This proves (2). O

COROLLARY 3.5.4. Given the differential module £ over ETr/k R, with respect to some
admissible subset (Rj+) C (0;+) - Sk, we have

b(L/K) = min{s | A%H[O, 0°%] C ETL/K,RJ+ and IR(E; s) =1}
and

biog(L/K) = min{s | Ax[0,0°"] x AR[0,0°] CET g, and IR(E; s+ 1,8) = 1}.

In other words, b(L/K) (respectively, biog(L/K)) corresponds to the intersection of the
boundary of Z (&) (cf. Proposition 2.1.23(c)) with the line defined by so = - - - = s, (respectively,
so—1l=81="--=58n).

Proof. By Theorems 3.4.2 and 3.4.7, ET /f, R+ is large enough to use for pinning down the exact
boundary of Z(&). The corollary follows immediately from Propositions 3.5.2 and 2.1.23. O

3.6 Recursive thickening spaces

In this subsection, we introduce a generalization of thickening spaces. This will give us some
freedom when changing the base field.

In this subsection, we continue to assume Hypotheses 3.1.2 and 3.2.10.

Construction 3.6.1. This is a variant of Construction 3.1.6. First, filter the (inseparable)
extension [/k by elementary p-extensions

k=koChki G- Chr=1

where, for each A=1,...,r, kyx=k)_1(¢)) with ¢§ = by € kyx_1. Write A = {1, ..., r}. Pick lifts
cp of cp in Op. Let e=eq,...,e,, =1 be a strictly decreasing sequence of integers such that
ejlej—1 for 1 <i<rg.Set I ={1,...,rp}. Foreachi € I, pick an element 7y, ; in Oy, with valuation
e;; in particular, we take 7w, ,, = 7. It is easy to see that the (ca, 7rL71) generate Oy, over Of.
So we have an isomorphism

A OK<UO7[, uA>/’J L> OL

such that ug; — 7 ; for i € I and uy — ¢y for A € A, where J is some proper ideal and we use
the same A as in Construction 3.1.6. Moreover,

€0,7. eA
{uw Up

60716{0,...,ei_1 —1} forall i € I and ey € {0,...,p—1} forall)\EA} (3.6.2)

€

440

https://doi.org/10.1112/50010437X1100707X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100707X

RAMIFICATION FILTRATIONS

forms a basis of Ok (upr,up)/J as a free Og-module, which we will refer to later as the

standard basis.
€0,I, eA

We endow Ok [ug, 1, up] with the following norm: for h = Zeo,z,m Qleg r,eallp T Up with ceg ;s €
Ok, set
= mase {lag, .| - B0 1 F 00 en e,
€0,1,6A
For a € (1/e)Z=p, we use 9M* to denote the set consisting of elements in Ok [ug 1, up] with norm
less than or equal to 0%; this is, in fact, an ideal.
In Ok (ug,1,up)/J, we can write ugfi‘l/ei for i € I and u{ in terms of the basis (3.6.2). This
gives a set of generators of J:
Po1 € ug,/fl — 01 + ‘)?1“/6 . OK[qu, uA],
poyi c ugf;l/ei — U¢u0,¢_1 + m(ei*ﬁrl)/e . OK[qu, uA] for ¢ € I\{l},
Py € u§ — [NJ)\ + ‘ﬁl/e . OK[uo,[, uA],

where 07 are some elements in Og[ug s, up] whose images under A are invertible in Oy, and,
for each A, by is some element in Ok[uy, ..., uy_1] whose image under A reduces to by € kx_1
modulo 77,.

We say that py corresponds to the extension ky/kx_1.
DEFINITION 3.6.3. As in Definition 3.2.12, we define
Gk =R (uo,1, ur) = Ok [[do/7K, d5](uo,1, ua)-

For w € %N N [1, Bk, we say that a set of elements (Ro 1, Ra) C (6;+) - Sk has error gauge >w
if R, € (MTIFei/egy, Moteiles ;). Sy for i € I and Ry € (N1, N6;) - S for A€ A. The
subset (PRo,1, Ra) C (0;+) - Sk is said to be admissible if it has error gauge >1.

Let (PRor, Ra) C (05+) - Sk be admissible. For a € Qs;, we define the (non-logarithmic)
recursive thickening space (of level a) TS“L/K Ro My 1O be the rigid space associated to

O, 1K1, 00 = B (T 0+ ) (wo,r, ua) /(¢ (po.1) + Ro,r, ¥(pa) +Ra)-

For a € Qs¢, we define the logarithmic recursive thickening space (of level a) TS“L/KJOg,%O,LSRA
to be the rigid space associated to

O 1)K Jog 30 1.9 = K (MK 100, T0.) (uto,1, un) /(W (Po, 1) + Ro,1, ¥ (p) + Ra).-

We still use A to denote the natural homomorphism

mod(do /7,0
&1/ (V(po 1)+ Ros, lpy) + Rp) ot/

A
Ok (uo,r, un)/(Po,1, Pa) — Or;
we use A to denote the composition with the reduction Oy, — .

LEMMA 3.6.4. Let (Ro 1, Ra) C (d5+) Sk be admissible. Then (3.6.2) forms a basis of
Sk /(¥(por) +Ro1, ¥(pa) +Ra) as a free Ri-module, which will be referred to later as
the standard basis. As a consequence, it constitutes a basis of Ofg | /K R 1. Rn (respectively,

TS L/ K logRo 1 ERA) as a free module over K(m ;"6 j+) (respectively K(w;f“léo, T07)).

Proof. The proof is the same as that of Lemma 3.2.17. a
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Example 3.6.5. The construction of the thickening spaces in Definition 3.2.13 is a special case
of the above construction. If we start with a uniformizer 77, a p-basis cj, and relations p + in
Construction 3.1.6, the following dictionary translates the information to fit Construction 3.6.1.

w7 (I={1}),

r1—1 Tm —1
p
7027 Cg? M | Cm )

Po.1> Po < the ones determined by ¢ and 7 r,

CA<_)Claczlj)"')c€

Ro,r < Ro,

Wit .
R\ «— R; when A corresponds to some c? , and 0 otherwise.
Moreover, this construction preserves the error gauge.

Conversely, we have the following.

PROPOSITION 3.6.6. Let (Ro 1, Ra) C (05+) - Sk be admissible with error gauge >w € (1/e)NN
[1, Bk]. Then, for any choice of c¢; and m as in Construction 3.1.6, there exists an Rp-
isomorphism

O :Sk/(W(ps+) + Ry+) — S /(W(po.r) + Ro,r, ¥ (pa) + Ra), (3.6.7)

for some admissible R j+ with error gauge >w, such that © mod (do/7x, d7) induces the identity
map if we identify both sides (modulo (8o /7K, 0.7)) with Or, via A. This gives rise to isomorphisms
between the recursive thickening spaces and the thickening spaces:

TS koot = T81 i m,, (@€ Qo) and  TSE 1oy oy =TTk 1og,r,, (@€ Q>0).

Proof. For each j € J, we express c¢; as a polynomial ¢; in ug; and up with coefficients in
Ok via A™': O == Ok (ug,1,ur)/(po.7, pa)- We define a continuous homomorphism 0:8k —
Sk /(W(por) + Ror, ¥(pa) + Ra) by setting @(u]) Y(c;) for j € J and O(up) = g - It is then
obvious that for a € iZ>0, O(N - Sk) CN® - &.
We need to determine Rj+. For each fixed jo € JT, since A(pj,(us+)) =0 we can write
Pio (0,rg, €) Z Do,iPo; + Z bapy  in Ok (uo,r, ua),
i€l AEA

for some b ;, by € O (uo,1, up), for i € I and A € A. Moreover, when jo = 0, we can require that
Bo. € ml-ei-1/e. Ok (up,r,up) and by € mnt. Ok (ug 1, up) for i € I and X € A. Thus, we expect to
define Rj, so that, under é, it is mapped to

— (i) (O(ug+)) = = (b )h(Po.s) — Y ¥(by)eh(

el AEA
= =2 000,) (=) = D w(0)(-
icl AEA

(mwéov mw+15J) : GK jO = Oa
(M~ 160, MN6) - &k jo € J,

where € € (MPK 5y, NBxFV5;) . S if jo =0 and ¢ € (MBE=Vgy, NO%5;) - S if jo € J; these

correspond to the error terms that come from ¢ failing to be a homomorphism (see
Proposition 3.2.8).
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Thus, we can find polynomials qo, . . . , gm € Ok [uy+] such that

N¥.Skg  jo=0, N9t Sk jo =0,
qo € w1 . q1, y Gm € w .
N SK joEJ, N SK joGJ,

and

_ ~ So /75, 8 (MS0. M1 ) - o=
) (Bu+)) — Blao + -+ i) € {0/ ON T, TET07) - G o =0,
(00/mK, 67) (M09, M¥0y) - &K jo € J.

Further, we can similarly find approximations of the coefficients of 6;0;/, for j,j € JT.
Iterating this approximation gives the expressions for R ;+; they clearly have error gauge >w.

By construction, O factors through the quotient by ¥ (pj+) + Rj+; we then obtain the
homomorphism © as in (3.6.7). The surjectivity of © follows from the surjectivity modulo
(0o/mK, 07), which is the identity via A. Moreover, a surjective morphism between two finite
free modules of the same rank over a noetherian base ring is automatically an isomorphism. The
theorem is thus proved. O

Remark 3.6.8. The isomorphism © is not unique. Basically, ©(ug) mod (M¥dy, N“118;) - S
and O(u;) mod (N5, N¥6;) - & for j € J are fixed; any lifts of them will give a desired
isomorphism (with different (R;+)).

LEMMA 3.6.9. Let (Ro,1, Ra) C (05+) - 6k be admissible. Then an element
h €&k /(Y(por) +Ror, Y(pa) +Ra)

is invertible if and only if A(h) € Of . In particular, uf . /7x is invertible.

Proof. The necessity is obvious. To see the sufficiency, we construct the inverse of h directly.
Let A=Y be a lift of A(h™!) € OF in Ok (ugr,up). We have A(1 —h(=Dh) =0 and hence
1-hYh=ge(6;+)  Sk. Thus,

1 a1
i —n=D .1 2.0,
hT1g (I+g+g +--)
The series converges to the inverse of h. O

4. Hasse—Arf theorems

4.1 Generic pth roots
The notion of generic pth roots was first (implicitly) introduced by Borger in [Bor04].
Kedlaya [Ked07] realized that in the equal characteristic case, adding generic pth roots to the
field extension will not change the (differential) non-logarithmic ramification filtration; hence,
one can prove the non-logarithmic Hasse—Arf theorem by reducing to the perfect residue field
case.

In this subsection, we continue to assume Hypotheses 3.1.2 and 3.2.10, except in
Proposition 4.1.8.

Notation 4.1.1. Let x be transcendental over K. Define K(z)" to be the completion of K (z)
with respect to the 1-Gauss norm, and define K’ to be the completion of the maximal unramified
extension of K (z)". Set L' = K'L.
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LEMMA 4.1.2. Let L(z)" be the completion with respect to the 1-Gauss norm. Then L' is the
completion of the maximal unramified extension of L(x)". In particular, the residue field of L'
is I' = k(x)%P - I, which is separably closed.

Proof. First, L(x)" = LK (x)" because the latter is complete and is dense in the former. So, it
suffices to prove that L’ is complete and has separable residue field. Since L'/K’ is finite, L' is

complete. Moreover, the residue field I’ of L’ is separably closed because it is a finite extension
of a separably closed field k(z)%P. O

PROPOSITION 4.1.3. The highest ramification breaks do not change if we make a base change
from K to K'. In other words, b(L/K) =b(L'/K") and biog(L/K) = biog (L' /K').

Proof. Since 7y, is a uniformizer of L’ and O, ®0, Ok surjects onto I’ by the previous lemma,
we have O = Or, ®0,. Ok. The result follows from Proposition 2.2.5(4"). O

DEFINITION 4.1.4. Let bj, be an element in a p-basis of K. We will often need to make a
base change K — K= K'((bj, + xmg)V/P), a process which we shall refer to as adding a generic
pth root (of bj,). It is clear that the absolute ramification degree Bz equals Bf. If we begin
with a finite field extension L /K, adding a generic pth root will mean considering the extension
L=LK / K. We have G+ IR =G /K, as K is linearly independent of L over K. By convention, we

take Mz =7 as K/K is unramified. We provide K with a p-basis {0 goys (bjo + o )P, ),
which has one more element than the original p-basis.

PROPOSITION 4.1.5. Let L/K be as in Hypothesis 3.1.2. Then, after finitely many operations
of adding generic pth roots, the field extension we began with becomes a non-fiercely ramified
extension; that is, the residue field extension is trivial.

Proof. The proof is almost identical to that of [Xial0O, Proposition 5.2.3], which is stated in terms
of an equal-characteristic complete discrete valuation field and adding p®th roots (see [XialO,
Definition 5.2.2]).

First, the tamely ramified part is always preserved under these operations. So we can assume
that L/K is totally wildly ramified and hence that the Galois group G, /K is a p-group. We
can filter the extension L/K as K =Ky C---C K,, = L, where K;/K;_; is a (wildly ramified)
Z/pZ-Galois extension and K;/K is Galois for each i=1,...,n. Each of these subextensions
has:

(a) either inseparable residue field extension (and hence naive ramification degree one);
(b) or trivial residue field extension (and hence naive ramification degree p).

Let ip be the maximal number such that K;/K;_; has trivial residual extension for ¢ =
1,..., 0. Obviously, adding a generic pth root does not decrease i, because after adding a
generic pth root the naive ramification degree of Km /K still equals the degree p*. Now, it
suffices to show that after finitely many operations of adding generic pth roots, Km+1/ K;, has
trivial residue field extension (if i9 < n); this would be enough to deduce the proposition. Suppose
the contrary.

Let g € Gk, ,,/K;, = Z/PZ be a generator. We claim that y = mlnzeOKZ o (9(x) — x))
decreases by at least 1 after adding generic pth roots of each of the elements in the p-basis. This
would suffice to conclude the argument, because ~ is always a non-negative integer.
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Let z be a generator of O, ., as an Of, -algebra. It satisfies the equation
P a4 4a,=0 (4.1.6)
where ai, ..., ap—1 €mg, and a, € O with a, € k;; \ (k)P = k*\(k*)P. It is easy to see that
20
v = vk, (9(2) — 2).

Adding generic pth roots of each of the elements in the p-basis gives us a field K.
Now, the field extension KK, +1/KK;, is also generated by z as above. But we can write
ap=aP 4+ Bforaec Op, and f€mg, . Hence, if we substitute 2’ = z + « into (4.1.6), we get

10 ZO

P tal Pl a, =0, with a}, ..., a}, € MRk, Thus, UI?K@'0+1(Z,) > 0. By the assumption

that the extension K K, 1/K K;, has naive ramification degree one, Tk, is a uniformizer for
= . / . . -
KK;,+1, and hence z /7TKZ.0 lies in OKKz'OH' Thus,

/ . , ,
T :):EOIEII? (U[?Kio-‘rl (g(x> o .Z')) S UI?KiO+1(g(Z /ﬂ—Ki()) -z /ﬂ'KiO)
ig+1

= UKiO+1(g(Z) —2z)—1l=v-1

This proves the claim and hence the proposition. O

Remark 4.1.7. It is worth pointing out that after these operations, the number of elements in
the p-basis of the resulting field will be greater than that of the original field.

For the following theorem, we do not assume either Hypothesis 3.1.2 or Hypothesis 3.2.10.

PrOPOSITION 4.1.8. Fix Ok € Nsi. Assume that for any complete discrete valuation field K
of mixed characteristic with absolute ramification degree Sx and for any field extension L/K
satisfying Hypothesis 3.1.2, the highest non-logarithmic ramification break is invariant under
the operation of adding a generic pth root. Then, for all complete discrete valuation fields K of
mixed characteristic and with absolute ramification degree i, we have that:

(1) Art(p) is a non-negative integer for any representation p:Gg — GL(V,) with finite
monodromy;

(2) the subquotients Fil°G ¢ /Fil®T G are trivial if a ¢ Q and are abelian groups killed by p if
ac Q1.

Proof. (1) Since the conductor is additive and is invariant upon base change to the completion
of the maximal unramified extension of K (Proposition 2.2.5(4)), we may assume that p is
irreducible and factors exactly through the Galois group of a totally ramified Galois extension
L/K. We may also assume that the residue field k is imperfect and that the extension is wildly
ramified since the classical case is well-known (Propositions 2.2.5(7) and 2.2.14). We need only
show that Art(p) =b(L/K) - dim p € Z.

Now we reduce to the finite p-basis case. Choose a finite subset Jy C J such that k:(bjl-/ )
is linearly independent of I for any j € J\Jy. Pick lifts b; € O of b; for each je J\Jp.
Define K = K(b;/pn;j € J\Jo,n € N)" and L; = K1 L. It is easy to see that [Ly : K1) =[L: K],
er, /K, = er/Kk, and [l1:ki] > [l: k], where ki1 and [; are the residue fields of K; and L,
respectively. Thus, all the inequalities are forced to be equalities. This implies G, )k, =G /K
and Op, = O ®o, Ok,. By Proposition 2.2.5(4’), b(L;/K;)=0b(L/K). Therefore, we may
reduce to the case where Hypothesis 3.1.2 holds.
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Since adding generic pth roots does not change (x, the condition of this proposition says that
b(L/K) is invariant under the operation of adding generic pth roots. By Proposition 4.1.5, we
may assume that L/K is non-fiercely ramified as the base changes do not change the conductor.
In this case, Proposition 2.2.5(4’) implies that replacing K by K(b;/pn;j € J,n € N)" does not
change the conductor. Hence, we can reduce to the classical case; the statement then follows
from Proposition 2.2.14.

Now we prove (2), following the idea of [Ked07, Theorem 3.5.13]. Let L be a finite Galois
extension of K with Galois group Gy ; then we obtain an induced filtration on Gy . It suffices
to check that Fil*Gp Janicane /K s abelian and killed by p; moreover, we may quotient
further to reduce to the case where Fil*TG], /K is the trivial group but Fil®Gp i is not. As
above, we may reduce to the classical case because the ramification break of any intermediate
extension between L and K is also preserved under the operations above. The statement follows
from Proposition 2.2.14. O

4.2 Base change for generic pth roots

In this subsection, we prove the key technical result, Theorem 4.2.9. We retain Hypotheses 3.1.2
and 3.2.10. When proving the main theorem, we will need a technical assumption,
Hypothesis 4.2.8, which is satisfied by any recursive thickening space coming from a thickening
space, owing to Example 3.6.5.

Notation 4.2.1. For this subsection, fix jo € J and n € N coprime to p. As in Definition 4.1.4, let
K (z)" be the completion of K (z) with respect to the 1-Gauss norm, and let K’ be the completion
of the maximal unramified extension of K (z)". Let K = K'((bjo + :B’/TK)l/p) and L = LK. Write

Bjo = (bj, + :mrK)l/ P for simplicity. Denote the residue fields of K and L by k and [, respectively.

LEMMA 4.2.2. If Ejl-({p ¢ |, we have the ramification break b(L/K) = b(L/K).
Proof. Since [ = kI, we have O3 = O @0, Or; the lemma follows from Proposition 2.2.5(4’). O

So we need to deal with the non-trivial case where 5;({ P ¢ 1. We present an elementary lemma
first.

LEMMA 4.2.3. Assume s € Zxq and Bk > s/e+ 1. Let m € O, be such that w/n§ € Of . Then,
there exist no u € O and b € Oy, such that u? —b — xm € 7r8+1(9L/.

Proof. We use induction on s. When s = 0, this statement is equivalent to x ¢ [P + [, which is true.
Assume that the statement is true for s < s with sg € Z~¢. Suppose that for 7 € 77°O;, we can
find p € Ops and b € Op, such that u? +b —zm € 7r50+1(9L/. Then we must have pu? =b mod 7.
Since PN 1= P, we may write p= po + mppy with po € Op and py € 7Oy such that b= u%’
mod 7. Thus,

pP —b—zm =7l + (uf — b) + zw mod p.

Since i > sp/e+ 1 and z is transcendental over L, we must have ug —be WIL)/OL and sg = p.
We would then have

b
,UI‘FMO +$*Eﬂ'i p+10L/,
T L
which should not exist by the inductive hypothesis. This is a contradiction. O
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Notation 4.2.4. From now on, we write ¢ i instead of 1, as we will be considering the ¥-functions
for different fields.

Notation 4.2.5. Write Rz = Og[no/mx,ns, tm+1]. Applying Construction 3.2.1 to K gives
a function 9z : O — Rz which is an approximate homomorphism modulo the ideal Iz =

p(no/mk 77Ju{m+1}) Rk

LEMMA 4.2.6. There exists a unique continuous Ok-homomorphism f*: Rk — Ry such that
£(65) = mj for j € J*\{jo} and f*(dj,) = (Bjo + 1jo)? — (& + Nm+1) (7 +10)"™ — bjy. It gives the
following approximately commutative diagram modulo I.

Vi

Ok Oklldo/7K,07] = Rk

i P (4.2.7)

Of( — O[}HUO/WIO 77JU{m+1}]] = Rf(
For a>1, f* gives a morphism f : A}?” [0, 0] — A" +H0, 69].
Proof. This follows immediately from Proposition 3.2.8. a

HyprOTHESIS 4.2.8. For the next theorem, we assume that in Construction 3.6.1 there exists
Ao € A such that the field extension ky,/ky,—1 is given by k), = kAO,l(le.(J/p) and ¢y, = 13]1-0/]3.

THEOREM 4.2.9. Assume Hypothesis 4.2.8 and keep the notation as above. Moreover, assume
that Bg >n+ 1. Let a € Qs1 and w > n + 1. Let TS“L/K Ro.1 Rn be a recursive thickening space

with error gauge >w. Then TS%/K,iROJ,mA X Am+1[0, g0 1 AEH[O, 0] is a recursive thickening space

for E/K with error gauge >w — n.

The reader can feel free to skip this proof when reading this paper for the first time; one may
get a feel of the proof through understanding Example 4.2.10.

Ezxample 4.2.10. We continue with Example 3.3.4 and use the notation from there. As in
Notation 4.2.1, we set K’ to be the completion of K (z)=Q,(¢,)(b, )" with respect to the
1-Gauss norm. (It turns out that K’ having separably closed residue field is not important for
this example, so we ignore this minor point.) Let K = K'((b+ z7mg)'/?) and L = LK. Write
B = (b+ ang)'/? for simplicity. Denote the residue fields of K and L by k=T,(z,b) and I,
respectively.

We first try to understand the extension Z/ K in terms of generators and relations. Recall
that the extension Op /O is generated by ¢= (b+ mx)"/? and 7 = (brg)'/? with relations
po=uh —brg and p; =u) —b— mk. These relations do generate Z/I? , but they may not
generate the extension on the level of rings of integers. In particular, we need to modify p;
to be

uf — B + ang — kg = (w1 — B)P + amx — T —i—p(u’l’_lﬁ — = Py,
So, to get a proper relation, we should use the generator ¢ = (¢ — 3) /7y with the proxy v. The

relation then becomes

q=10"+

L (B el (3 ugn) ).
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Hence v generates an extension of K (m) of degree p with inseparable residue field extension.
The upshot here is that the introduction of the transcendental element x guarantees that we only
divide the relation p1 by an element of norm |wg| but not any further.

Now, we try to understand the base change TS/ |, X a2 (0,94, 1 A% [0, 6¢]. Its ring of functions
is just
K(“Ua Ui, W}?aéoa 7T;(a51>/(¢(]00)7 dj(pl)) ®K<W;a5o,ﬂl_<a51>,f* K<7r;(a7707 7_[_;((1,'71, Tr;(a"72>a (4211)
where f*(do) =mno and f*(61) = (8 + m)? — (z + m2) (7K + 1m0) — b.
Upon replacing u; by 5+ n1 + ugv, we see that (4.2.11) becomes
K (ug, B+ m + uob, 7 no, 71, T n2) / (a1, q2)

where

g1 =uh — (75 +10)(B+m)P — (7K +n0)*(x + n2),
@ = (B+m+uw)? — (B+m)P+ (rx +no)(z + n2) — (K + 10)-

With the help of ¢1, g2 can be replaced by
¢ = ((B+m)’ — (7x +m0) (@ +12))o” +p(- - ) /(7K +m0) + 2+ 172 — 1.

It may not be too easy to see immediately that K(ug, 3+ uov, 7 0o, 7 N1, 77;(“172>/(q1, q)
gives a thickening space for L/K of error gauge <f8x —1=p—2. But at least ¢; is just
Y (ug — BPrg — wmy) and the major term (6 + )P — (mx + no)(x + 12))0? + x + 02 — 1 of ¢}
is close to 1 (bq).

Proof of Theorem 4.2.9. Step 1. Find the generators of 07 /Of.

The difficulty comes from the fact that 77, ; and ¢y do not generate Oi over Of( (although
they do generate L over K). We need to change the generator ¢y, to an element which gives
either of the following cases.

Case A. The inseparable extension [ of [(z)*°P, which happens when L / K has naive ramification
degree e.

Case B. A ramified extension of nalve ramification degree p, which happens whenNZ/ K has
naive ramification degree ep; in this case, the generator is a uniformizer of L.

Write L' = LK’, which has residue field I’ = [(Z)*P. Then we have O = O @0, Of. Hence,
O @0y, OpL =0 ®0,, Op € Of. We may extend the valuation vy (-) to L by allowing rational
valuations in case B. Let 3, — p for u € Ops be an element achieving the maximal valuation under
vr/(+) among the 3;, + Op.

CramM. We have oo = vy (Bj, — p) < en/p and one of the following.

Case A. The reduction of ¢y, =7,%(8j, — p) in [ generates [ over I’ (we also set d=1 by
convention).

Case B.  We have vz(wz[a](ﬁjo —p)) =d/p for some de{1,...,p—1}; in this case we fix a

dthroot 7z ., of m, o] (Bj, — 1), which then generates the naively ramified extension
05/0r:.

Proof of the claim. We have the norm Ng (1 — Bjo) = pP — (bj, + 7). By Lemma 4.2.3,
there is no p € O/ whose pth power can cancel with the z7} term, ”L’(NE/L' (Bjo — 1)) < en,
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and the first statement of the claim follows. When a ¢ N, we fall in case B and the claim is
obvious. Assume, for contradiction, that « € N and the reduction of ¢y, lies in . Then there
exists p' € Oy such that i/ /n¢ = ¢y, (mod mz). But then 3, — u — ' will have bigger valuation,
which contradicts our choice of u. This proves the claim.
Step 2. Find the generating relations.

By the previous step, we can write

O (to,1, Ua\ x> 6>/(150 I ﬁA\AOu q) =0z
by sending ug s to co1, Up\n, tO €p\n,, and b to ¢y, in case A and to TF rot1 in case B,
where the relations p ;, p A\ and g corresponding to ug 7, Up\y, and v can be obtained using

Construction 3.6.1. Now, we link these relations to the relations p, ; and p, for Or,/Of. We first
lift the isomorphism

X: [?010717’:%\)\0: v)/(Po IaﬁA\Am q) =~ L=K ®ox O~ (uo I, uA)/(Po,I, pa)
to a homomorphism x : O (tlo 1, Ua\rg> 0) — O (uo,r, ua)[1/ (Mo, )] that sends g to ugr,

Up\y, tO upyy, and ﬁg)fioﬁ to the lift of X(u([)yioﬁ) using the standard basis defined in

Construction 3.6.1. Then ué{);)l)[a]x(ﬁoyl), u((){);)l)[a]x(ﬁA\Ao) and ug[rgx(q) are contained in the

ideal (pg s, po)OK (uo,1, ua), because the maximal powers of b in the equations are p —1,p —1
and p, respectively.
Step 3. Explain the goal.

We are going to establish an R z-isomorphism X : A5 A where

A= S/ (rc(Pos) + Rot, i () + Ba) Oy s Ry m | (4.2.12)

Azef([]ﬂ /(¢K(p01)+m01a¢K(pA\>\o)+mA\>\oaT/}K( ) + Ra). (4.2.13)

Here, &y =TRg(lgs,tp\n,0) and we can define ‘ﬁ% for a€(1/ep)N similarly to
Construction 3.6.1. We first define a ring homomorphism X :6z[1/p] = A by x(uor) =uor,
X(Ua\xg) = ta\n, and X () = ¥ (x()); the set 9%0 I SRA\)\, 9‘1 will be admissible with error gauge
>w — n, so that x factors through A.

Step 4. Bound the error gauge. We first determine 5%07 I 5‘{/\\)\0, 5%5,. We proceed similarly to
Proposition 3.6.6. To write this argument uniformly, we divide into the following four cases.

Case (a). Let p= uépml)[a]po ;, for some g € I and % = u(p 1)[0‘}9{0 I

Case (b). Let p= 1.1(()pr0 )[a]ﬁA for A€ A\{A\o} and R = u(()prol)[a]%A.

Case (c). Let p= uO[T]q and R = [ ]i)‘i~ assuming we are in case A.

Case (d). Let p= ug[r]q and R = uo[r}%q, assuming we are in case B.
By Step 2,

X(p) = Z Bo,iPo,i + Z HaPa

icl AeA
with some b ;, by € Oz (uo 1, up), for i € I and A € A. Moreover, in case (a), for some ig € I

we can require that b, E‘ﬂmax{(% men)/e0h o 7 (uo,r, un) and b Emiéo’l/e.(?g(uo’[,um
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for i € I and X € A; in case (d), we can require that by € ‘)"(1/6 O (uo 1, up) for A € A. Thus, we
want to define R € & 7 so that — X(R) is equal to

XWg0) =Y rbo)vr(mo) + > v )vg(p,) + €

iel AEA
=Y Wi(bo) (o) + D Vi(hy)(—Ry) + €
el A€A
(mw—l+€i071/6n0’ mw+8i071/e77ju{m+1}) NG e Ry RI? in case (a),
e d (e, NNis(meny) - Ok Ory R in case (b) or (c),
(11 ep. mw+1/emu{m+1}) Gk ®r, Ri in case (d),

where the error term € that comes from v failing to be a homomorphism (see Proposition 3.2.8)
can be bounded as
(NP, mﬂK+177ju{m+1}) -6k Ory Ry in case (a),
¢ { MEL5), MPEG ) - B DR, Rz in case (b) or (c),
(N1, mﬂK+177ju{m+l}) -Gk @ry Ry in case (d).

Thus, we can find polynomials o, . . . , Ti1 € O [Uo 1, Ua\xgs ﬁéo"ioﬁ] — Oz ®o, Of such that
(ﬁgio “rSiom - O [to,1, Ua\ s ﬁ%ﬂoﬁ] in case (a),
o € § Ug5 ¢ Ol 1, Uay fl([)afloﬁ] in case (b) or (c),
ugsy et ~ Ot 1, Ua\xg s ﬁ%?lloﬁ] in case (d);
ﬁg,ij%_l O [to,1, Ua\rgs ﬁ{fio b] in case (a),
Tl .oy Ul € ﬁgio . Of([ﬁo,[, ’:‘A\Aoa ﬁgcfloﬁ] in case (b) or (C),
ﬁgijl Of[to,1, ta\n» ﬁ([floﬁ] in case (d);

and

—X(¥7(P) — X(Fono + -+ + T 10m1)

(770/7TK777Ju{m+1})(mw Ieio- 1/6770 M Feio-1/e 77Ju{m+1}) in case (a),
(GKk ®rx R)
c 3 (/7K Myugm+1y) (O no, NN 50¢m1}) in case (b) or (c),
(GKk ®rk R)
(no/7x, 77JU{m+1})< e MY e y) in case (d).
[ (6K ®ri Ri)

Further, we can similarly approximate the coefficients of n;n; for j,j € J*t U{m+ 1}.
Repeating this approximation gives the expression of R € &;. From this and a <en/p,
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we can obtain 9~‘i071, 5‘{,\\)\0, iﬁq € (77J+U{m+1}) - &z such that

5{0,1'0 € (ﬂg;;yreioilienno, ﬁBJ’igeiOilienT]Ju{m_f_l}) : Gf( for io S I,
R € (@m0, Bgoo ™ yuqmany) - G for A€ A\Xo;
R o {(ﬁ‘a’,io””no, Ugso "Miufme1y) G in case A,
Tl e o, S s gme1y) - S in case B.

These have error gauge >w — n. Moreover, X induces a continuous homomorphism x : A — A.

Step 5. Prove that x is an isomorphism.

To prove that x is an isomorphism, it suffices to show the surjectivity, as both A and A are
finite free modules over R z[1/p] of the same rank. Since (3.6.2) forms a basis of A over R z[1/p],
we only need to show that ug ; and up are in the image of x. This is obvious for ug ; and uy\y,-
For uy,, we first find an element in Oz[tig 1, g\ 5, ﬁgﬂoﬁ] — O ®o, O whose image under Y
is uy,. Then we use the similar approximation in Step 4 to find an element in A whose image
under x is exactly uy,. This finishes the proof. O

Remark 4.2.14. We expect that when w and hence (g is ‘large’ compared to [L: K],
Theorem 4.2.9 will also be valid if we add a generic p>*th root (defined in [XialO,
Definition 5.2.2]); this amounts to controlling the discrepancy between O7 and Oz ®o, Or.
Hence, in this case, one can obtain a comparison theorem between the arithmetic Artin conductor
and Borger’s Artin conductor [Bor04] as in [Xial0, §5.4].

4.3 Non-logarithmic Hasse—Arf theorem

In this subsection, we apply Theorem 4.2.9 to obtain Theorem 4.3.5, the Hasse—Arf theorem for
non-logarithmic ramification filtrations.

We assume Hypothesis 3.1.2 until the last theorem. As a reminder, up to the end of the paper
Hypothesis 4.2.8 will no longer be assumed.

Notation 4.3.1. Keep the notation as in Construction 3.1.6. Fix jo€ J and n € N. Let K=
K'((bj, + xm%)/P) as in Notation 4.2.1. Write 8;, = (bj, + x7%)/? for simplicity.

LEMMA 4.3.2. Assume p{n and fg >n. Let aj+ CRso and ap=aj, = am+1 > max{(n —
1)/(p — 1), 1}. Define a); = a; for j € J"\{jo} and a} = aj, +n — 1. The morphism f* defined
in Lemma 4.2.6 restricts to a morphism

frAL0%,0%) 5 -+ x AL[0%m 1, 0% 1] — AR [0, 0%0] x - -+ x AR [, 6%m].
In other words, we change the joth radius from aj, to aj, +mn — 1.
Proof. Tt suffices to verify that if |no| = [nj,| = [Jm+1]| = 0%°, then |§;| = 6%0T"~1; indeed,
djo = ((Bjo +mjo)? = By) — x((mk +n0)" — ) + M1 (T +m0)",
which has norm §%07"~1 because the second term does and the other terms have bigger norms. O

LEMMA 4.3.3. Keep the notation and assumptions as in the previous lemma. Let £ be a
differential module over A%[0,0%] x - - - x AL[0,0%]. Then IR(f*E; ay+) = IR(E; af,+u{m+1}).

Proof. The morphism f* induces a homomorphism on the differentials: dd; +— dn; for
j€J"\{jo} and ddjy — p(Bj, + njo)p_ldnjo + (7K + 10)" A1 + (T + Dmt1) (T + Uo)”_ldno‘
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Thus,
9l p-e = djle  for j € J\{jo},
0| e = p(Bjo + i )*~ 1 Djoe,
Olpe = (T +m0)" - Ojole,
Alye = Oole +n(x + 1) (mx +10)" " - Bjo e,
where 8} =0/0n; for j=0,...,m+ 1. Hence,

IR;(f*E; ag+upmeny) = IR;(E;aly ) for all j € J\{jo},
IRj, (f*E; ayrupmrry) < IRjo (€5 alhy),

Ry 1(f €5 agiigmery) = 0" - TRy (€5 alyy),
IRo(f*E; ag+upmery) = min{IRo(E, /)1 ), IR;, (5 alyy)},

where the second inequality follows from Proposition 2.1.19 and the last equality holds
by Proposition 2.1.17 because x is transcendental over K. It follows that IR(&;a/,) =

IR(f*E; ag+ufmety)- m

THEOREM 4.3.4. Let L/K be a finite Galois extension satisfying Hypotheses 3.1.2 and 3.2.10.
The highest non-logarithmic ramification break of L/ K is invariant under the operation of adding
a generic pth root.

Proof. Adding a generic pth root corresponds to setting n = 1 in the notation of this subsection.
Fix a choice of ¥ in Construction 3.2.1. Let TS%/K " be the standard thickening space for L/ K.
By Example 3.6.5, we can turn this standard thickening space into a recursive thickening space
(with error gauge 263(); By Theorem 4.2.9, TS} ., X Amt1[0,ga). 5 A%J&[O, 6%] is a recursive
thickening space for L/K with error gauge >f) — 1, which is isomorphic to some thickening
space for L/K by Proposition 3.6.6.

Let €& be the differential module over A7'!(0,67] coming from TS¢ Kb Then the

~ o~ YWK

differential module f*& is associated to L/K. Applying Lemma 4.3.3 (to the case n =1) gives
IR(f*€;5) =1IR(E; s) for s > b(L/K) — € with € >0 as in Theorem 3.4.2. The theorem follows
from Proposition 3.5.2. O

On combining Theorem 4.3.4 and Proposition 4.1.8, we have the following theorem.

THEOREM 4.3.5. Let K be a complete discrete valuation field of mixed characteristic (0, p)

which is not absolutely unramified. Let p:Gg — GL(V,) be a representation with finite

monodromy. Then:

(1) Art(p) is a non-negative integer;

(2) the subquotients Fil°G i /Fil*T G are trivial if a ¢ Q and are abelian groups killed by p if
a€ Q1.

4.4 Application to finite flat group schemes
This subsection is an analogue of [Xial0, §4.1] in the mixed characteristic case.

We first recall the definition of Abbes—Saito ramification filtration on finite flat group
schemes [AMO04].

Convention 4.4.1. All finite flat group schemes are commutative.
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DEFINITION 4.4.2. Let A be a finite flat Og-algebra. Write A = Og|x1,...,2zy]/Z with T an
ideal generated by f1, ..., fr. For a € Qx¢, define the rigid space

X ={(z1,...,2,) € A%[0, 1] : | fi(z1, ..., @p)| <O fori=1,...,r}.

The highest break b(A/Ok) of A is the smallest number such that for all a > b(A/Ok),
#m§" (X ) =rank o,  A. This is the same as Definition 2.2.3 when A = Op; but, in notation,
we use the ring of integers instead of the fields themselves.

DEFINITION 4.4.3. Now we specialize to the case where G = Spec A is a finite flat group scheme.
We have a natural map of points G(K?8) — X(K®#). Upon composing further with the map
for geometric connected components, we obtain

o - G(Kalg) SN Xa(Kalg) N W%eom(Xa).

By functoriality of o, one can see that w§ " (X“) has a natural group structure and that
o® is a homomorphism [AMO04, 2.3]. Define G® to be the Zariski closure of ker o®. Also, put
Gt =lim,_ G°.

—b>a
LEMMA 4.4.4 [AMO04, Lemme 2.1.5]. Let K’/ K be a (not necessarily finite) extension of complete
discrete valuation fields of naive ramification index e. Let A be a finite flat Ox-algebra which is
a complete intersection relative to Ok. Put A' = A ®p, Okr; then b(A'/O/) =€ - b(A/Ok).

DEFINITION 4.4.5. We say the finite flat group scheme G is generically trivial if G x o, K is the
disjoint union of copies of SpecK, with some abelian group structure.

THEOREM 4.4.6. Let G = SpecA be a generically trivial finite flat group scheme over Og . Then
b(A/Ok) is a non-negative integer.

Proof. Let ged(ny, n2) =1, and let K,,, and K,, be two tamely ramified extensions of K with
ramification degrees n; and ns, respectively. By Lemma 4.4.4, it suffices to prove the theorem
for G xo, OKnl/OKnl and G xoy Ok, /OKnQ, respectively. Thus, we may assume that g > 2.
The result follows from Theorem 4.3.5 and the same argument as in [Xial0, Proposition 5.1.7]. O

4.5 Integrality for Swan conductors

In this subsection, we will deduce the integrality of Swan conductors from that of Artin
conductors (Theorem 4.3.5). We will use the fact that the logarithmic ramification breaks behave
well under tame base changes.

We will keep Hypotheses 3.1.2 and 3.2.10 until we state Theorem 4.5.14.

Notation 4.5.1. Let n € N be such that n =1 (mod ep). Define K, = K(?T%n) and L, = LK),

Since K, and L are linearly independent over K, we have Gal(L,/K,)= Gal(L/K). We take

the uniformizers of K, and L,, to be g, = W}(/n and 7y, =7/ 71_}7(1;1)/ ©, respectively.

Notation 4.5.2. Write Rk, = Ok, [n0/7k,,,ns]. Applying Construction 3.2.1 to K, gives an
approximate homomorphism v, : Ox, — Ok, [n0/7 Kk, , 1]

LEMMA 4.5.3. There exists a unique continuous Og-homomorphism f;; : Rk — Rk, sending dg
to (mk, +mo)" — K and §; to n; for j € J. This gives the following approximately commutative
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diagram modulo Ik, = p(no/7k,,n7) - RKk, -

Ok vx Ok [bo/7K, 01]
s
VK,
OK’/L OKn [[770/77Kn7 77J]]

Proof. This result follows from Proposition 3.2.8. In fact, one can carefully choose ¥k and 9k,
so that the above diagram commutes, but we do not need this here. O

PROPOSITION 4.5.4. Fix a € Qso. Let TS%/K logc D€ the standard logarithmic thickening
space. Then the space

X =TS] i 1ogwne X (AL 0,67+ AT [0.6°]). 1 (Akc,, [0, 6>/ x AR [0, 6°])
is a logarithmic thickening space for Ly, /K, with error gauge >nf3x — (n — 1); in particular, it is

admissible.

Proof. First, we have
1
Sk S0y Ko O I/l 3| (052) / (i),

Now we consider a construction of the logarithmic thickening space of L,,/ K, using the same
cy as for L/K and mp, in Notation 4.5.1. Therefore, the ideal 7, /k, is generated by pr and
v,/ 7r7;(;1, where the prime means to replace ug with ﬂ'%ln_l)/ “up.

Lemma 4.5.3 implies that

i /) = Fr(rc () (e, + )"t € g (R e png) - Sk (45.5)
where Sk, = Ok, [n0/7k, , 1] {uy, ur). Hence,
Sk Gox Kn = O, [0/ 1] B] (s /(£ Wrc (o)), £ (65 (B)
=S 3| /om0 i, + ) £ )

gives rise to logarithmic thickening spaces for L, /K, with error gauge >nfx — (n — 1); note
that K, /K being tamely ramified of ramification degree n gives a different normalization on the
error gauge. a

PROPOSITION 4.5.6. There exists N € N and ar i € [0, 1] such that, for all integers n > N
congruent to 1 modulo ep, we have

n - biog (L) K) = b(Ln/Kyp) — g .

Proof. By Construction 2.1.16, f gives a finite étale morphism f,, : A [0, 91/”) x AR [0,1) —

n

AL[0,0) x A[0,1) for a > 0. Let &£ denote the differential module associated to L/K coming
from a standard logarithmic thickening space. By Proposition 4.5.4, f& is a differential module
associated to L, /K, given by the thickening space X therein (for some admissible subset of
error gauge <fOxgn — (n — 1)). In particular,

ETL, k. 2ETL K X at00)xapion.fn Ak, [0,0"™) x AR [0,1) =: f(BT k),

where ETy, /i, is the étale locus with respect to this chosen admissible subset.
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The morphism f, is an off-centered tame base change, as discussed in §2.1. By
Proposition 2.1.17, for sy+ CR such that AL[0,6%] x --- x AL[0,05™] C ETr k, we have
IR(fr&; s5+) =1IR(E; s0 + (n —1)/n, sz). Thus, by Corollary 3.5.4,

b(Ln/Kn) =n-min {s | AZ0,6°] CET,, /i, and IR(f1E;s) =1}
— n-minfs | AJ[0,0%) C £3(ET, ) and IR(f3€: 5) = 1}
=n-min{s | A [0, 07D/ x A0, 0°] CET
and IR(E;s+ (n—1)/n,s) =1}, (4.5.7)

where the second equality holds because, as we shall see in a moment, the minimum of s can be
achieved inside ETp, k. (Here, we have an extra n in the equation because we are supposed to

use |7, | = 0'/" as the ‘base scale’ in Corollary 3.5.4.)

Applying Proposition 2.1.23(c) to £, we know that the locus Z(€) = {(s+) | IR(E; s5+) =1}
is transrational polyhedral in a neighborhood of [bjog(L/K), +00)™ "1, namely, where & is defined.
Hence, in a neighborhood of s; = b, (L/K), the intersection of the boundary of Z with the
surface defined by s; = - - = s,, is of the form

So — O/Sl = b]og(L/K) +1-— O/b]og(L/K),

where o/ is the slope; we have o’ € [—o0, 0] by the monotonicity property of Proposition 2.1.23(c).
When n >0, it is clear that the line s+ (s+ (n—1)/n,s,...,s) hits the boundary of Z at
s =biog(L/K)+1/(n(1 — ¢')). This justifies the second equality in (4.5.7). It follows that

b(Ln/Kp) = n - bog(L/K) +1/(1 — o).

The different normalizations for ramification filtrations on G and Gk, give the extra factor n. O

Remark 4.5.8. With more careful calculations, it is possible to prove the above proposition and
Proposition 4.5.11 below for any n that is sufficiently large and coprime to p.

Notation 4.5.9. Assume p > 2. Let (by) be a p-basis of K; it naturally gives a p-basis of K,.
Let K,(x;)" denote the completion of K, (x;) with respect to the (1,...,1)-Gauss norm, and
let K/, denote the completion of the maximal unramified extension of K, (zs)". Set

K, =K, ((by +zjm% )YP), L,=K,L.

Write 8; = (bj + xjﬂ%(n)l/p for j € J. By Lemma 4.2.6, we have a continuous O, -homomorphism

f O, [0/ 7k, sl = O [60/7K,: €7, €51 such that J?*(’Oo)f & and f*(n;) = (8 +&)P —
(zj + &) (T, + £0)? —b; for j € J. For a > 1, it gives rise to f: A%WH[O, 0] — A%:l[o, 0] —

A 0,07 x AR [0, 62=1/7], where the last morphism is the natural inclusion of an affinoid
subdomain.

PROPOSITION 4.5.10. Assume p>2, (x> (2m+n)/n, and a€Qsy. Let X be as in
Proposition 4.5.4. Then the space

_ A2m+1 a+l/n
X x Af{n [0,0 ]

(Al, [0,09F1/7]x AR [0,6]),]

is a thickening space for En/f(n with error gauge >nfx — 2m —n+ 1; in particular, it is
admissible.

Proof. The assertion follows immediately from Proposition 4.5.6 and applying Theorem 4.2.9 m
times. O
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PROPOSITION 4.5.11. Assume p > 2. There exists N € N such that, for all integers n > N
congruent to 1 modulo ep, we have

n-biog(L/K) — 1 =b(Ln/Ky,) — 20k, (4.5.12)

where ay i is the same as in Proposition 4.5.6.

Proof. We continue with the notation from Proposition 4.5.6. The previous proposition implies
that f* & is a differential module associated to L, / K,, when n > m. By applying Lemma 4.3.3
m times, we have IR(f*f:€; s) = IR(f*&; s, s + 1/n). By Proposition 2.1.17, this further equals
IR(&; s+ (n—1)/n, s+ 1/n). By the same argument as in Theorem 4.5.6, we deduce our result
with the same ap /. O

Remark 4.5.13. When p = 2, we study K, = K/ ((bs+ xJW?(n)l/p) instead; the same argument
as above proves the proposition with (4.5.12) replaced by

1 biog(L/K) = 2 =b(Ln/Ky) — 3oy, k-
For the following theorem, we do not impose any supplementary assumptions on K.

THEOREM 4.5.14. Let K be a complete discrete valuation field of mixed characteristic (0, p) and
let p: Gg — GL(V,) be a representation with finite monodromy. Then Swan(p) is a non-negative
integer if p # 2 and is in %Z if p=2.

Proof. First, as in the proof of Proposition 4.1.8, we may reduce to the case where p is irreducible
and factors through a finite Galois extension L/K, for which Hypothesis 3.1.2 holds. In this case,
Swan(p) = bjeg(L/K) - dim p.

By Proposition 2.2.5(4), we have Swan(p|x,)=mn-Swan(p) for any Kn:K(ﬂ'}(/n) with

ged(n, ep) = 1. We need only prove that Swan(p|g,, ) € Z for two coprime values of n satisfying
ged(n, ep) =1, and the statement for Swan(p) will follow immediately. In particular, we may
assume that G > 2.

When p > 2, we repeat the same argument again. There exist n; and no that satisfy the
condition of Propositions 4.5.6 and 4.5.11 and are such that ged(ni, ng) = 1. Thus, by the non-
logarithmic Hasse—Arf theorem, Theorem 4.3.5, we have

niSwan(p) + ar/k dim p € Z, niSwan(p) + 2,/ dim p € Z;
ngSwan(p) + ap/k dim p € Z, naSwan(p) + 2y, dim p € Z.
This implies immediately that ay,/x dim p € Z; hence, Swan(p) € Z.

When p =2, a similar argument using Remark 4.5.13 gives Swan(p) € %Z. O

Remark 4.5.15. When p =2, we expect integrality of Swan conductors in the case where K
is the composition of a discrete completely valued field with perfect residue field and an
absolutely unramified complete discrete valuation field. In this case, we can factor ¥g as
Ok — Ok|do/mk] — Okldo/7K, 6] with the second map being a homomorphism. This fact
may allow us to show that oy /k is either 0 or 1 depending on whether 9y dominates.

We do not know whether the integrality of Swan(p) might fail for p =2 in general.
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4.6 An example of wildly ramified base change

In this subsection, we explicitly calculate an example, which will be used in the next subsection.
This example was first introduced in [Ked07, Proposition 2.7.11]. We retain Hypotheses 3.1.2
and 3.2.10.

LEMMA 4.6.1. Let K, be the finite extension of K generated by a root of
TP + 1 TP =g (4.6.2)

Then K, is Galois over K. Moreover, the logarithmic ramification break bi,g(K./K) equals 1.

Proof. Let h(T) = TP 4+ nxTP~! — 7x and let @ be a root of h. It is clear that = is a uniformizer
of K. We have

hw+T)=(w+ TP +7rx(w+ TP -7k
p—1 p—1 1
SLESY (?) D TP g Y (p , )#”Tﬂ
=1 v =1 ¢
p—1 1 p—1
@?PTP + 7 Z (p B )priTi + Z (p) vl
1 1
=1 =1

= 7r§((1 — wpfl)sz + 77%((1 — wpfl)(p - 1T

h(w + =*T)

p—1 p—1

—1\ . 4 4 )

+ 77%((1 — wpfl) E (p ; >w21TZ + E <i)> PP,
i—2 i=1

Here, the terms are organized so that those written in the summations are small. We see that
h(w + w?T) /7% is congruent to TP — T modulo w. By Hensel’s lemma, it splits completely in
K,. Hence, K, /K is Galois. Moreover, the valuation of the difference between two distinct roots
is 2. This implies that bjog(K./K) = 1. O

Notation 4.6.3. Denote the roots of h(T) =TP + mgTP~! — g by w =1, ..., @p.
For a > 0, the standard logarithmic thickening space TS /K log, i for K, /K is given by

Ot ko = K (TR 00, T8, 2)/ (27 + (mic + 80)2" ™ — (i + ).

LEMMA 4.6.4. Assume a € Qs1. The standard logarithmic thickening space TS%(*/K,log wr XK
K, is isomorphic to the product of AR [0,0 with the disjoint union of p discs defined by
12—, | <OPDP fory=1,...,p.

Proof. We can rewrite 2P + (7 + 80)2P~! — (7 + 8) =0 as
P
[[Gz-@y)=6d(1—27). (4.6.5)
y=1

Since |z| <1, the right-hand side of (4.6.5) has norm less than or equal to §¢*1, which is less
than 62. On the left-hand side, for v #+' € {1,...,p} we have |, — w./| = 6?/P. This forces
one of the |z —w,,| to be strictly smaller than the others, for some 7o € {1,...,p}. Thus,
2~ | = Iool (671 = o020 o
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Notation 4.6.6. For ~y=1,...,p, we define the K,-homomorphism fJ:Ok[do/mK]—
Ok, [no/w+] by sending dy to

(wy + m0)P

1— (@, + ot KT Z((wv + )PPl — ptn(P=l)) (4.6.7)
v

n=0

LEMMA 4.6.8. Fora> 1, f* induces a K-morphism [, : A [0, go—(P=2)/P] — A} [0, 09F1], which
is an isomorphism when we tensor the target with K, over K. Moreover, if we use Fgi1

and F(;kf(p72)/p to denote, respectively, the completions of K(d9) and K.(ny) with respect
to the #*t'-Gauss norm and 0°tP=2/P_Gauss norm, then [ extends to a homomorphism
Foiq1— Fx

a—(p—2)/p°

Proof. The statement follows from the fact that the leading term in (4.6.7) is (2p — 1)w3p po. O

PROPOSITION 4.6.9. Assume a > 1. Let € be a differential module over A}[0,0°1]. For each
v €{1,...,p}, this gives a differential module f3€ over A}(* [0, ¢~ (»=2)/P], Then we have

IRo(f7€;a = (p—2)/p) =IRo(E;a +1).

Proof. The proof is similar to Proposition 2.1.17. By Lemma 4.6.8, we have the commutative

diagram
fgcn —a—1
Fat1 For1[m" " Tolo
13 lfff
* f”jen * —pa+p—2
Faf(pr)/p — Fa_(p_z)/p[[vaa P Té]]o

where we extend f* by f*(Tp) = (wy +no +T3)P /(1 — (wy +m0 + T)P 1) — (wy +m0)P/(1 —
(y + )P~ ).
We claim that for r € [0, 1), fJ induces an isomorphism

Frpayjp X f2 B (AR, [0,707T1)) ~ AL [0, rgo—(P=2)/py,

“ a—(p=2)/p
Indeed, if |Tj| < r§*~®P=2/P_ then
_ (A4 TP (@ +m)?
1= (@y +no+Tg)P~" 1= (@y+mo)P"
= ((wy + 10 + T0)? — (@ +1m0)?) + (@i + 10 + Tg)* ™ — (o +10) 1) + - -

€ (2p — 1)(w@y 4 m0)P > Th + (@ + 1m0)*P~ T, TfF) - Ok, (o P4P o) [ PP T

To

Hence, |Tp| = 02P=2/p . |T}| < rg*.
Conversely, if |Ty| < r0%, we rewrite the above equation as

1
(2p — 1)(wy + mo)?P~2

We substitute (4.6.10) back into itself recursively. The equation converges to a T}, which is an
inverse.

Th € To + (w4 T3) - Ok, (@ PP 2no) [, PP 2T (4.6.10)
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Therefore, Lemma 2.1.15 implies that for r € [0, 1),
IRo(E5a+1)<r
= fgen(€ ® Fuy1) is trivial on A};@H [0, r0%*1)
—(p—2
= f foen(€ ® Fai1) = foen([3E€ @ Fy_(,_9y,) 18 trivial on AF; 2 [0, g2~ (P=2)/p)
< IRo(f5&a—(p—2)/p) <7
The proposition follows. O
Construction 4.6.11. Fix a p-basis (by) of K; it naturally gives a p-basis of K. Fix a choice of
Vi : O — Ok[do/7K, 0] as in Construction 3.2.1. We will use the method in Construction 3.2.1
to define ¥k, - for y=1,..., p such that the following diagram commutes.
YK
O — Ok|do/7K, 0]
if; (4.6.12)
w *
Ok, —=> O, [no/w@~, ,4]
For any element h € Ok, first write h = Ef;ol hiwg where h; € Ok. As in Construction 3.2.1,

write each of the h; as h{n}l for e; = vi(h;) and h{ € Ok; choose a compatible system of rth
p-basis decomposition of hf as

pr—1 oo Ai(r)e
o __ eJj n
=3 0 (X )k
eyj=0 n=0 n’=0

for some @ (1) ¢ nn’ € O U{0} and some Ai(r),esm € Z=0. We choose the system of rth p-basis

decomposition of /" ™) to be

)‘i,(r),EJ,n

h s — € " - - n-re;
e vK*(h Zw 2. bJ(i( 2 ai<r>,eJ7n,nf)(w5 T ) “)
’

e;=0 n=0 n'=0

and define ¢, ,(h) to be the limit

p—1 p"—1
li 7 ey

=0 ey=0

0o i (r)e .
' (Z< > ai(r),eJ,n,n’> ((wy +no)P ™"+ (wy + o) 4+ - - )n+ei> }

n=0 n/=0

This gives a v, defined in the way of Construction 3.2.1; the diagram (4.6.12) is
commutative.

HyPOTHESIS 4.6.13. For the rest of this subsection, let L/K, be a finite Galois extension
satisfying Hypotheses 3.1.2 and 3.2.10 and such that L/K is Galois.
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PROPOSITION 4.6.14. Let a € Qs1. Then there exists admissible (Rj+) C (05+) Sk such
that the logarithmic thickening space for L/K, after extension of scalars from K to
K., is isomorphic to a disjoint union of p (different) logarithmic thickening spaces
for L/K,:

p
a ~ pa—p+1
rjlj‘sl//I{?lOgJ%J+ XK K* H TSL/K*vlogz’[pK*K‘/.
=1

Proof. Write O, (uy+)/(ps+) = O using Construction 3.1.6. Since O (z)/(2P + mxzP~1 —
) = Ok, , we may replace the coefficients in pj+ by elements in O (z) with degree no greater
than p — 1 in z; we denote the resulting polynomials by p/,,. Thus, by Lemma 4.6.4 and the
commutativity of (4.6.12),

P
[ Kelwy? P 200, @y P4ty g ) [ (k. o (p+))
v=1

= Km0, mt o) (uge, 2) /(WK (P4 ), 2 + (i + 80)2P 1 — (i + o)),

where the latter is a recursive logarithmic thickening space for L/K, base changed to K. By
Proposition 3.6.6, this recursive logarithmic thickening space is isomorphic to a logarithmic
thickening space TS7 o, R, for L/K for some admissible subset R+ C (05+) - Sk O

COROLLARY 4.6.15. Let & be the differential module over Ajl[0,0°"] x AZ[0, 0%]

coming from TS‘IL/KJOg,Rﬁ. For ve{l,...,p}, let &k, be the differential module
over A} [0,09=(P=2/P] x A7 [0, 0~ (P~V/P] coming from TS%’}Ifﬁig ., Then Epjpc O Ko =

D51 fr€r/k. -
Proof. This follows from Lemma 4.6.4 and Proposition 4.6.14. O

4.7 Subquotients of logarithmic ramification filtration

19t @
log
of logarithmic ramification filtration are abelian groups killed by p if a € Q¢ and are trivial 1f

a ¢ Q. This uses the tricky base change discussed in the previous subsection.

In this subsection, we prove Theorem 4.7.3, which says that the subquotients FillOgG x/Fi

We assume Hypothesis 4.6.13 until we get to stating the main theorem, Theorem 4.7.3.

Notation 4.7.1. Fixy€{1,...,p}. Let (by) be a finite p-basis of K. It naturally gives a p-basis
of K. Denote by K ()" the completion of K (x) with respect to the (1, ..., 1)-Gauss norm and
by K’ the completion of the maximal unramified extension of K(x;)". Write K, = K,.K’
and L' = K/ L. Set

Ky =K ((by + zywl=)HP).

Write 8y = (by + z b )1/ P for simplicity. Denote the residue fields of K and L7 —LK
by k and l, respectively. Take the uniformizer and p-basis of K to be w, and {B;,z J}
respectively.
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Situation 4.7.2. We have the following diagram of field extensions.

L r L,
K,—K,—K,
K—K'

Note that the (IN(V)V:L,“,Z, are extensions of K. conjugate over K’. The ramification filtrations
on G are stable under the conjugate action of Gal(Kj/K' ) To be precise, for any b>0
vy

and g € Gal(K./K"), gFlllOng{vg FﬂlogGg( 7, and gFil’G ¢g~! =Fil’G o)
In particular, since L'/ K" and hence LW / K«, is Galois, b(L v/ K’y) and blog( ~/ K ~) do not depend
onvy=1,...,p.

inside Gg:.

For the following theorem, we do not impose any supplementary assumptions on the field K.

THEOREM 4.7.3. Let K be a complete discrete valuation field of mixed characteristic (0, p). Let
Gk be its Galois group. Then the subquotients Filj,, Gk /Filj, gGK of the logarithmic ramification
filtration are trivial if a ¢ Q and are abelian groups killed by p if a € Qxy.

Proof. We proceed as in the proof of Theorem 4.3.5. Fix a > 0. Let L be a finite Galois extension
of K with Galois group Gp ik with an induced ramification filtration. We may assume that
Flllo—gG /K 1s the trivial group but Filﬁ)gG /K 1s not. We may also assume Hypothesis 3.1.2.
Furthermore, by Proposition 2.2.5(4), we are free to make a tame base change and assume
that a =bieg(L/K)>1 and pfx = m(p — 1)+ 1. Finally, we may replace L by LK, since
blog (K+/K) =1 by Lemma 4.6.1. We need to show that Filj,, G K is an abelian group killed by
p if a € Q> and trivial if a ¢ Q.

We claim that each of the logarithmic ramification breaks b > 1 of L /K will become a non-log
ramification break bp — p + 2 on Ll/Kl In other words, FlllogGL/K C FilPb~ p+2G~ iR, for any
ve{l,...,p} and b> 1. (It does not matter which v we choose, as they give the same answer
by Situation 4.7.2.) Then the theorem is a direct consequence of the non-logarithmic Hasse—Arf

theorem, namely Theorem 4.3.5(2).

To establish the claim, it suffices to prove the highest ramification breaks, as the others will
follow from the calculation of the other extensions L.

For each v € {1, ..., p}, there exists a unique continuous O, [10/w@~]-homomorphism f;‘ :
Ok. o/, 851 = Og_[no/@, ns, ny] such that f38; = (8; +n;)P — (x; + 1) (wy + n0)? ' — b;
for j € J. For a > 1, f gives a morphism f, : A%mﬂ[(], 0] — A%jl[(), 0”].

Y
Let TS Kb, be the standard thickening space for L /K, and ¢k, . We have a Cartesian

diagram as follows.

! 2m41
TST kv re. y, <—— TSL/ Ko, Xap+iooa) g, A [0,6°]

] | o

AL [0, 0°HE=2)/2] 5 A7 [0, 0% < 4T[0, 9] “ AZH0, 6]
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By applying Theorem 4.2.9 m times, TSaL/K*wa*,—y XA?rl[Oﬁ“],fy A%{TH[O’ 0?] is an admissible

recursive non-logarithmic thickening space (of error gauge >pBk —m(p —1) > 1), which is
isomorphic to an admissible non-logarithmic thickening space for L. /K, by Proposition 3.6.6.
Thus f7€1 /K,  is a differential module associated to L. /K.

By Proposition 4.6.9 and Lemma 4.3.3, we have

- -2 2p — 2 -2
IR(f'ygL/K*,fy;S):IR(EL/K*,W;SWS_FPP> :IR((f,y)*gL/K*ﬁ;S—f— P ,S+p )

The claim follows from Corollaries 4.6.15 and 3.5.4. O
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