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On ramification filtrations and p-adic differential

equations, II: mixed characteristic case

Liang Xiao

Abstract

Let K be a complete discrete valuation field of mixed characteristic (0, p), with possibly
imperfect residue field. We prove a Hasse–Arf theorem for the arithmetic ramification
filtrations onGK , except possibly in the absolutely unramified and non-logarithmic case,
or the p= 2 and logarithmic case. As an application, we obtain a Hasse–Arf theorem
for filtrations on finite flat group schemes over OK .

1. Introduction

1.1 Main results

This paper is a sequel to [Xia10], in which we proved a comparison theorem for the arithmetic
ramification conductors defined by Abbes and Saito [AS02] and the differential ramification
conductors defined by Kedlaya [Ked07]. In that paper, a key consequence was that one can use
the Hasse–Arf theorem for the differential conductors to obtain a Hasse–Arf theorem for the
arithmetic conductors in the equal characteristic p > 0 case.

In this paper, we combine the ideas from [Ked07, Xia10] with the techniques of non-
archimedean differential modules in [KX10] to give a proof of the following Hasse–Arf theorem
for the arithmetic ramification conductors in the mixed characteristic case.

Theorem. Let K be a complete discrete valuation field of mixed characteristic (0, p) and let
GK be its absolute Galois group. Let Fil•GK and Fil•logGK denote the ramification filtrations
defined by Abbes and Saito [AS02].

(1) (Hasse–Arf theorem.) Let ρ :GK →GL(Vρ) be a continuous representation of finite
monodromy, where Vρ is a finite-dimensional vector space over a field of characteristic zero.
Then the Artin conductor Art(ρ) (defined using Fil•GK) is a non-negative integer if K is not
absolutely unramified; the Swan conductor Swan(ρ) (defined using Fil•logGK) is a non-negative

integer if p > 2, and Swan(ρ) ∈ 1
2Z>0 if p= 2.

(2) The subquotients FilaGK/Fila+GK for a > 1 and FilalogGK/Fila+
logGK for a > 0 of the

ramification filtrations are trivial if a /∈Q and are abelian groups killed by p if a ∈Q, except in
the absolutely unramified and non-logarithmic case.

This theorem summarizes the results of Theorems 4.3.5, 4.5.14, and 4.7.3.
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We do not know whether Swan(ρ) may fail to be an integer when p= 2 in general; exclusion
of the absolutely unramified and non-logarithmic case seems to be essential.

The theorem was conjectured implicitly in [AS02], and Abbes and Saito proved that the
subquotients of the filtrations are abelian groups, except in the absolutely unramified and non-
logarithmic case. After that, Hattori [Hat06, Hat08] gave some partial results on the first part of
the theorem for the case where the corresponding field extension can be realized by a commutative
finite flat group scheme. After the first draft of this paper was written, Saito [Sai] independently
proved the second part of the theorem in the logarithmic case; it follows that Swan(ρ) ∈ Z[1/p].

The technique used in this paper is very different from the approaches above, except that
we need a small technical lemma (see § 3.4) borrowed from [AS03]. This paper shares some core
ideas with the first paper in the series, [Xia10], but is logically independent of that paper.

1.2 Idea of the proof

To best convey the idea of the proof, assume that we are not in the excluded cases listed in
the main theorem. We will come back to the reasons for excluding these cases later. We start
with a näıve approach to the above theorem in the non-logarithmic case. One easily reduces the
situation to the following case.

Let L/K be a finite totally ramified and wildly ramified Galois extension of complete
discrete valuation fields of mixed characteristic (0, p). Let OK , πK and k denote the ring of
integers, a uniformizer and the residue field, respectively. Assume that dimkp k <+∞. There are
elements b1, . . . , bm ∈ k such that b̄i11 · · · b̄imm , for i1, . . . , im ∈ {0, . . . , p− 1}, form a basis of k as
a kp-vector space; let b1, . . . , bm be lifts of b̄1, . . . , b̄m in OK . Our representation ρ is assumed
to be absolutely irreducible, and it factors exactly through the Galois group GL/K . We need to
prove that b(L/K) · dim ρ ∈ Z, where b(L/K) is the ramification break, i.e. the maximal number
b such that FilbGL/K =GLFilbGK/GL 6= {1}.

Step I: AS = TS theorem (make the Abbes–Saito space more functorial). Roughly speaking, the
ramification break b(L/K) is defined as follows. For the extension L/K and any rational number
a ∈Q>0, Abbes and Saito [AS02] defined a rigid analytic space ASa together with a finite
morphism Π′ : ASa→Am+1

K [0, |πK |a] (of degree [L :K]), where Am+1
K [0, |πK |a] denotes a (closed)

polydisc over K of radius |πK |a. The ramification break b(L/K) is the infimum among all a ∈Q>0

such that the number of geometric connected components #πgeom
0 (ASa) is equal to [L :K]. A

problem associated with this rigid analytic space is that it is not functorial under the operation
of replacing K by a (not necessarily finite) complete extension K ′, which we shall refer to as a
base change later on.

Pretend for the moment that we have a continuous homomorphism ψ :OK →OKJδ0, . . . , δmK
such that ψ(πK) = πK + δ0 and ψ(bi) = bi + δi for i= 1, . . . , m. We define a new rigid analytic
space, called the thickening space, to be

TSaL/K = Spm(L⊗K,ψ K〈π−aK δ0, . . . , π
−a
K δm〉)

Π−−→Am+1
K [0, |πK |a],

where Π is the projection to the second factor.

We can prove that ASa ' TSaL/K as rigid analytic K-spaces (see Theorem 3.3.3); this
isomorphism does not respect the morphisms Π and Π′ to the polydisc. The rigid analytic
space TSaL/K also carries the information of the ramification break b(L/K); together with Π, it
is functorial under base change.
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Step II: generic p∞th roots (a procedure to reduce to the perfect residue case). It is natural to
make the following observation. Let a be a rational number slightly bigger than b(L/K); then
TSaL/K(= ASa) is geometrically the disjoint union of [L :K] (poly)discs. What often happens is
that if you increase the radius only on certain δi, then πgeom

0 (TSL/K) stays the same even when
the radius goes beyond the cut-off point |πK |b(L/K). In contrast, if one increases the radius along
some other δi, π

geom
0 (TSL/K) will change as soon as the radius reaches |πK |b(L/K). In the latter

case, we say that the corresponding δi dominates. We remark that if we change the lift of b̄j from
bj to bj + πK , then whether the ‘uniformizer direction’ δ0 is dominant may change as well.

The ideal situation is when δ0 is dominant. In this case, we can ‘forget’ about other directions,
or, more concretely, we can make the residue field perfect by simply adding in all p-power roots
of bj for all j (and then completing). We will talk about this procedure in more detail in the
next step. As remarked above, for this to happen, we need to find the ‘correct lift’ of each bj .
Following the idea of Borger [Bor04], we consider the notion of generic rotation. Let x1, . . . , xm be
transcendental over K, let K ′ be the completion of K(x1, . . . , xm) with respect to the (1, . . . , 1)-
Gauss norm, and let L′ =K ′L. It easy to see that b(L′/K ′) = b(L/K). The upshot is that if we set
the p-basis of K ′ to be {b1 + x1πK , . . . , bm + xmπK , x1, . . . , xm}, then the uniformizer direction
is going to be dominant. So, if we set K̃ to be the completion of the field obtained by adjoining
to K ′ all p-power roots of bi + xiπK and xi, we should have b(K̃L/K̃) = b(L/K) and are reduced
to the classical situation because K̃ has a perfect residue field.

Step III: ramification break versus radii of convergence for differential modules (where differen-
tial modules come into the picture). Since we ‘pretended’ earlier that we have a homomorphism ψ,
the morphism Π : TSaL/K →Am+1

K [0, |πK |a] is étale; we can then push forward the ring of
functions on TSaL/K to get a differential module E on the polydisc (compatible as a varies).
Consider the näıve extension of scalars to Am+1

L [0, |πK |a]. It is not hard to show that
πgeom

0 (TSaL/K) = [L :K] is almost equivalent to the differential module E being trivial over
Am+1
L [0, |πK |a] (see Proposition 3.5.2).

A good thing about radii of convergence is that they are quite computable under base change.
When making the base change from K to K̃, we should have a Cartesian diagram

TSaL/K

Π

��

TSa
LK̃/K̃

oo

Π
K̃

��

Am+1
K [0, |πK |a] A2m+1

K̃
[0, |πK |a]

foo

(1.2.1)

where f is induced by some map f∗ :OKJδ0, . . . , δmK→O
K̃

Jη0, . . . , η2mK characterized by
f∗ ◦ ψ = ψ

K̃
|K :OK →OK̃Jη0, . . . , η2mK. It is very easy to compare the radii of convergence

of E with the radii of convergence of f∗E , and the comparison of b(L/K) and b(LK̃/K̃) follows.

Step IV: logarithmic filtration (a trick to deal with logarithmic filtration). We briefly discuss
the idea behind the proof in the logarithmic case. We do not expect that we can always make
the uniformizer direction ‘log-dominant’. Instead, we expect a dichotomy:

– if the uniformizer direction is log-dominant, we are good anyway;

– if the uniformizer direction is not log-dominant, we expect that, after a large tame base
change to Kn =K(π1/n

K ) and then a generic rotation for Kn as in Step II, b(L′n/K
′
n) =

nblog(L/K) and the uniformizer direction is non-log-dominant. Here the multiple n comes
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from the normalization; the key is that after the follow-up generic rotation, the non-log
ramification break is one less than the log ramification break.

Thus, we can always deduce that n · Swan(ρ) ∈ Z for n� 0 and p - n. Taking two coprime
numbers n1 and n2 will imply that Swan(ρ) is itself an integer.

We now come back to real life and discuss where the näıve approach fails and how we can
fix it.

(1) The first thing to notice is that the desired homomorphism ψ never exists, as we cannot
make ψ(p) = p and ψ(πK) = πK + δ0 happen at the same time. As a remedy, we take ψ to be
a function, which becomes a homomorphism if we modulo the ideal IK = p(δ0/πK , δ1, . . . , δm)
(Proposition 3.2.8). WhenK is absolutely unramified or, in other words, vK(p) = 1, this condition
is significantly weakened. This is the only hindrance to extending our main result to the absolutely
unramified and non-logarithmic case (see also Remark 3.2.9).

We define the space TSaL/K,ψ by writing down the equations generating the extension OL/OK
and applying ψ termwise. When considering the effect of adding a generic pth root (instead
of p∞th root; see Remark 4.2.14), we similarly require that f ◦ ψ and ψ

K̃
only agree modulo

I
K̃

= p(η0/πK̃ , η1, . . . , η2m). We have to carefully keep track of the error terms due to the non-
homomorphism ψ and non-commutativity of f ◦ ψ and ψ

K̃
. In particular, if we still want (1.2.1)

to be a Cartesian diagram, we need to modify TSa
LK̃/K̃

(see Theorem 4.3.4); this is the most
difficult theorem of the paper. Luckily, the modification made here is not too serious, so that we
still have AS = TS (Theorem 3.3.3) for the modified thickening space.

(2) Since we have a problem with defining ψ, the morphism Π : TSaL/K,ψ→Am+1
K [0, |πK |a] is

only finite and étale if a> b(L/K)− ε for some ε > 0. This is the only technical point for which
we need to refer back to Abbes and Saito’s approach, namely [AS02, Theorem 7.2] (and [AS03,
Corollary 4.12] in the logarithmic case). This étaleness statement validates the construction of
differential modules. The auxiliary étale locus given by ε enables us to find the exact loci where
the intrinsic radii are maximal (or, equivalently, the loci where the differential module is trivial)
and hence identify the ramification break.

(3) Since ψ fails to be a homomorphism, we have a minor technical issue when using
differential modules. We have to study the generic radii of convergence over polydiscs instead
of over one-dimensional discs (as was done in [Xia10]); this makes essential use of the recent
results on p-adic differential modules from [KX10]. As a result, the proof in the logarithmic case
is slightly more complicated, and for p= 2 we can only prove that Swan conductors lie in 1

2Z
instead of in Z.

1.3 Who cares about the imperfect residue field case, anyway?

In algebraic geometry, if one wants to measure the ramification of an l-adic sheaf along a divisor,
it is natural to pass to the completion at the generic point of the divisor; this would naturally
give rise to a complete discrete valuation field with imperfect residue field, provided that the
dimension of the divisor is not zero.

It is natural to ask how the ramification information varies from one divisor to another.
Kedlaya started an interesting study in [Ked11] along this line, inspired by the semicontinuity
results of André [And07] in complex algebraic geometry. In [Ked11], Kedlaya took an F -
isocrystal on a smooth surface X overconvergent along the complement divisor D of simple
normal crossings, in a compactification of X. If we blow up the intersection of two irreducible
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components of D, we may realize F over this new space and measure the Swan conductor along
the exceptional divisor. This process can be iterated. Kedlaya proved in [Ked11] that, after
suitable normalization, the Swan conductors along these exceptional divisors are interpolated by
a continuous piecewise linear convex function. This result also holds for general smooth varieties
of arbitrary dimension (see [Ked11]), as well as for lisse l-adic sheaves.

An interesting question is: does the same phenomenon happen for a noetherian complete
regular local ring OKJt1, . . . , tnK, where OK is a complete discrete valuation ring of mixed
characteristic?

Another application is to the study of finite flat group schemes via ramification filtration
initiated by Abbes and Mokrane in [AM04]. Hattori conjectured that one can give a bound on
the denominators of ramification breaks. This can be proved by an analogous Hasse–Arf theorem
for finite flat group schemes. Thus, as a consequence of the main theorem of this paper, we obtain
a Hasse–Arf theorem for finite flat group schemes in the mixed characteristic case by an argument
originally due to Hattori.

1.4 Structure of the paper
In § 1, we recall some results on p-adic differential modules from [KX10].

In § 2, we set up the framework for proving the main result. The definition of ramification
filtrations is reviewed in § 2.2.

In § 3.1, we introduce the standard Abbes–Saito spaces. In §§ 3.2–3.5, we define the function
ψ mentioned earlier and construct the thickening spaces and associated differential modules; the
aim is to translate the question about ramification breaks into a question about the intrinsic
radii of convergence. In § 3.6, we discuss a variant of thickening spaces.

The proofs of the main results, Theorems 4.3.5, 4.5.14, and 4.7.3, occupy the whole of § 4. In
the first three subsections, we deduce the Hasse–Arf theorem for non-logarithmic ramification
filtration. In § 4.4, we apply the Hasse–Arf theorem for Artin conductors to obtain a Hasse–Arf
theorem for finite flat group schemes. In § 4.5, we deduce the integrality of Swan conductors from
that of Artin conductors by tame base change. In the final two subsections, we use a trick due
to Kedlaya to prove that the subquotients of the logarithmic filtration (on the wild ramification
group) are abelian groups killed by p.

1.5 Notation
Owing to the technical details involved, the notation in this paper is particularly complicated.
Here we list a few important terms together with short explanations and the locations of first
appearance. We hope that this will help to make the paper more accessible.

K complete discrete valuation field of mixed characteristic of absolute ramification degree
βK ; L= finite extension; θ = |πK |.
K̃ (4.2.1) K with generic pth root added.

K̃n (4.5.9) K with π
1/n
K and generic pth roots added.

K∗ (4.6.1) an ‘Artin-Scheier’ extension of K.
K̃γ (4.7.1) K∗ with generic pth roots added.
J = {1, . . . , m} and J+ = J ∪ {0} are used to index a p-basis.
b1, . . . , bm or bJ (3.1.6) lifts of a p-basis of k.
c1, . . . , cm or cJ (3.1.6) lifts of a p-basis of l.
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u0, . . . , um (3.1.6) proxies for cJ+ .

p0, . . . , pm or pJ+ (3.1.6) relations of the extension OL over OK with generators cJ and πL.

Na (3.1.5) set of elements of OK [uJ+ ] with norm less than or equal to θa.

ASaL/K(,log) and OaAS,L/K(,log) (3.1.9) (standard) Abbes–Saito spaces and their rings of
functions.

RK =OKJδ0/πK , δJK (3.2.4); similarly for R
K̃

(4.2.5).

ψK :OK →OKJδJ+K⊆RK (3.2.1); similarly for ψ
K̃

(4.2.5) and other fields.

SK =RK〈uJ+〉 (3.2.12).

RJ+ (3.2.12) elements of (δJ+)SK representing the error terms with error gauge >ω.

TSaL/K(,log),RJ+
and OaTS,L/K(,log),RJ+

(3.2.13) thickening spaces and their rings of functions;
similarly for the standard ones TSaL/K(,log),ψ and OaTS,L/K(,log),ψ (3.2.13).

∆ : SK/(ψ(pJ+) +RJ+)→OK〈uJ+〉/(pJ+) ∼−−→OL (3.1.6) and (3.2.16); ∆ is its reduction.

ETL/K,RJ+
or ETL/K (3.4.1) étale locus over which the thickening space is étale.

c0,I , cΛ, u0,I , uΛ, p0,I , pΛ,SK ,R0,I ,RΛ,N
a, . . . (§ 3.6) recursive versions of the above.

∆ : SK/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ)→OK〈u0,I , uΛ〉/(p0,I , pΛ) →−−→OL (3.6.1) and (3.6.3).

c̃0,I , c̃Λ, ũ0,I , ũΛ, ṽ, p̃0,I , p̃Λ, q̃,SK̃
, R̃0,I , R̃Λ, R̃q̃, . . . (proof of Theorem 4.2.9) recursive

versions for K̃.

2. Background review

2.1 Differential modules
We recall some recent results from the theory of p-adic differential modules. This subject was
first studied by Christol, Dwork, Mebkhout and Robba [CD94, CM00, CR94]. Recently, Kedlaya
and the author improved some of the techniques in [Ked10, KX10]. We record some useful results
from these sources.

Convention 2.1.1. Throughout this paper, p > 0 will be a prime number. By a p-adic field we
mean a field K of characteristic zero, complete with respect to a non-archimedean norm for
which |p|= 1/p. In particular, the residue field of K has characteristic p.

Convention 2.1.2. For an index set J , we write eJ or (eJ) for a tuple (ej)j∈J . For another tuple
bJ , we write beJJ =

∏
j∈J b

ej
j if only finitely many of the ej are non-zero. We also use

∑n
eJ=0 to

mean the sum over ej ∈ {0, 1, . . . , n} for each j ∈ J , allowing only finitely many of them to be
non-zero. To simplify the notation, we may suppress the range of the summation when it is clear.
For a set A, we write eJ ⊂A or (eJ)⊂A to mean that ej ∈A for any j ∈ J .

Notation 2.1.3. From now on, let K be a p-adic field and fix an element πK ∈K× of norm θ < 1.
When K has discrete valuation, we take πK to be a uniformizer.

Notation 2.1.4. For an interval I ⊂ [0,+∞], we denote the n-dimensional polyannulus with radii
in I by AnK(I). (We do not impose any rationality condition on the endpoints of I, so this space
should be viewed as an analytic space in the sense of Berkovich [Ber90].) If I is written explicitly
in terms of its endpoints (e.g. as [α, β]), we suppress the parentheses around I (and write, e.g.,
AnK [α, β]).
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Notation 2.1.5. For a complete topological ring R, we use R〈u1, . . . , um〉 to denote the
completion of the polynomial ring R[u1, . . . , um] with respect to the topology induced from R.
When R is a complete OK-algebra, we let R〈π−a1

K δ1, . . . , π
−am
K δm〉 denote the formal substitution

of R〈u1, . . . , um〉 via uj = π
−aj
K δj for j = 1, . . . , m, where a1, . . . , am ∈ R. In particular,

K〈π−a1
K δ1, . . . , π

−am
K δm〉 is the ring of analytic functions on A1

K [0, θa1 ]× · · · ×A1
K [0, θam ].

We use KJT K0 to denote the bounded power series ring consisting of formal power series∑
i∈Z>0

aiT
i for which ai ∈K and |ai| are bounded.

Notation 2.1.6. In this subsection, let J = {1, . . . , m} and J+ = J ∪ {0}.

Definition 2.1.7. For sJ+ ⊂ R, the θsJ+ -Gauss norm on K[δJ+ ] is the norm given by∣∣∣∣∑
eJ+

aeJ+ δ
eJ+

J+

∣∣∣∣
sJ+

= max{|aeJ+ | · θe0s0+···+emsm}.

It extends uniquely to K(δJ+); we denote the completion by FsJ+ . This Gauss norm
also extends continuously to K〈π−a0

K δ0, . . . , π
−am
K δm〉 if sj ∈ [aj ,+∞) for all j ∈ J+. Hence,

K〈π−a0
K δ0, . . . , π

−am
K δm〉 embeds into FsJ+ .

Convention 2.1.8. Throughout this paper, all (relative) differentials and derivations are
continuous and all connections are integrable. For simplicity, we may suppress the continuity
and integrability.

Definition 2.1.9. Let F be a differential field of order one and characteristic zero, i.e. a field
of characteristic zero equipped with a derivation ∂. Assume that F is complete for a non-
archimedean norm | · |. Let V be a differential module with differential operator ∂. The spectral
norm of ∂ on V is defined to be

|∂|sp,V = lim
n→+∞

|∂n|1/nV .

One can show that |∂|sp,V > |∂|sp,F (see [Ked10, Lemma 6.2.4]).
Define the intrinsic ∂-radius of V to be

IR∂(V ) = |∂|sp,F /|∂|sp,V ∈ (0, 1].

Example 2.1.10. For sJ+ ⊂ R, the spectral norms of ∂J+ on FsJ+ are as follows:

|∂j |Fs
J+ ,sp

= p−1/(p−1)θ−sj for j ∈ J+.

Remark 2.1.11. If F ′/F is a complete extension and ∂ extends to F ′, then for any differential
module V on F , V ⊗ F ′ is a differential module on F ′. Moreover, if |∂|sp,F = |∂|sp,F ′ , we have
IR∂(V ) = IR∂(V ⊗ F ′).

Notation 2.1.12. Let aJ+ ⊂ R be a tuple and letX =A1
K [0, θa0 ]× · · · ×A1

K [0, θam ] be the closed
polydisc with radii θaJ+ and with δJ+ as coordinates.

Notation 2.1.13. A differential module over X (relative to K) is a finite locally free coherent
sheaf E on X together with an integrable connection

∇ : E → E ⊗OX
(⊕
j∈J+

OX · dδj
)
.

Let ∂J+ = ∂/∂δJ+ be the dual basis of dδJ+ ; these elements act commutatively on E . A section
v of E over X is said to be horizontal if ∂j(v) = 0 for all j ∈ J+. Let H0

∇(X, E) denote the set of
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horizontal sections on E over X. A differential module is said to be trivial if there exists a set
of horizontal sections which forms a basis of E as a free coherent sheaf.

Let sj ∈ [aj ,+∞) for j ∈ J+. For j ∈ J+, let IRj(E ; sJ+) denote the intrinsic ∂j-radius
IR∂j (E ⊗OX FsJ+ ). Let IR(E ; sJ+) = minj∈J+{IRj(E ; sJ+)} be the intrinsic radius of E . If sj′ = s
for all j′ ∈ J , we simply write IRj(E ; s0, s) and IR(E ; s0, s) for the intrinsic ∂j-radius and intrinsic
radius, respectively. Moreover, if s0 = s, we may further simplify the notation to IRj(E ; s) and
IR(E ; s).

Lemma 2.1.14. Fix j ∈ J+. There exists a unique continuous K-homomorphism f∗gen,j : FaJ+ →
FaJ+ Jπ−ajK TjK0 such that f∗gen,j(δJ+\{j}) = δJ+\{j} and f∗gen,j(δj) = δj + Tj .

Proof. See [KX10, Lemma 1.2.12]. 2

Lemma 2.1.15. Write F = FaJ+ for short. The pullback f∗gen,j(E ⊗OX F ) becomes a differential

module over A1
F [0, θaj ) relative to F . Then, for any r ∈ [0, 1], IRj(E ; aJ+)> r if and only if

f∗gen,j(E ⊗OX F ) is trivial over A1
F [0, rθaj ).

Proof. This is essentially because the Taylor series
∑∞

n=0 ∂
n
Tj

(v) · Tnj /(n!) =
∑∞

n=0 ∂
n
j (v) ·

Tnj /(n!) converges when |Tj |< rθaj for any section v if and only if IRj(E ; aJ+)> r. For more
details, see [KX10, Proposition 1.2.14]. 2

We reproduce some basic properties of intrinsic radii, starting with the following off-centered
tame base change, which is a fun exercise in [Ked10, ch. 9, Exercise 8]. For the sake of readers
who may not be familiar with differential modules, we give a complete proof here.

Construction 2.1.16. Fix n ∈ N prime to p. Assume for the moment that m= 0 (and a= a0), i.e.
we consider the one-dimensional case X =A1

K [0, θa]. Fix x0 ∈K such that |x0|= θb > θa (b < a).
In particular, the point δ0 =−x0 is not in the disc X. Write Kn =K(x1/n

0 ), where we fix an nth
root x1/n

0 of x0.

Consider the K-homomorphism f∗n :K〈π−aK δ0〉 →Kn〈π−a+b(n−1)/n
K η0〉 sending δ0 to

(x1/n
0 + η0)n − x0 = x

(n−1)/n
0 η0

(n−1∑
i=0

(
n

i+ 1

)(
η0

x
1/n
0

)i)
,

where the term in parentheses on the right has norm 1 and is invertible because |x1/n
0 |> |η0|.

Hence f∗n extends continuously to a homomorphism Fa→ F ′a−b(n−1)/n, where F ′a−b(n−1)/n is the

completion of Kn(η0) with respect to the θa−b(n−1)/n-Gauss norm.
Also, f∗n gives a morphism of rigid K-spaces fn : Z =A1

Kn
[0, θa−b(n−1)/n]→X =A1

K [0, θa]. It
is finite and étale because the branching locus is at δ0 =−x0, outside the disc X. Thus, for a
differential module E on X, its pullback f∗nE is a differential module over Z via

f∗nE
f∗n∇−−−−→ f∗n(E ⊗OX OX dδ0)−→ f∗nE ⊗OZ OZ dη0,

where the last homomorphism is given by dδ0 7→ n(x1/n
0 + η0)n−1dη0.

Proposition 2.1.17. With the above notation, we have

IR∂η0
(f∗nE ; a− b(n− 1)/n) = IR∂0(E ; a).
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Proof. The proof is essentially the same as that of [Ked05, Lemma 5.11] or [Ked10,
Proposition 9.7.6]. Lemma 2.1.14 gives the commutative diagram

Fa

f∗n
��

f∗gen,0 // FaJπ−aK T0K0

f̃∗n
��

F ′a−b(n−1)/n

f ′∗gen,0 // F ′a−b(n−1)/nJπ
−a+b(n−1)/n
K T ′0K0

where f̃∗n extends f∗n by sending T0 to (x1/n
0 + η0 + T ′0)n − (x1/n

0 + η0)n.
We claim that for r ∈ [0, 1], f̃n induces an isomorphism

F ′a−b(n−1)/n ×f∗n,Fa (A1
Fa [0, rθa))∼=A1

F ′
a−b(n−1)/n

[0, rθa−b(n−1)/n).

Indeed, if |T ′0|< rθa−b(n−1)/n < θb/n, then

|T0| = |(x1/n
0 + η0 + T ′0)n − (x1/n

0 + η0)n|

= |nT ′0(x1/n
0 + η0)n−1|< rθa−b(n−1)/n · (θb/n)n−1 = rθa.

Conversely, if |T0|< rθa, we define the inverse map by the binomial series

T ′0 = (x1/n
0 + η0) ·

[
−1 +

(
1 +

T0

(x1/n
0 + η0)n

)1/n]
=
∞∑
i=1

(
1/n
i

)
T i0

(x1/n
0 + η0)ni−1

.

The series converges to an element with norm less than rθa−b(n−1)/n.
Therefore, Lemma 2.1.15 implies that for r ∈ [0, 1],

IR∂0(E ; a)> r
⇐⇒ f∗gen,0(E ⊗OX Fa) is trivial over A1

Fa [0, rθa)

⇐⇒ f̃∗nf
∗
gen,0(E ⊗OX Fa) = f ′∗gen,0(f∗nE ⊗OZ F

′
a−b(n−1)/n)

is trivial over A1
F ′
a−b(n−1)/n

[0, rθa−b(n−1)/n)

⇐⇒ IR∂η0
(f∗nE ; a− b(n− 1)/n)> r.

The proposition follows. 2

Similarly, we can study a type of off-centered Frobenius.

Construction 2.1.18. Let b > 0 and 0< a <min{−logθp+ b, pb}, and let β ∈K be an element
of norm 1. Let L be the completion of K(x) with respect to the θa-Gauss norm.

Let f : Z =A1
L[0, θb]→A1

K [0, θa] be the morphism given by f∗ : δ0 7→ (β + η0)p − βp + x. By
our choices of a and b, the leading term of f∗(δ0) is x, which is transcendental over K. Hence
f∗ extends continuously to a homomorphism Fa→ F ′b, where F ′b is the completion of L(η0) with
respect to the θb-Gauss norm. Moreover, f∗Ω1

X
∼= Ω1

Z because the branching locus is at η0 =−β,
outside the disc. Thus f∗E becomes a differential module over Z =A1

L[0, θb] via

f∗E f∗∇−−−−→ f∗(E ⊗OX OX dδ0)−→ f∗E ⊗OZ OZ dη0,

where the second homomorphism is given by dδ0 7→ p(β + η0)p−1 dη0.

Proposition 2.1.19. Keeping the notation as above, we have

IR∂0(f∗E ; b)> IR∂η0
(E ; a).
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Proof. As in Proposition 2.1.17, we start with the following commutative diagram from
Lemma 2.1.14.

Fa

f∗

��

f∗gen,0 // FaJπ−aK T0K0

f̃∗

��
F ′b

f ′∗gen,0 // F ′bJπ
−b
K T ′0K0

where f̃∗ extends f∗ by sending T0 to (β + η0 + T ′0)p − (β + η0)p.
For r ∈ [0, 1], by Lemma 2.1.20 below we have that |T ′0|< rθa implies |T0|<

max{rpθpa, p−1rθa}< rθb.
Therefore, Lemma 2.1.15 implies that

IR∂0(E ; a)> r
⇐⇒ f∗gen,0(E ⊗OX Fa) is trivial over A1

Fa [0, rθa)

=⇒ f̃∗f∗gen,0(E ⊗OX Fa) =f ′∗gen,0(f∗E ⊗OZ F
′
b)

is trivial over A1
F ′b

[0, rθb)

⇐⇒ IR∂η0
(f∗E ; b)> r.

The proposition follows. 2

Lemma 2.1.20 [Ked10, Lemma 10.2.2(a)]. Let K be a non-archimedean field and let b, T ∈K.
For r ∈ (0, 1), if |b− T |< r|b|, then

|bp − T p|6max{rp|b|p, p−1r|b|p}.

Remark 2.1.21. A stronger form of Proposition 2.1.19 above for (straight) Frobenius can be
found in [Ked10, Lemma 10.3.2] or [KX10, Lemma 1.4.11].

Now, we study the variation of intrinsic radii on polydiscs.

Definition 2.1.22. An affine functional on Rm+1 is a function λ : Rm+1→ R of the form
λ(x0, . . . , xm) = a0x0 + · · ·+ amxm + b for some a0, . . . , am, b ∈ R. If a0, . . . , am ∈ Z, we say
that λ is transintegral (short for ‘integral after translation’).

A subset C ⊆ Rm+1 is polyhedral if there exist finitely many affine functionals λ1, . . . , λr such
that

C = {x ∈ Rm+1 : λi(x)> 0 for i= 1, . . . , r}.
If the λi can all be taken to be transintegral, we say that C is transrational polyhedral.

Proposition 2.1.23. Let aJ+ ⊂ R be a tuple and let X =A1
K [0, θa0 ]× · · · ×A1

K [0, θam ] be the
polydisc with radii θaJ+ and coordinates δJ+ . Let E be a differential module over X. Then
the following properties hold.

(a) (Continuity.) The function logθIR(E ; sJ+) is continuous for sj ∈ [aj ,+∞) and j ∈ J+.

(b) (Monotonicity.) Let sj > s′j > aj for all j ∈ J+; then IR(E ; sJ+)> IR(E ; s′J+).

(c) (Zero loci.) The subset Z(E) = {sJ+ ∈ [a0,+∞)× · · · × [am,+∞) | IR(E ; sJ+) = 1} is
transrational polyhedral; moreover, it contains [a′0,+∞)× · · · × [a′m,+∞) for a′0, . . . , a

′
m

sufficiently large.
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Proof. Statements (a) and (c) follow from [KX10, Theorem 3.3.9]; Z(E) contains [a′0,+∞)×
· · · × [a′m,+∞) for a′0, . . . , a

′
m sufficiently large because the intrinsic radii are always non-zero.

For (b), by drawing zig-zag lines parallel to axes linking the two points sJ+ and s′J+ , it suffices
to consider the case where sj = s′j for j ∈ J+\{j0} and sj0 > s

′
j0

. In this case, we may perform
a base change to the completion of K(δJ+\{j0}) with respect to the sJ+\{j0}-Gauss norm. The
result follows from [KX10, Theorem 2.4.4(c)]. 2

2.2 Ramification filtrations
In this subsection, we sketch Abbes and Saito’s definition of ramification filtrations on the Galois
group GK of a complete discrete valuation field K of mixed characteristic (0, p). For more details,
the reader can consult [AS02, AS03].

In this subsection, we temporarily drop Notation 2.1.6.

Notation 2.2.1. For any complete discrete valuation field K of mixed characteristic (0, p), we
denote its ring of integers and residue field byOK and k, respectively. Let πK denote a uniformizer
and mK the maximal ideal of OK (generated by πK). We normalize the valuation vK(·) on K so
that vK(πK) = 1. The absolute ramification degree is defined to be βK = vK(p). We say that K
is absolutely unramified if βK = 1. For an element a ∈ OK , we write its reduction in k as ā; a is
called a lift of ā.

We choose and fix an algebraic closure Kalg of K; all finite extensions of K are taken inside
Kalg. Let GK denote the absolute Galois group Gal(Kalg/K). If L is a finite Galois extension
of K, we denote the Galois group by GL/K . We use NL/K(x) to denote the norm of an element
x ∈ L. If L is a (not necessarily algebraic) complete extension ofK and is itself a discrete valuation
field, we use eL/K to denote its näıve ramification degree, i.e. the index of the value group of K
in that of L. We say that L/K is tamely ramified if p - eL/K and the residue field extension l/k
is algebraic and separable. If, moreover, eL/K = 1, we say that L/K is unramified.

Notation 2.2.2. From now on, K will denote a complete discrete valuation field of mixed
characteristic (0, p), and L will be a finite Galois extension of K of näıve ramification degree
e= eL/K . Set θ = |πK |; this agrees with the convention in the previous subsection.

Definition 2.2.3. Take Z = (zj)j∈J ⊂OL to be a finite set of elements generating OL over OK ,
i.e. OK [uJ ]/I ∼−−→OL mapping uj to zj for all j ∈ J = {1, . . . , m}. Let (fi)i=1,...,n be a finite set
of generators of I. For a ∈Q>0, define the Abbes–Saito space to be

ASaL/K,Z = {(u1, . . . , um) ∈AmK [0, 1] : |fi(uJ)|6 θa for 16 i6 n}.

We denote the set of geometric connected components of ASaL/K,Z by πgeom
0 (ASaL/K,Z). The

highest ramification break b(L/K) of the extension L/K is defined to be the minimal b ∈ R>0

such that for any rational number a > b, #πgeom
0 (ASaL/K,Z) = [L :K].

Definition 2.2.4. Keep the notation as above. Take a subset P ⊂ Z and assume that P , and
hence Z, contains πL. Let ej = vL(zj), with zj ∈ P . Take a lift gj ∈ OK [uJ ] of zej/π

ej
K for each

zj ∈ P ; take a lift hi,j ∈ OK [uJ ] of zeij /z
ej
i for each pair (zi, zj) ∈ P × P . For a ∈Q>0, define the

logarithmic Abbes–Saito space to be

ASaL/K,log,Z,P =

(uJ) ∈AmK [0, 1]

∣∣∣∣∣∣
|fi(uJ)|6 θa for 16 i6 n
|uej − π

ej
K gj |6 θa+ej for all zj ∈ P

|ueij − u
ej
i hi,j |6 θa+eiej/e for all (zi, zj) ∈ P × P

.
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Similarly, the highest logarithmic ramification break blog(L/K) of the extension L/K
is defined to be the minimal b ∈ R>0 such that for any rational number a > b we have
#πgeom

0 (ASaL/K,log,Z,P ) = [L :K].

We reproduce several statements from [AS02, AS03].

Proposition 2.2.5. The Abbes–Saito spaces have the following properties.

(1) For a ∈Q>0, the Abbes–Saito spaces ASaL/K,Z and ASaL/K,log,Z,P do not depend on the

choices of generators (fi)i=1,...,n of I and lifts gj and hi,j for i, j ∈ P (see [AS02, § 3]).

(1′) If, in the definitions of both Abbes–Saito spaces, we choose polynomials (fi)i=1,...,n as
generators of Ker (OK〈uJ〉 →OL) instead of Ker (OK [uJ ]→OL), the spaces do not change.

(2) If we use another pair of generating sets Z and P satisfying the same properties, then we
have a canonical bijection on the sets of the geometric connected components πgeom

0 (ASaL/K,Z)
and πgeom

0 (ASaL/K,log,Z,P ) for different generating sets, where a ∈Q>0. In particular, both highest

ramification breaks are well-defined [AS02, § 3].

(3) The highest ramification break (respectively, the highest logarithmic ramification
break) gives rise to a filtration on the Galois group GK consisting of normal subgroups
FilaGK (respectively, FilalogGK) for a> 0 such that b(L/K) = inf{a | FilaGK ⊆GL} (respectively,
blog(L/K) = inf{a | FilalogGK ⊆GL}); see [AS02, Theorems 3.3 and 3.11]. Moreover, for L/K
being a finite Galois extension, both highest ramification breaks are rational numbers [AS02,
Theorems 3.8 and 3.16].

(4) Let K ′/K be a (not necessarily finite) extension of complete discrete valuation fields. If
K ′/K is unramified, then FilaGK′ = FilaGK for a > 0; see [AS02, Proposition 3.7]. If K ′/K is
tamely ramified with ramification index e <∞, then FilealogGK′ = FilalogGK for a > 0; see [AS02,
Proposition 3.15].

(4′) More generally, let L/K be a finite algebraic extension and let K ′/K be a complete
extension of discrete valuation fields with the same valued group and linearly independent of L.
Write L′ =K ′K. If OL′ =OL ⊗OK OK′ , then b(L/K) = b(L′/K ′); see [AM04, Lemme 2.1.5].

(5) For a> 0, define Fila+GK =
⋃
b>a FilbGK and Fila+

logGK =
⋃
b>a FilblogGK . Then, the

subquotients FilaGK/Fila+GK are abelian p-groups if a ∈Q>1 and are 0 if a /∈Q, except when
K is absolutely unramified (see [AS02, Theorem 3.8] and [AS03, Theorem 1]). The subquotients
FilalogGK/Fila+

logGK are abelian p-groups if a ∈Q>0 and are 0 if a /∈Q (see [AS02, Theorem 3.16]
and [AS03, Theorem 1]).

(6) For a > 0, Fila+1GK ⊆ FilalogGK ⊆ FilaGK (see [AS02, Theorem 3.15(1)]).

(7) The inertia subgroup is FilaGK for a ∈ (0, 1] and the wild inertia subgroup is Fil1+GK =
Fil0+

logGK (see [AS02, Theorems 3.7 and 3.15]).

(8) When the residue field k is perfect, the arithmetic ramification filtrations agree with the
classical upper numbered filtration [Ser79] in the following way: FilaGK = Fila−1

log GK =Ga−1
K for

a> 1, where GaK is the classical upper numbered filtration on GK (see [AS02, § 6.1]).

Proof. Only the proof of (1′) has not already appeared in the literature, but the proof of (1)
can be used verbatim to prove this assertion. For a brief summary of the proofs of the other
statements, one may consult [Xia10, Proposition 4.1.6]; although the statements there are stated
for the equal characteristic case, the proofs work just fine. 2
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Remark 2.2.6. To avoid confusion, we point out that in the proof of our main theorem, we do
not need (5) and the second statement of (3) on the rationality of the breaks from the proposition
above. Therefore, we will prove these properties along the way of proving the main theorem.

Remark 2.2.7. Recently, Saito [Sai] gave a proof of the fact that FilalogGK/Fila+
logGK are abelian

groups killed by p for a ∈Q>0. We will prove this independently in our main theorem (which in
fact appeared before his preprint).

Definition 2.2.8. For b> 0, we write FilbGL/K = (GLFilbGK)/GL and FilblogGL/K =
(GLFilblogGK)/GL. We call b a non-logarithmic (respectively, logarithmic) ramification break of
L/K if FilbGL/K/Filb+GL/K (respectively, FilblogGL/K/Filb+logGL/K) is non-trivial.

Definition 2.2.9. By a representation of GK we mean a continuous homomorphism ρ :GK →
GL(Vρ) where Vρ is a finite-dimensional vector space over a field F of characteristic zero. We
allow F to have a non-archimedean topology; hence the image of GK may not be finite. We say
that ρ has finite monodromy if the image of the inertia subgroup of GK is finite.

Definition 2.2.10. For a representation ρ :GK →GL(Vρ) of GK with finite monodromy, define
the Artin and Swan conductors of ρ as

Art(ρ) Def=
∑
a∈Q>0

a · dim(V Fila+GK
ρ /V FilaGK

ρ ), (2.2.11)

Swan(ρ) Def=
∑
a∈Q>0

a · dim(V
Fila+

logGK
ρ /V

FilalogGK
ρ ). (2.2.12)

In fact, they are finite sums.

Conjecture 2.2.13 (Hasse–Arf theorem). LetK be a complete discrete valuation field of mixed
characteristic (0, p), and let ρ :GK →GL(Vρ) be a representation with finite monodromy. Then:

(1) Art(ρ) and Swan(ρ) are non-negative integers;

(2) the subquotients FilaGK/Fila+GK and FilalogGK/Fila+
logGK are abelian groups killed by p.

In Theorems 4.3.5, 4.5.14, and 4.7.3, we will prove this conjecture except in the absolutely
unramified and non-logarithmic case, or the p= 2 and logarithmic case.

Proposition 2.2.14. When the residue field k is perfect, Conjecture 2.2.13 is true.

Proof. By Proposition 2.2.5(8), this result follows from the classical Hasse–Arf theorem [Ser79,
§VI.2 Theorem 1]. 2

3. Construction of spaces

In this section, we construct a series of rigid analytic spaces and study their relations; in
particular, we prove that the Abbes–Saito spaces are the same as thickening spaces, and hence
translate the question on ramification breaks to a question on generic radii of differential modules.

3.1 Standard Abbes–Saito spaces
In this subsection, we introduce the standard Abbes–Saito spaces by choosing a distinguished
set of generators of OL/OK .
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Definition 3.1.1. For a field k of characteristic p, a p-basis of k is a set b̄J ⊂ k such that b̄eJJ ,
where ej ∈ {0, 1, . . . , p− 1} for all j ∈ J and ej = 0 for all but finitely many j, form a basis of k
as a kp-vector space. For a complete discrete valuation field K of mixed characteristic (0, p), a
p-basis is a set of lifts bJ ⊂OK of a p-basis of the residue field k.

Hypothesis 3.1.2. Throughout this section, let K be a discrete valuation field of mixed
characteristic (0, p) with separably closed and imperfect residue field. Assume that K admits
a finite p-basis. Also, let L/K be a wildly ramified Galois extension of näıve ramification degree
e= eL/K . In particular, L/K is totally ramified and b(L/K)> 1, blog(L/K)> 0.

Remark 3.1.3. In case there is confusion over the terminology here, by wildly ramified extension
we mean a finite extension which is not tamely ramified, i.e. it can have a tamely ramified part.

This is a mild hypothesis because the conductors behave well under unramified base changes,
and the tamely ramified case is well-studied.

Notation 3.1.4. For the rest of the paper, we reinstate Notation 2.1.6, namely, let J =
{1, . . . , m} and J+ = J ∪ {0}. We will reserve j and m only for indexing p-bases and related
variables, and j = 0 will refer to the uniformizer.

Notation 3.1.5. We define a norm on OK [uJ+ ] as follows: for h=
∑

eJ+
αeJ+u

eJ+

J+ , where

αeJ+ ∈ OK , set |h|= maxeJ+{|αeJ+ | · θe0/e}. For a ∈ (1/e)Z>0, let Na be the set of elements
with norm less than or equal to θa; it is in fact an ideal.

The following construction provides a good set of generators for the extension OL/OK .
Essentially, we just need some generators and relations with no redundancy which we can write
down and work with.

Construction 3.1.6. Choose p-bases bJ ⊂OK and cJ ⊂OL of K and L, respectively. Let k0 = k
with p-basis (b̄j)j∈J . By possibly rearranging the indexing in bJ , we can filter the extension l/k
by subextensions kj = k(c̄1, . . . , c̄j) with p-bases {c̄1, . . . , c̄j , b̄j+1, . . . , b̄m} for j ∈ J . Moreover,
if [kj : kj−1] = prj , then c̄ p

rj

j ∈ kj−1.

Write ∆ :OK〈uJ+〉/IL/K
∼−−→OL, mapping uj to cj for j ∈ J and u0 to πL, where IL/K is

some proper ideal. Let ∆ be the composite of ∆ with the reduction OL� l. Hence,

{ueJ+

J+ | ej ∈ {0, . . . , prj − 1} for all j ∈ J and e0 ∈ {0, . . . , e− 1}} (3.1.7)

forms a basis of OK〈uJ+〉/IL/K as a free OK-module. We choose a set of generators pJ+ of IL/K
by writing each up

rj

j (for j ∈ J) or ue0 (for j = 0) in terms of the basis (3.1.7). We say that pj
corresponds to cj . Obviously, pJ+ generates IL/K . Moreover,

pj ∈ up
rj

j − b̃j(u1, . . . , uj−1) +N1/e · OK [uJ+ ] for j ∈ J,

p0 ∈ ue0 − d(u1, . . . , um)πK + πKN
1/e · OK [uJ+ ],

where b̃j(u1, . . . , uj−1) ∈ OK [u1, . . . , uj−1] with powers on ui smaller than pri for all i=
1, . . . , j − 1, and d(u1, . . . , um) ∈ OK [u1, . . . , um] is a polynomial such that d(c1, . . . , cm) ∈ O×L .

Remark 3.1.8. It is not possible to avoid introducing b̃j(u1, . . . , uj−1) and d(u1, . . . , um).
Counterexamples were provided and communicated to the author by Shun Ohkubo; see [Xia10,
Remark 3.3.6 and Example 3.3.10]. However, to best convey the idea of the proof, we invite the
reader to pretend that these two elements are trivial, which is already quite general.
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Definition 3.1.9. The (standard) Abbes–Saito spaces ASaL/K for a ∈Q>1 and ASaL/K,log for
a ∈Q>0 are defined by taking the generators to be {cJ , πL} and the relations to be pJ+ ; see
Proposition 2.2.5(1′). In particular, their rings of functions are

OaAS,L/K =K〈uJ+ , π−aK VJ+〉/(p0(uJ+)− V0, . . . , pm(uJ+)− Vm)

and

OaAS,L/K,log =K〈uJ+ , π−a−1
K V0, π

−a
K VJ〉/(p0(uJ+)− V0, . . . , pm(uJ+)− Vm).

3.2 The ψ-function and thickening spaces
In this subsection, we first define a function (not a homomorphism) ψ :OK →OKJδ0/πK , δJK,
which is an approximation to the deformation of the uniformizer πK and p-basis as in [Xia10,
Theorem 3.2.7]. Then, we introduce the thickening spaces for the extension L/K (see [Xia10,
§ 3.1] for motivation).

As a reminder, we assume Hypothesis 3.1.2 for this section; we fix a finite p-basis (bJ) and a
uniformizer πK of K.

Construction 3.2.1. Let r ∈ N and h ∈ O×K . An rth p-basis decomposition of h involves writing
h as

h=
pr−1∑
eJ=0

beJJ

( ∞∑
n=0

(λr,eJ ,n∑
n′=0

αp
r

r,eJ ,n,n′

)
πnK

)
(3.2.2)

for some αr,eJ ,n,n′ ∈ O
×
K ∪ {0} and some λr,eJ ,n ∈ Z>0. Such expressions always exist but are

not unique. For r′ > r, we can express each of αr,eJ ,n,n′ in (3.2.2) using an (r′ − r)th p-basis
decomposition and then rearrange the formal sum to obtain an r′th p-basis decomposition.
For h ∈ O×K , we say that an r′th p-basis decomposition is compatible with the rth p-basis
decomposition in (3.2.2) if it can be obtained in the above manner.

We define the function ψ :OK →OKJδJ+K as follows: for each h ∈ O×K\{1}, we fix a
compatible system of rth p-basis decompositions for all r ∈ N, and define

ψ(h) = lim
r→+∞

pr−1∑
eJ=0

(bJ + δJ)eJ
( ∞∑
n=0

(λr,eJ ,n∑
n′=0

αp
r

r,eJ ,n,n′

)
(πK + δ0)n

)
; (3.2.3)

this expression converges by the compatibility of the p-basis decompositions. Define ψ(1) = 1,
which corresponds to the näıve compatible system of p-basis decompositions of the element 1.
For h ∈ OK\{0}, write h= πsKh0 for s ∈ N and h0 ∈ O×K . Define ψ(h) = (πK + δ0)sψ′(h0), where
ψ′(h0) is the limit as in (3.2.3) with respect to a compatible system of p-basis decompositions
of h0 (which does not have to be the same as the one that defines ψ(h0)). Finally, we define
ψ(0) = 0.

Most of the time, it is more convenient to view ψ as a function on OK which takes values in
the larger ring OKJδ0/πK , δJK.

We can extend ψ naturally to polynomial rings or formal power series rings with coefficients
in OK by applying ψ termwise.

Notation 3.2.4. For the rest of the paper, let RK =OKJδ0/πK , δJK.

Caution 3.2.5. The map ψ is not a homomorphism, nor is it canonically defined. This is because
one cannot ‘deform’ the uniformizer in the mixed characteristic case. Moreover, since K will
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not be absolutely unramified in applications, a p-basis may not deform freely either. However,
Proposition 3.2.8 below says that ψ is approximately a homomorphism.

Remark 3.2.6. In the p-basis decomposition (3.2.2), we allow extra freedom given by n′. So, we
have the freedom of writing 1 + p as itself or as 1 + 1 + · · ·+ 1. This is one of the places where
the above ambiguity arises. Allowing this extra freedom in n′ is in fact not necessary, except in
Construction 4.6.11 where we need the diagram (4.6.12) to commute.

Definition 3.2.7. For two OK-algebras R1 and R2 and an ideal I of R2, an approximate
homomorphism modulo I is a function f :R1→R2 such that for h1 ∈ πa1

KR1 and h2 ∈ πa2
KR2

with a1, a2 ∈ Z>0, we have ψ(h1h2)− ψ(h1)ψ(h2) ∈ πa1+a2
K I and ψ(h1 + h2)− ψ(h1)− ψ(h2) ∈

π
min{a1,a2}
K I.

Moreover, if R′1 and R′2 are two OK-algebras, a diagram of functions

R′1
f ′ //

g

��

R′2

g′

��
R1

f // R2

is said to be approximately commutative modulo I if for any h ∈ πaKR′1 we have g′(f ′(h))−
f(g(h)) ∈ πaKI.

Proposition 3.2.8. For h ∈ OK , we have ψ(h)− h ∈ (δJ+) · OKJδJ+K; and, modulo the ideal
IK = p(δ0/πK , δJ)RK , ψ(h) does not depend on the choice of the compatible system of p-basis
decompositions. Moreover, ψ is an approximate homomorphism modulo IK .

Proof. First, ψ(h)− h ∈ (δJ+) · OKJδJ+K is obvious from the construction. Next, we observe that

when pr > βK , in any rth p-basis decomposition for h ∈ O×K , the sum
∑λ(r),eJ ,n

n′=0 αp
r

(r),eJ ,n,n′
πnK for

any eJ and n in (3.2.2) is well-defined modulo p. So the ambiguity of defining ψ lies in IK .
For h1, h2 ∈ O×K , the formal sum or product of compatible systems of p-basis decompositions

of h1 and h2 is just some compatible system of p-basis decompositions of h1 + h2 or h1h2.
Thus, ψ(h1) + ψ(h2) and ψ(h1)ψ(h2) are the same as ψ(h1 + h2) and ψ(h1h2) modulo IK . The
statement for general elements in OK follows from this. 2

Remark 3.2.9. From Proposition 3.2.8, we see that the ideal case is where βK � 1. In contrast,
when βK = 1, IK = (δ0, pδJ). The above proposition does not give us much information about
ψ. This is why we are not able to prove Conjecture 2.2.13 in the absolutely unramified and non-
logarithmic case. This reflects the constraints in [AS03] from a different point of view, where
Abbes and Saito formulated the dichotomy as follows:

Ω1
OK/Zp ⊗OK k =


⊕
j∈J

k · dbj if βK = 1,⊕
j∈J

k · dbj ⊕ k · dπK if βK > 1.

Hypothesis 3.2.10. For the rest of the section, assume that K is not absolutely unramified,
that is, βK > 2.

Lemma 3.2.11. Let h ∈ OK . Write dh= h̄0dπK + h̄1db1 + · · ·+ h̄mdbm when viewed as a
differential in Ω1

OK/Zp ⊗OK k. Then ψ(h)− h≡ h̄0δ0 + · · ·+ h̄mδm modulo (πK) + (δ0/πK , δJ)2

in RK .
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Proof. For an rth p-basis decomposition (with r > 1) as in (3.2.2), we have, modulo the ideal
(πK) + (δJ+)(δ0/πK , δJ),

ψ(h)− h ≡
pr−1∑
eJ=0

∞∑
n=0

λ(r),eJ ,n∑
n′=0

((bJ + δJ)eJαp
r

(r),eJ ,n,n′
(πK + δ0)n − beJJ α

pr

(r),eJ ,n,n′
πnK)

≡
pr−1∑
eJ=0

∞∑
n=0

λ(r),eJ ,n∑
n′=0

αp
r

(r),eJ ,n,n′
beJJ π

n
K

(
nδ0

πK
+
e1δ1

b1
+ · · ·+ emδm

bm

)
≡ h̄0δ0 + · · ·+ h̄mδm.

Taking the limit does not break the congruence relation. 2

Definition 3.2.12. Write SK =RK〈uJ+〉. For ω ∈ (1/e)N ∩ [1, βK ], we say that a set of
elements (RJ+)⊂ (δJ+) · SK has error gauge >ω if R0 ∈ (Nωδ0, N

ω+1δJ) · SK and Rj ∈
(Nω−1δ0, N

ωδJ) · SK for all j ∈ J . We say that (RJ+) is admissible if it has error gauge >1.

Definition 3.2.13. Let a ∈Q>1. We define the standard (non-logarithmic) thickening space (of
level a) TSaL/K,ψ of L/K to be the rigid space associated to

OaTS,L/K,ψ =K〈π−aK δJ+〉〈uJ+〉/(ψ(pJ+)).

For (RJ+)⊂ (δJ+) · SK admissible, we define the (non-logarithmic) thickening space (of level a)
TSaL/K,RJ+

to be the rigid space associated to

OaTS,L/K,RJ+
=K〈π−aK δJ+〉〈uJ+〉/(ψ(pJ+) +RJ+).

Similarly, for a ∈Q>0, we define the standard logarithmic thickening space (of level a)
TSaL/K,log,ψ of L/K to be the rigid space associated to

OaTS,L/K,log,ψ =K〈π−a−1
K δ0, π

−a
K δJ〉〈uJ+〉/(ψ(pJ+)).

For (RJ+)⊂ (δJ+) · SK admissible, we define the logarithmic thickening space (of level a)
TSaL/K,log,RJ+

to be the rigid space associated to

OaTS,L/K,log,RJ+
=K〈π−a−1

K δ0, π
−a
K δJ〉〈uJ+〉/(ψ(pJ+) +RJ+).

Let TSL/K,RJ+
=
⋃
a∈Q>0

TSaL/K,log,RJ+
. Then we have the following natural Cartesian

diagram for a ∈Q>0.

TSa+1
L/K,RJ+

Π

��

� � // TSaL/K,log,RJ+

Π

��

� � // TSL/K,RJ+

Π

��
Am+1
K [0, θa+1] � � // A1

K [0, θa+1]×AmK [0, θa] � � // A1
K [0, θ)×AmK [0, 1)

Here Π denotes the natural projection to the polydiscs with coordinates δJ+ .

Remark 3.2.14. The error gauge is supposed to measure how ‘standard’ a thickening space is.
Unfortunately, a standard thickening space itself depends on a very non-canonical function ψ.
The upshot is that, by Proposition 3.2.8, the notion of having error gauge >ω does not depend
on the choice of ψ if ω ∈ [1, βK ]; note that the terms in p0 are all divisible by πK , except ue0.

Remark 3.2.15. The reason for introducing non-standard thickening spaces (or, rather,
thickening spaces which do not have error gauge >βK) is, as we will show later, that adding
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a generic pth root results in the error gauge of (RJ+) dropping by one; the comparison theorem,
Theorem 3.3.3, guarantees that as long as the (RJ+) are admissible (i.e. βK > 1), the thickening
spaces still compute the same ramification break. In the same vein, if βK = 1, we cannot afford
to drop the error gauge; this is why we are not able to prove Conjecture 2.2.13 in the absolutely
unramified and non-logarithmic case (see also Remark 3.2.9).

Notation 3.2.16. Let (RJ+)⊂ (δJ+) · SK be admissible. With an abuse of notation, we shall still
use ∆ to denote the composite

SK/(ψ(pJ+) +RJ+)
mod(δ0/πK ,δJ )−−−−−−−−−−−→OK〈uJ+〉/(pJ+) ∆−−→

'
OL.

We remark that ψ(pJ+)− pJ+ +RJ+ are in fact contained in the ideal of SK generated by
δJ+ . We denote the composition of ∆ and the reduction OL� l by ∆.

Lemma 3.2.17. Let (RJ+)⊂ (δJ+) · SK be admissible. Then

{ueJ+

J+ | ej ∈ {0, . . . , prj − 1} for all j ∈ J and e0 ∈ {0, . . . , e− 1}} (3.2.18)

is a basis of SK/(ψ(pJ+) +RJ+) over RK . As a consequence, it also gives a basis of OaTS,L/K,RJ+

over K〈π−aK δJ+〉 for a ∈Q>1 and a basis of OaTS,L/K,log,RJ+
over K〈π−a−1

K δ0, π
−a
K δJ〉 for a ∈Q>0.

In particular, the morphism Π : TSL/K,RJ+
→A1

K [0, θ)×AmK [0, 1) is finite and flat.

Proof. Given an element h ∈ SK/(ψ(pJ+) +RJ+), we first take a representative h̃ ∈ SK . Then
we simplify it by iteratively replacing ue0 and up

rj

j by, respectively, ue0 − ψ(p0)−R0 and

up
rj

j − ψ(pj)−Rj for j ∈ J . This procedure converges and gives an element with power of u0

smaller than e and power of uj smaller than prj for j ∈ J . 2

3.3 AS = TS theorem

In [Xia10], the essential step linking the arithmetic conductors and the differential conductors is
the comparison theorem (see [Xia10, Theorem 4.3.6]), which asserts that the lifted Abbes–Saito
spaces are isomorphic to the thickening spaces. In the mixed characteristic case, we do not have
to lift the Abbes–Saito spaces. Instead, in this subsection, we prove a (slightly more general)
comparison theorem over the base field K.

Remember that we continue to assume Hypotheses 3.1.2 and 3.2.10. We start with a lemma.

Lemma 3.3.1. Let (RJ+)⊂ (δJ+) · SK be admissible. Then

det
(
∂(ψ(pi)− pi +Ri)

∂δj

)
i,j∈J+

∣∣∣∣
δJ+=0

∈ (OK〈uJ+〉/(pJ+))× =O×L .

Proof. The proof is quite similar to that of [Xia10, Lemmas 4.3.1 and 4.3.3]. We also remark that
the proof becomes very technical in order to deal with the appearance of b̃j(u1, . . . , uj−1) and
d(u1, . . . , um) and, partially, RJ+ (see Remark 3.1.8). If we could have taken b̃j(u1, . . . , uj−1)
and d(u1, . . . , um) to be 1 and RJ+ = 0, the lemma is almost immediate because the leading
term in each ψ(pi)− pi is just δi, and the matrix becomes the identity matrix modulo πL.

It is enough to prove that the matrix is of full rank modulo πL. By Lemma 3.2.11 and the
admissibility of RJ+ , modulo πL, the first row will be all zero except for the first element, which

432

https://doi.org/10.1112/S0010437X1100707X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100707X


Ramification filtrations

is d(c̄1, . . . , c̄m) ∈ κ×L . Hence, we need only look at(
∂(ψ(pi)− pi)

∂δj

)
i,j∈J

mod (πL, δ0/πK , δJ) =
(
∂(ψ(b̃i)− b̃i)

∂δj

)
i,j∈J

mod (πL, δ0/πK , δJ),

(3.3.2)
where b̃i = b̃i(u1, . . . , ui−1) in Construction 3.1.6. Let ᾱij ∈ l denote the entries in the matrix on
the right-hand side of (3.3.2), where we make the identification OK〈uJ+〉/(pJ+ , u0) ∼−−→ l. Under
this identification, b̃i will become c̄p

ri

i for all i ∈ J . It suffices to show that the ith row is l-linearly
independent of the first i− 1 rows, for all i. If we set

c̄ p
ri

i =
pr0−1∑
e1=0

· · ·
pri−1−1∑
ei−1=0

λ̄e1,...,ei−1 c̄
e1
1 · · · c̄

ei−1

i−1

where λ̄e1,...,ei−1 ∈ k, then we would have, modulo πK ,

b̃i(u1, . . . , uj−1)≡
pr0−1∑
e1=0

· · ·
pri−1−1∑
ei−1=0

λ̄e1,...,ei−1u
e1
1 · · · u

ei−1

i−1 .

Hence, if we set dλ̄e1,...,ei−1 = µ̄e1,...,ei−1,1db̄1 + · · ·+ µ̄e1,...,ei−1,mdb̄m, then by Lemma 3.2.11 we
get

ᾱi1 db̄1 + · · ·+ ᾱim db̄m =
pr0−1∑
e1=0

· · ·
pri−1−1∑
ei−1=0

ue11 · · · u
ei−1

i−1 (µ̄e1,...,ei−1,1 db̄1 + · · ·+ µ̄e1,...,ei−1,m db̄m)

≡ d(c̄p
ri

i ) modulo (dc̄1, . . . , dc̄i−1)

in Ω1
ki−1/Fp ; it is, in fact, non-trivial because dc̄1, . . . , dc̄m form a basis for Ω1

κL/Fp and hence there
should not be any auxiliary relations among dc̄1, . . . , dc̄m in Ω1

ki/Fp . But we know that the sums
ᾱi′1db̄1 + · · ·+ ᾱi′mdb̄m for i′ < i all lie in the subspace of Ω1

ki−1/Fp generated by dc̄1, . . . , dc̄i−1.
Hence the ith row of the matrix in (3.3.2) is (ki−1-)linearly independent of the first i− 1 rows.
The lemma follows. 2

Theorem 3.3.3. If (RJ+)⊂ (δJ+) · SK is admissible, we have the following isomorphisms of
K-algebras:

OaAS,L/K 'O
a
TS,L/K,RJ+

if a ∈Q>1,

OaAS,L/K,log 'O
a
TS,L/K,log,RJ+

if a ∈Q>0.

Example 3.3.4. Before proving the theorem, we illustrate the idea using an example.
Assume p > 2. Let K be the completion of Qp(ζp)(b) with respect to the 1-Gauss norm

on b (= b1); we take πK = ζp − 1. (Strictly speaking, Hypothesis 3.1.2 requires K to have
separably closed residue field; in fact, however, Theorem 3.3.3 holds without this assumption.) Let
L=K((bπK)1/p)((b+ πK)1/p); it is a Galois extension with inseparable residue field extension
and näıve ramification degree p. We take the uniformizer of L to be πL = (bπK)1/p and
we take c= (b+ πK)1/p; these generate the extension OL/OK with relations p0(u0, u1) =
p0(u0) = up0 − bπK and p1(u0, u1) = p1(u1) = up1 − b− πK . For a > 0, the Abbes–Saito space is
given by

OaAS,L/K =K〈u0, u1, π
−a
K V0, π

−a
K V1〉/(up0 − bπK − V0, u

p
1 − b− πK − V1).
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We take the function ψ :OK →OKJδ0, δ1K so that ψ(b) = b+ δ1 and ψ(bπK) =
(b+ δ1)(πK + δ0). Then the standard thickening space is given by

OaTS,L/K,ψ =K〈u0, u1, π
−a
K δ0, π

−a
K δ1〉/(up0 − (b+ δ1)(πK + δ0), up1 − b− δ1 − πK − δ0).

We will identify these two algebras by matching u0 and u1 from the two algebras. To
do this, we first construct a (continuous) homomorphism χ1 :OaAS,L/K →O

a
TS,L/K,ψ such that

χ1(u0) = u0 and χ1(u1) = u1; then we are forced to send V0 to χ1(up0 − bπK) = πKδ1 + bδ0 + δ0δ1

and V1 to χ1(up1 − b− πK) = δ0 + δ1. For χ1 to be well-defined, we need to check convergence,
which is quite obvious from the way it is written in this particular example.

Conversely, we want to construct the inverse (continuous) homomorphism χ2 :OaTS,L/K,ψ→
OaAS,L/K . Again, we need χ2(u1) = u1 and χ2(u2) = u2. It is less obvious where we need to send
δ0 and δ1. But we know that the images χ2(δ0) and χ2(δ1) must satisfy

bχ2(δ0) + πKχ2(δ1) = χ2(up0 − bπK − δ0δ1) = V0 − χ2(δ0)χ2(δ1)

and
χ2(δ0) + χ2(δ1) = χ2(up1 − b− πK) = V1.

Thinking of these as a system of linear equations, we have(
χ2(δ0)
χ2(δ1)

)
=
(
b πK
1 1

)−1 (
V0 − χ2(δ0)χ2(δ1)

V1

)
. (3.3.5)

We can determine the value of χ2(δ0) and χ2(δ1) by iteratively plugging the left-hand side
of (3.3.5) into its right-hand side. In our special case, one can check by hand that this process
will converge eventually to two elements of OaAS,L/K , which will be the images of χ2(δ0) and
χ2(δ1), respectively. For the general case, however, it is better to employ a ‘fixed-point theorem’
argument.

We now prove Theorem 3.3.3.

Proof. The proof is similar to that of [Xia10, Theorem 4.3.6]. We will match up uJ+ in the two
rings.

We first observe that

{ueJ+

J+ | ej ∈ {0, . . . , prj − 1} for all j ∈ J and e0 ∈ {0, . . . , e− 1}} (3.3.6)

forms a basis of OaAS,L/K (respectively, OaAS,L/K,log) over K〈π−aK VJ+〉 (respectively,
K〈π−a−1

K V0, π
−a
K VJ〉) as a finite free module. Given

h=
∑

eJ+ ,e′
J+

αeJ+ ,e′
J+
u
eJ+

J+ V
e′
J+

J+ ∈ OaAS,L/K (respectively, OaAS,L/K,log)

written in terms of this basis, where αeJ+ ,e′
J+
∈K, we define

|h|AS,a = max
eJ+ ,e′

J+

{|αeJ+ ,e′
J+
| · θae′0+···+ae′m+e0/e}(

respectively, |h|AS,log,a = max
eJ+ ,e′

J+

{|αeJ+ ,e′
J+
| · θ(a+1)e′0+ae′1+···+ae′m+e0/e}

)
.

It is clear that OaAS,L/K (respectively, OaAS,L/K,log) is complete and submultiplicative
for this norm (i.e. |h1h2|AS,a 6 |h1|AS,a|h2|AS,a and |h1h2|AS,log,a 6 |h1|AS,log,a|h2|AS,log,a); the
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requirement a > 1 in the non-logarithmic case guarantees that upon replacing ue0 by ue0 − p0 − V0,
the norm does not increase.

Similarly, by Lemma 3.2.17, (3.3.6) also forms a basis of OaTS,L/K,RJ+
(respectively,

OaTS,L/K,log,RJ+
) overK〈π−aK δJ+〉 (respectively,K〈π−a−1

K δ0, π
−a
K δJ〉) as a finite free module. Given

h=
∑

eJ+ ,e′
J+

αeJ+ ,e′
J+
u
eJ+

J+ δ
e′
J+

J+ ∈ OaTS,L/K,RJ+
(respectively, OaTS,L/K,log,RJ+

)

written in terms of this basis, where αeJ+ ,e′
J+
∈K, we define

|h|TS,a = max
eJ+ ,e′

J+

{|αeJ+ ,e′
J+
| · θae′0+···+ae′m+e0/e}(

respectively, |h|TS,log,a = max
eJ+ ,e′

J+

{|αeJ+ ,e′
J+
| · θ(a+1)e′0+ae′1+···+ae′m+e0/e}

)
.

It is clear that OaTS,L/K,RJ+
(respectively, OaTS,L/K,log,RJ+

) is complete and submultiplicative for
this norm. The requirement a > 1 in the non-logarithmic case guarantees that upon replacing ue0
by ue0 − ψ(p0)−R0, the norm does not increase.

Define a continuous homomoprhism χ1 :OaAS,L/K →O
a
TS,L/K,RJ+

(respectively, χ1 :
OaAS,L/K,log→O

a
TS,L/K,log,RJ+

) by sending uJ+ to uJ+ and hence Vj to pj(uJ+) = pj(uJ+)−
ψ(pj(uJ+))−Rj for all j ∈ J+. We need to verify the convergence conditions for all Vj . Indeed,
Proposition 3.2.8 and the admissibility of RJ+ imply that

|pj − ψ(pj)|TS,a 6 θ
a and |Rj |TS,a 6 θ

a for all j ∈ J+(
respectively, |pj − ψ(pj)|TS,log,a 6

{
θa+1 j = 0
θa j ∈ J and |Rj |TS,log,a 6

{
θa+1+1/e j = 0
θa+1/e j ∈ J

)
.

Now we define the inverse χ2 of χ1. Obviously, we should send uJ+ back to uJ+ . We need to
define χ2(δJ+) properly. Let A= (Aij)i,j∈J+ denote the unique matrix in OKJuJ+K such that

A≡
(
∂(ψ(pi) +Ri)

∂δj

)
i,j∈J+

mod (δJ+) · SK .

By Lemma 3.3.1, the image of A in Matm+1(OK〈uJ+〉/(pJ+)) = Matm+1(OL), denoted
by A, is invertible. Let B denote the (m+ 1)× (m+ 1) matrix with coefficients in⊕e−1

e0=0

⊕pr1−1
e1=0 · · ·

⊕prm−1
em=0 OKu

eJ+

J+ whose image in Matm+1(OK〈uJ+〉/(pJ+)) is the inverse of
A. Then we have

BA− I ∈Matm+1((pJ+) · OK〈uJ+〉), (3.3.7)

where I is the (m+ 1)× (m+ 1) identity matrix.

Define the subset

Λ = {t(x0, . . . , xm) ∈ (OaAS,L/K)⊕(m+1) : |xj |AS,a 6 θ
a ∀j ∈ J+}

(respectively, Λ = {t(x0, . . . , xm) ∈ (OaAS,L/K,log)⊕(m+1) :

|x0|AS,log,a 6 θ
a+1 and |xj |AS,log,a 6 θ

a ∀j ∈ J}).
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It carries a norm | · |Λ defined by taking the maximum of | · |AS,a (respectively, | · |AS,log,a) over
its entries. Consider the function F : Λ→ Λ given by

F

x0
...
xm

 =

x0
...
xm

−B
 (ψ(p0) +R0)(uJ+ , xJ+)

...
(ψ(pm) +Rm)(uJ+ , xJ+)

 (3.3.8)

= (I −BA)

x0
...
xm



− B


 (ψ(p0) +R0)(uJ+ , xJ+)− p0

...
(ψ(pm) +Rm)(uJ+ , xJ+)− pm

− A

x0
...
xm


−B

V0
...
Vm

, (3.3.9)

where (ψ(pj) +Rj)(uJ+ , xJ+) is the formal substitution of xj for δj for any j ∈ J+.
To see that F is well-defined, we need to bound the norms of each term in (3.3.9) when

t(x0, . . . , xm) ∈ Λ. By (3.3.7), I −BA (viewed as an element in OaAS,L/K or, respectively,
OaAS,L/K,log) has norm less than or equal to θa. Hence, in the non-logarithmic case, the first term
of (3.3.9) has norm less than or equal to θ2a; in the logarithmic case, the first term of (3.3.9)
has norm less than or equal to θ2a, except for the first row, which has norm less than or equal
to θ2a+1. By the definition of A, the second term of (3.3.9) has entries in (δJ+)2SK , except for
the first row, which is in (δJ+)2SK ∩ (x2

0, πKx0)SK (because of how p0 is defined). Hence, in the
non-logarithmic case, this term has norm less than or equal to θ2a−1; in the logarithmic case,
this term has norm less than or equal to θ2a, except for the first row, which has norm less than
or equal to min{θa+2, θ2a}6 θa+2.

Hence, we see clearly that F does map Λ into Λ. Moreover, we observe that F is contractive,
that is, there exists ε ∈ (0, 1) (in fact, ε= θa−1 in the non-logarithmic case and ε= θmin{a,1} in
the logarithmic case) such that for x = t(x0, . . . , xm) and y = t(y0, . . . , ym) ∈ Λ, we have

|F(x)− F(y)|Λ < ε|x− y|Λ (respectively, |F(x)− F(y)|< ε|x− y|Λ).

Therefore, F has a unique fixed point in Λ, denoted by x = t(x0, . . . , xm) ∈ Λ.
Now, we define a continuous homomorphism χ̃2 :K〈uJ+ , π−aK δJ+〉 →OaAS,L/K (respectively,

χ̃2 :K〈uJ+ , π−a−1
K δ0, π

−a
K δJ〉 →OaAS,L/K,log) by χ̃2(uj) = uj for j ∈ J+ and χ̃2(δj) = xj .

We now check that χ̃2(ψ(pj) +Rj) = 0 for all j ∈ J+. Indeed, by (3.3.8) we have

B

 χ̃2(ψ(p0) +R0)
...

χ̃2(ψ(pm) +Rm)

=B

 (ψ(p0) +R0)(uJ+ , xJ+)
...

(ψ(pm) +Rm)(uJ+ , xJ+)

=

x0
...
xm

− F

x0
...
xm

=

0
...
0

.
Hence, χ̃2 factors through a continuous homomorphism χ2 :OaTS,L/K,RJ+

→OaAS,L/K

(respectively, χ2 :OaTS,L/K,log,RJ+
→OaAS,L/K,log).

Finally, we claim that χ2 and χ1 are inverse to each other. One may check this directly from
the definition. Alternatively, observe that by our definition, they are inverse to each other on a
dense subset K[uJ+ ] (the density is proved in Lemma 3.3.11 below); therefore, they have to be
inverse to each other, and give an isomorphism between the ring of functions on the Abbes–Saito
space and the ring of functions on the thickening space. 2
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Remark 3.3.10. An alternative way of understanding this theorem is to think of the
thickening spaces as perturbations of the morphisms ASaL/K →Am+1

K [0, θa] and ASaL/K,log→
A1
K [0, θa+1]×AmK [0, θa]. Abbes–Saito spaces will behave better under base change using the new

morphisms.

Lemma 3.3.11. Let (RJ+)⊂ (δJ+) · SK be admissible. Then K[uJ+ ] is dense in OaTS,L/K,RJ+

and OaAS,L/K for a ∈Q>1, and in OaTS,L/K,log,RJ+
and OaAS,L/K,log for a ∈Q>0.

Proof. Since Vj = pj(uJ+) ∈K[uJ+ ] for all j ∈ J+, the density of K[uJ+ ] in OaAS,L/K and
OaAS,L/K,log is obvious from the definition. We now prove the density for the thickening spaces.
It is enough to show that δJ+ can be well-approximated by elements of K[uJ+ ]. We keep the
notation as in the proof of Theorem 3.3.3. Consider a variant of (3.3.9): δ0

...
δm

= (I −BA)

 δ0
...
δm

−B

 (ψ(p0) +R0)− p0

...
(ψ(pm) +Rm)− pm

−A
 δ0

...
δm


−B

p0
...
pm

. (3.3.12)

Note that I −BA ∈Matm+1((pJ+) · OK〈uJ+〉) implies that the first term in the right-hand side
of (3.3.12) has representatives in (δ0/πK , δJ)2SK under the quotient SK →SK/(ψ(pJ+) +RJ+).
The second term in the right-hand side of (3.3.12) is already written in terms of elements
in (δ0/πK , δJ)2SK . The third term in the right-hand side of (3.3.12) is a vector of
elements in K[uJ+ ].

So, this means that we can approximate δJ+ using K[uJ+ ] up to elements in (δ0/πK , δJ)2SK .
We can use the same approximation to approximate δjδj′ for j, j′ ∈ J in the previous
approximation and hence get an approximation of δJ+ by elements in K[uJ+ ] up to
(δ0/πK , δJ)3SK . Iterating this construction, we see that K[uJ+ ] is dense in OaTS,L/K,RJ+

for
a ∈Q>1 and dense in OaTS,L/K,log,RJ+

for a ∈Q>0. 2

3.4 Étaleness of thickening spaces
In this subsection, we will study a variant of [AS02, Theorem 7.2] and [AS03, Corollary 4.12].

Remember that Hypotheses 3.1.2 and 3.2.10 are still in force.

Definition 3.4.1. Let (RJ+)⊂ (δJ+) · SK be an admissible subset. Let ETL/K,RJ+
be the rigid

analytic subspace of A1
K [0, η)×AmK [0, 1) over which the morphism Π defined in Definition 3.2.13

is étale. When there is no confusion over the choice of RJ+ , or if the choice is not important, we
abbreviate ETL/K,RJ+

to ETL/K .

Theorem 3.4.2. Let b(L/K) be the highest non-logarithmic ramification break of L/K. There
exists ε ∈ (0, b(L/K)− 1) such that b(L/K)− ε ∈Q and, for any admissible (RJ+)⊂ (δJ+) · SK ,
Am+1
K [0, θb(L/K)−ε]⊆ ETL/K,RJ+

.

Proof. The proof is essentially the same as that for [AS02, Proposition 7.5]. The essential point is
the ‘congruence’ ∂(ψ(pi) +Ri)/∂uj ≡ ∂(pi)/∂uj over the said locus. For the reader’s convenience,
we include the proof here.

Recall from [AS02, Proposition 7.3] that

Ω1
OL/OK =

r⊕
i=1

OL/παiL OL with αi < e(b(L/K)− ε) (3.4.3)
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for some ε > 0 and r ∈ N. It does not hurt to take ε < b(L/K)− 1 and b(L/K)− ε ∈Q. Let
J = (∂(ψ(pi) +Ri)/∂uj)i,j∈J+ be the Jacobian matrix of TSaL/K,RJ+

over Am+1
K [0, θa], whose

entries are elements in O =OK〈uJ+ , π−aK δJ+〉/(ψ(pi) +Ri).
Let a= b(L/K)− ε ∈Q. Suppose that x ∈A1

K [0, θa] is a Kalg-point at which det(J ) vanishes;
it gives a homomorphism OaTS,L/K,RJ+

→Kalg. We let xJ+ and νJ+ denote the images of uJ+

and δJ+ , respectively; we have xj , νj ∈ OKalg and |νj |6 θa, for all j ∈ J+. Hence, we have
|pj(xJ+)|6 θa for all j ∈ J+.

Now, we have the following two OK-algebra homomorphisms.

ϕ :OL =OK [u0, . . . , um]/(p0, . . . , pm) // OKalg/πaKOKalg

h(uJ+) � // h(xJ+),

evx :O =OK〈uJ+ , π−aK δJ+〉/(ψ(pi) +Ri) // OKalg

h(uJ+ , δJ+) � // h(xJ+ , νJ+).

Here ϕ is well-defined because |pj(xJ+)|6 θa.
We consider the following commutative diagram of linear maps.

O⊕(m+1)
evx //

J
��

O⊕(m+1)

Kalg

evx(J )

��

mod πaK // (OKalg/πaKOKalg)⊕(m+1)

(∂pi/∂uj)i,j∈J+ mod πaK
��

O⊕(m+1)
L

ϕoo

(∂pi/∂uj)i,j∈J+

��

O⊕(m+1)
evx // O⊕(m+1)

Kalg

mod πaK // (OKalg/πaKOKalg)⊕(m+1) O⊕(m+1)
L

ϕoo

(3.4.4)
Here, commutativity is clear except for the one in the middle, which follows from the simple but
key fact that |νJ+ |6 πaK =⇒ evx(J )≡ (∂pi/∂uj)i,j∈J+ mod πaK .

Now, on the one hand, (3.4.3) implies that the cokernel of the right vertical arrow in (3.4.4) is
isomorphic to

⊕r
i=1 OL/π

αi
L OL. Since ea > αi for any i, the cokernel of the third vertical arrow

in (3.4.4) is isomorphic to
⊕r

i=1 OKalg/παiL OKalg .
On the other hand, we have assumed that det(evx(J )) = 0; this implies that the cokernel

of the second vertical arrow in (3.4.4) has a torsion-free constituent. Therefore, we know that
the the cokernel of the third arrow must have a direct summand isomorphic to OKalg/πaKOKalg ;
this contradicts the claim in the previous paragraph. So we have étaleness as stated. 2

Remark 3.4.5. Theorem 3.4.2 (as well as Theorem 3.4.7 later) states that the étale locus
ETL/K,RJ+

is a bit larger than the locus where TSaL/K,RJ+
(respectively, TSaL/K,log,RJ+

) becomes
a geometrically disjoint union of [L :K] discs. This is crucial for the proof of Corollary 3.5.4.

The following lemma is an easy fact about logarithmic relative differentials. This is not a good
place to introduce the theory of logarithmic structure. For a systematic account of logarithmic
structures and log-schemes, one may consult [KS04, § 4] and [Kat89].

Lemma 3.4.6. If we provide OL and OK with the canonical log-structures πN
L ↪→OL and

πN
K ↪→OK , respectively, then the logarithmic relative differentials are such that

Ω1
OL/OK (log/log) =

⊕
j∈J
OL duj ⊕OL

du0

u0

/(
d(pJ),

d(p0)
πK

,
dπK
πK

, dx for x ∈ OK
)
.
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Theorem 3.4.7. Let blog(L/K) be the highest logarithmic ramification break of L/K. Then
there exists ε ∈ (0, blog(L/K)) such that blog(L/K)− ε ∈Q and, for any admissible (RJ+)⊂
(δJ+) · SK , we have A1

K [0, θblog(L/K)+1−ε]×AmK [0, θblog(L/K)−ε]⊆ ETL/K,RJ+
.

Proof. The proof is similar to that of Theorem 3.4.2, except that we need to invoke [AS03,
Proposition 4.11(2)] to give a bound on Ω1

OL/OK (log/log); the explicit description of
Ω1
OL/OK (log/log) in Lemma 3.4.6 singles out δ0 and gives rise to the smaller radius θa+1. 2

3.5 Construction of differential modules
In this subsection, we set up the framework for interpreting ramification filtrations by differential
modules.

We remind the reader that we are still assuming Hypotheses 3.1.2 and 3.2.10.

Construction 3.5.1. Let (RJ+)⊂ (δJ+) · SK be admissible. By Lemma 3.2.17, Π : Π−1(ETL/K)→
ETL/K is finite and étale. We call E = Π∗(OΠ−1(ETL/K)) a differential module associated to L/K;
it is defined over ETL/K , and the differential module structure is given by

∇ : E →Π∗(Ω1
Π−1(ETL/K)/K)' E ⊗OETL/K

Ω1
ETL/K/K

= E ⊗OETL/K

(⊕
j∈J+

OETL/K dδj

)
.

Thus, we can define the actions of differential operators ∂j = ∂/∂δj for j ∈ J+ on E and talk
about intrinsic radii IR(E ; sJ+) as in Notation 2.1.13 if A1

K [0, θs0 ]× · · · ×A1
K [0, θsm ]⊆ ETL/K .

Proposition 3.5.2. The following statements are equivalent for a ∈Q>1 (respectively, for
a ∈Q>0).

(1) The highest non-logarithmic (respectively, logarithmic) ramification break satisfies
b(L/K)6 a (respectively, blog(L/K)6 a).

(2) For any (some) admissible (RJ+)⊂ SK and any rational number a′ > a,

#πgeom
0 (TSa

′

L/K,RJ+
) = [L :K] (respectively, #πgeom

0 (TSa
′

L/K,log,RJ+
) = [L :K]).

(3) For any (some) admissible (RJ+)⊂ SK , Am+1
K [0, θa]⊆ ETL/K,RJ+

(respectively, A1
K [0, θa+1]

×AmK [0, θa]⊆ ETL/K,RJ+
) and the intrinsic radius of E over Am+1

K [0, θa] (respectively,

A1
K [0, θa+1]×AmK [0, θa]) is maximal:

IR(E ; a) = 1 (respectively, IR(E ; a+ 1, a) = 1).

Proof. The proof is similar to that of [Xia10, Theorem 3.4.5].
(1)⇐⇒ (2) is immediate from Theorem 3.3.3.
(2) =⇒ (3): for any rational number a′ > a, (2) implies that for some finite extension K ′ of K,

TSa
′

L/K,RJ+
×K K ′ (respectively, TSa

′

L/K,log,RJ+
×K K ′) has [L :K] connected components and is

hence forced to be [L :K] copies of Am+1
K′ [0, θa

′
] (respectively, A1

K′ [0, θ
a′+1]×AmK′ [0, θa

′
]) because

Π is finite and flat; in particular, Π is étale there. Therefore, E ⊗K K ′ is a trivial differential
module over Am+1

K′ [0, θa
′
] (respectively, A1

K′ [0, θ
a′+1]×AmK′ [0, θa

′
]). As a consequence,

IR(E ; a′) = IR(E ⊗K ′; a′) = 1 (respectively, IR(E ; a′ + 1, a′) = IR(E ⊗K K ′; a′ + 1, a′) = 1).

Statement (3) follows from the continuity of intrinsic radii in Proposition 2.1.23(a), upon taking
a′ to be sufficiently close to a.
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(3) =⇒ (2): statement (3) implies that, for any rational number a′ > a, E is a trivial differential
module on Am+1

K [0, θa
′
] (respectively, A1

K [0, θa
′+1]×AmK [0, θa

′
]). Indeed, we have a bijection

H0
∇(Am+1

K [0, θa
′
], E)

∼=−−→ E|δJ+=0 (respectively, H0
∇(A1

K [0, θa
′+1]×AmK [0, θa

′
], E)

∼=−−→ E|δJ+=0),
(3.5.3)

whose inverse is given by a Taylor series. (The convergence of the Taylor series is guaranteed by
the condition on the intrinsic radii.) This is in fact a ring isomorphism by basic properties
of Taylor series. The left-hand side of (3.5.3) is a subring of Oa′TS,L/K,RJ+

(respectively,

Oa′TS,L/K,log,RJ+
), while the right-hand side is just K〈uJ+〉/(pJ+)' L. Thus, after the extension of

scalars from K to L, we can lift the idempotent elements in L⊗K L'
∏
g∈GL/K Lg to idempotent

elements in Oa′TS,L/K,RJ+
⊗K L (respectively, Oa′TS,L/K,log,RJ+

⊗K L). This proves (2). 2

Corollary 3.5.4. Given the differential module E over ETL/K,RJ+
with respect to some

admissible subset (RJ+)⊂ (δJ+) · SK , we have

b(L/K) = min{s |Am+1
K [0, θs]⊆ ETL/K,RJ+

and IR(E ; s) = 1}

and

blog(L/K) = min{s |A1
K [0, θs+1]×AmK [0, θs]⊆ ETL/K,RJ+

and IR(E ; s+ 1, s) = 1}.

In other words, b(L/K) (respectively, blog(L/K)) corresponds to the intersection of the
boundary of Z(E) (cf. Proposition 2.1.23(c)) with the line defined by s0 = · · ·= sm (respectively,
s0 − 1 = s1 = · · ·= sm).

Proof. By Theorems 3.4.2 and 3.4.7, ETL/K,RJ+
is large enough to use for pinning down the exact

boundary of Z(E). The corollary follows immediately from Propositions 3.5.2 and 2.1.23. 2

3.6 Recursive thickening spaces

In this subsection, we introduce a generalization of thickening spaces. This will give us some
freedom when changing the base field.

In this subsection, we continue to assume Hypotheses 3.1.2 and 3.2.10.

Construction 3.6.1. This is a variant of Construction 3.1.6. First, filter the (inseparable)
extension l/k by elementary p-extensions

k = k0 ( k1 ( · · ·( kr = l

where, for each λ= 1, . . . , r, kλ = kλ−1(c̄λ) with c̄
p
λ = b̄λ ∈ kλ−1. Write Λ = {1, . . . , r}. Pick lifts

cΛ of c̄Λ in OL. Let e= e0, . . . , er0 = 1 be a strictly decreasing sequence of integers such that
ei|ei−1 for 16 i6 r0. Set I = {1, . . . , r0}. For each i ∈ I, pick an element πL,i inOL with valuation
ei; in particular, we take πL,r0 = πL. It is easy to see that the (cΛ, πL,I) generate OL over OK .
So we have an isomorphism

∆ :OK〈u0,I , uΛ〉/I
∼−−→OL

such that u0,i 7→ πL,i for i ∈ I and uλ 7→ cλ for λ ∈ Λ, where I is some proper ideal and we use
the same ∆ as in Construction 3.1.6. Moreover,{

u
e0,I
0,I ueΛ

Λ

∣∣∣ e0,i ∈
{

0, . . . ,
ei−1

ei
− 1
}

for all i ∈ I and eλ ∈ {0, . . . , p− 1} for all λ ∈ Λ
}

(3.6.2)
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forms a basis of OK〈u0,I , uΛ〉/I as a free OK-module, which we will refer to later as the
standard basis.

We endow OK [u0,I , uΛ] with the following norm: for h=
∑

e0,I ,eΛ
αe0,I ,eΛu

e0,I
0,I ueΛ

Λ with αe0,I ,eΛ ∈
OK , set

|h|= max
e0,I ,eΛ

{|αe0,I ,eΛ | · θ
(e0,1·e1+···+e0,r0 ·er0 )/e}.

For a ∈ (1/e)Z>0, we use Na to denote the set consisting of elements in OK [u0,I , uΛ] with norm
less than or equal to θa; this is, in fact, an ideal.

In OK〈u0,I , uΛ〉/I, we can write u
ei−1/ei
0,i for i ∈ I and u

p
Λ in terms of the basis (3.6.2). This

gives a set of generators of I:

p0,1 ∈ u
e/e1
0,1 − d1πK + N1+1/e · OK [u0,I , uΛ],

p0,i ∈ u
ei−1/ei
0,i − diu0,i−1 + N(ei−1+1)/e · OK [u0,I , uΛ] for i ∈ I\{1},

pλ ∈ u
p
λ − b̃λ + N1/e · OK [u0,I , uΛ],

where dI are some elements in OK [u0,I , uΛ] whose images under ∆ are invertible in OL and,
for each λ, b̃λ is some element in OK [u1, . . . , uλ−1] whose image under ∆ reduces to b̄λ ∈ kλ−1

modulo πL.
We say that pλ corresponds to the extension kλ/kλ−1.

Definition 3.6.3. As in Definition 3.2.12, we define

SK =RK〈u0,I , uΛ〉=OKJδ0/πK , δJK〈u0,I , uΛ〉.

For ω ∈ 1
eN ∩ [1, βK ], we say that a set of elements (R0,I ,RΛ)⊂ (δJ+) ·SK has error gauge >ω

if R0,i ∈ (Nω−1+ei/eδ0,N
ω+ei/eδJ) ·SK for i ∈ I and Rλ ∈ (Nω−1δ0,N

ωδJ) ·SK for λ ∈ Λ. The
subset (R0,I ,RΛ)⊂ (δJ+) ·SK is said to be admissible if it has error gauge >1.

Let (R0,I ,RΛ)⊂ (δJ+) ·SK be admissible. For a ∈Q>1, we define the (non-logarithmic)
recursive thickening space (of level a) TSaL/K,R0,I ,RΛ

to be the rigid space associated to

OaTS,L/K,R0,I ,RΛ
=K〈π−aK δJ+〉〈u0,I , uΛ〉/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ).

For a ∈Q>0, we define the logarithmic recursive thickening space (of level a) TSaL/K,log,R0,I ,RΛ

to be the rigid space associated to

OaTS,L/K,log,R0,I ,RΛ
=K〈π−a−1

K δ0, π
−a
K δJ〉〈u0,I , uΛ〉/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ).

We still use ∆ to denote the natural homomorphism

SK/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ)
mod(δ0/πK ,δJ )−−−−−−−−−−−→OK〈u0,I , uΛ〉/(p0,I , pΛ) ∆−−→

'
OL;

we use ∆ to denote the composition with the reduction OL→ l.

Lemma 3.6.4. Let (R0,I ,RΛ)⊂ (δJ+) ·SK be admissible. Then (3.6.2) forms a basis of
SK/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ) as a free RK-module, which will be referred to later as
the standard basis. As a consequence, it constitutes a basis of OaTS,L/K,R0,I ,RΛ

(respectively,

OaTS,L/K,log,R0,I ,RΛ
) as a free module over K〈π−aK δJ+〉 (respectively K〈π−a−1

K δ0, π
−a
K δJ〉).

Proof. The proof is the same as that of Lemma 3.2.17. 2
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Example 3.6.5. The construction of the thickening spaces in Definition 3.2.13 is a special case
of the above construction. If we start with a uniformizer πL, a p-basis cJ , and relations pJ+ in
Construction 3.1.6, the following dictionary translates the information to fit Construction 3.6.1.

πL,I ←→ πL (I = {1}),

cΛ ←→ c1, c
p
1, . . . , c

pr1−1

1 , c2, c
p
2, . . . , c

prm−1

m ,

p0,I , pΛ ←→ the ones determined by cΛ and πL,I ,

R0,I ←→ R0,

Rλ ←→ Rj when λ corresponds to some cp
rj−1

j , and 0 otherwise.

Moreover, this construction preserves the error gauge.

Conversely, we have the following.

Proposition 3.6.6. Let (R0,I ,RΛ)⊂ (δJ+) ·SK be admissible with error gauge >ω ∈ (1/e)N ∩
[1, βK ]. Then, for any choice of cJ and πL as in Construction 3.1.6, there exists an RK-
isomorphism

Θ : SK/(ψ(pJ+) +RJ+) ∼−−→SK/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ), (3.6.7)

for some admissible RJ+ with error gauge >ω, such that Θ mod (δ0/πK , δJ) induces the identity
map if we identify both sides (modulo (δ0/πK , δJ)) withOL via ∆. This gives rise to isomorphisms
between the recursive thickening spaces and the thickening spaces:

TSaL/K,R0,I ,RΛ
' TSaL/K,RJ+

(a ∈Q>1) and TSaL/K,log,R0,I ,RΛ
' TSaL/K,log,RJ+

(a ∈Q>0).

Proof. For each j ∈ J , we express cj as a polynomial c̃j in u0,I and uΛ with coefficients in
OK via ∆−1 :OL

∼−−→OK〈u0,I , uΛ〉/(p0,I , pΛ). We define a continuous homomorphism Θ̃ : SK →
SK

/
(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ) by setting Θ̃(uj) = ψ(c̃j) for j ∈ J and Θ̃(u0) = u0,r0 . It is then

obvious that for a ∈ 1
eZ>0, Θ̃(Na · SK)⊂Na ·SK .

We need to determine RJ+ . For each fixed j0 ∈ J+, since ∆(pj0(uJ+)) = 0 we can write

pj0(u0,r0 , c̃J) =
∑
i∈I

h0,ip0,i +
∑
λ∈Λ

hλpλ in OK〈u0,I , uΛ〉,

for some h0,i, hλ ∈ OK〈u0,I , uΛ〉, for i ∈ I and λ ∈ Λ. Moreover, when j0 = 0, we can require that
h0,i ∈N1−ei−1/e · OK〈u0,I , uΛ〉 and hλ ∈N1 · OK〈u0,I , uΛ〉 for i ∈ I and λ ∈ Λ. Thus, we expect to
define Rj0 so that, under Θ̃, it is mapped to

−ψ(pj0)(Θ̃(uJ+)) = −
∑
i∈I

ψ(h0,i)ψ(p0,i)−
∑
λ∈Λ

ψ(hλ)ψ(pλ) + E

= −
∑
i∈I

ψ(h0,i)(−R0,i)−
∑
λ∈Λ

ψ(hλ)(−Rλ) + E

∈
{

(Nωδ0,N
ω+1δJ) ·SK j0 = 0,

(Nω−1δ0,N
ωδJ) ·SK j0 ∈ J,

where E ∈ (NβKδ0,N
(βK+1)δJ) ·SK if j0 = 0 and E ∈ (N(βK−1)δ0,N

βKδJ) ·SK if j0 ∈ J ; these
correspond to the error terms that come from ψ failing to be a homomorphism (see
Proposition 3.2.8).
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Thus, we can find polynomials q0, . . . , qm ∈ OK [uJ+ ] such that

q0 ∈

{
Nω · SK j0 = 0,
Nω−1 · SK j0 ∈ J,

q1, . . . , qm ∈

{
Nω+1 · SK j0 = 0,
Nω · SK j0 ∈ J,

and

−ψ(pj0)(Θ̃(uJ+))− Θ̃(q0δ0 + · · ·+ qmδm) ∈

{
(δ0/πK , δJ)(Nωδ0,N

ω+1δJ) ·SK j0 = 0,
(δ0/πK , δJ)(Nω−1δ0,N

ωδJ) ·SK j0 ∈ J.

Further, we can similarly find approximations of the coefficients of δjδj′ , for j, j′ ∈ J+.
Iterating this approximation gives the expressions for RJ+ ; they clearly have error gauge >ω.

By construction, Θ̃ factors through the quotient by ψ(pJ+) +RJ+ ; we then obtain the
homomorphism Θ as in (3.6.7). The surjectivity of Θ follows from the surjectivity modulo
(δ0/πK , δJ), which is the identity via ∆. Moreover, a surjective morphism between two finite
free modules of the same rank over a noetherian base ring is automatically an isomorphism. The
theorem is thus proved. 2

Remark 3.6.8. The isomorphism Θ is not unique. Basically, Θ(u0) mod (Nωδ0,N
ω+1δJ) ·SK

and Θ(uj) mod (Nω−1δ0,N
ωδJ) ·SK for j ∈ J are fixed; any lifts of them will give a desired

isomorphism (with different (RJ+)).

Lemma 3.6.9. Let (R0,I ,RΛ)⊂ (δJ+) ·SK be admissible. Then an element

h ∈SK/(ψ(p0,I) + R0,I , ψ(pΛ) + RΛ)

is invertible if and only if ∆(h) ∈ O×L . In particular, ue0,r0/πK is invertible.

Proof. The necessity is obvious. To see the sufficiency, we construct the inverse of h directly.
Let h(−1) be a lift of ∆(h−1) ∈ O×L in OK〈u0,I , uΛ〉. We have ∆(1− h(−1)h) = 0 and hence
1− h(−1)h= g ∈ (δJ+) ·SK . Thus,

1
h

=
h(−1)

1− g
= h(−1) · (1 + g + g2 + · · · ).

The series converges to the inverse of h. 2

4. Hasse–Arf theorems

4.1 Generic pth roots
The notion of generic pth roots was first (implicitly) introduced by Borger in [Bor04].
Kedlaya [Ked07] realized that in the equal characteristic case, adding generic pth roots to the
field extension will not change the (differential) non-logarithmic ramification filtration; hence,
one can prove the non-logarithmic Hasse–Arf theorem by reducing to the perfect residue field
case.

In this subsection, we continue to assume Hypotheses 3.1.2 and 3.2.10, except in
Proposition 4.1.8.

Notation 4.1.1. Let x be transcendental over K. Define K(x)∧ to be the completion of K(x)
with respect to the 1-Gauss norm, and define K ′ to be the completion of the maximal unramified
extension of K(x)∧. Set L′ =K ′L.
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Lemma 4.1.2. Let L(x)∧ be the completion with respect to the 1-Gauss norm. Then L′ is the
completion of the maximal unramified extension of L(x)∧. In particular, the residue field of L′

is l′ = k(x)sep · l, which is separably closed.

Proof. First, L(x)∧ = LK(x)∧ because the latter is complete and is dense in the former. So, it
suffices to prove that L′ is complete and has separable residue field. Since L′/K ′ is finite, L′ is
complete. Moreover, the residue field l′ of L′ is separably closed because it is a finite extension
of a separably closed field k(x)sep. 2

Proposition 4.1.3. The highest ramification breaks do not change if we make a base change
from K to K ′. In other words, b(L/K) = b(L′/K ′) and blog(L/K) = blog(L′/K ′).

Proof. Since πL is a uniformizer of L′ and OL ⊗OK OK′ surjects onto l′ by the previous lemma,
we have OL′ =OL ⊗OK OK′ . The result follows from Proposition 2.2.5(4′). 2

Definition 4.1.4. Let bj0 be an element in a p-basis of K. We will often need to make a
base change K ↪→ K̃ =K ′((bj0 + xπK)1/p), a process which we shall refer to as adding a generic
pth root (of bj0). It is clear that the absolute ramification degree β

K̃
equals βK . If we begin

with a finite field extension L/K, adding a generic pth root will mean considering the extension
L̃= LK̃/K̃. We have G

L̃/K̃
=GL/K , as K̃ is linearly independent of L over K. By convention, we

take π
K̃

= πK as K̃/K is unramified. We provide K̃ with a p-basis {bJ\{j0}, (bj0 + xπK)1/p, x},
which has one more element than the original p-basis.

Proposition 4.1.5. Let L/K be as in Hypothesis 3.1.2. Then, after finitely many operations
of adding generic pth roots, the field extension we began with becomes a non-fiercely ramified
extension; that is, the residue field extension is trivial.

Proof. The proof is almost identical to that of [Xia10, Proposition 5.2.3], which is stated in terms
of an equal-characteristic complete discrete valuation field and adding p∞th roots (see [Xia10,
Definition 5.2.2]).

First, the tamely ramified part is always preserved under these operations. So we can assume
that L/K is totally wildly ramified and hence that the Galois group GL/K is a p-group. We
can filter the extension L/K as K =K0 ⊂ · · · ⊂Kn = L, where Ki/Ki−1 is a (wildly ramified)
Z/pZ-Galois extension and Ki/K is Galois for each i= 1, . . . , n. Each of these subextensions
has:

(a) either inseparable residue field extension (and hence näıve ramification degree one);

(b) or trivial residue field extension (and hence näıve ramification degree p).

Let i0 be the maximal number such that Ki/Ki−1 has trivial residual extension for i=
1, . . . , i0. Obviously, adding a generic pth root does not decrease i0, because after adding a
generic pth root the näıve ramification degree of K̃i0/K̃ still equals the degree pi0 . Now, it
suffices to show that after finitely many operations of adding generic pth roots, Ki0+1/Ki0 has
trivial residue field extension (if i0 < n); this would be enough to deduce the proposition. Suppose
the contrary.

Let g ∈GKi0+1/Ki0
' Z/pZ be a generator. We claim that γ = minx∈OKi0+1

(vKi0+1(g(x)− x))
decreases by at least 1 after adding generic pth roots of each of the elements in the p-basis. This
would suffice to conclude the argument, because γ is always a non-negative integer.

444

https://doi.org/10.1112/S0010437X1100707X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100707X


Ramification filtrations

Let z be a generator of OKi0+1 as an OKi0 -algebra. It satisfies the equation

zp + a1z
p−1 + · · ·+ ap = 0 (4.1.6)

where a1, . . . , ap−1 ∈mKi0
and ap ∈ O×Ki0 with āp ∈ k×i0\(k

×
i0

)p = k×\(k×)p. It is easy to see that
γ = vKi0 (g(z)− z).

Adding generic pth roots of each of the elements in the p-basis gives us a field K̂.
Now, the field extension K̂Ki0+1/K̂Ki0 is also generated by z as above. But we can write
ap = αp + β for α ∈ O

K̂Ki0
and β ∈m

K̂Ki0
. Hence, if we substitute z′ = z + α into (4.1.6), we get

z′p + a′1z
′p−1 + · · ·+ a′p = 0, with a′1, . . . , a

′
p ∈m

K̂Ki0
. Thus, v

K̂Ki0+1
(z′)> 0. By the assumption

that the extension K̂Ki0+1/K̂Ki0 has näıve ramification degree one, πKi0 is a uniformizer for
K̂Ki0+1, and hence z′/πKi0 lies in O

K̂Ki0+1
. Thus,

γ′ = min
x∈O

K̂Ki0+1

(v
K̂Ki0+1

(g(x)− x)) 6 v
K̂Ki0+1

(g(z′/πKi0 )− z′/πKi0 )

= vKi0+1(g(z)− z)− 1 = γ − 1.

This proves the claim and hence the proposition. 2

Remark 4.1.7. It is worth pointing out that after these operations, the number of elements in
the p-basis of the resulting field will be greater than that of the original field.

For the following theorem, we do not assume either Hypothesis 3.1.2 or Hypothesis 3.2.10.

Proposition 4.1.8. Fix βK ∈ N>1. Assume that for any complete discrete valuation field K
of mixed characteristic with absolute ramification degree βK and for any field extension L/K
satisfying Hypothesis 3.1.2, the highest non-logarithmic ramification break is invariant under
the operation of adding a generic pth root. Then, for all complete discrete valuation fields K of
mixed characteristic and with absolute ramification degree βK , we have that:

(1) Art(ρ) is a non-negative integer for any representation ρ :GK →GL(Vρ) with finite
monodromy;

(2) the subquotients FilaGK/Fila+GK are trivial if a /∈Q and are abelian groups killed by p if
a ∈Q>1.

Proof. (1) Since the conductor is additive and is invariant upon base change to the completion
of the maximal unramified extension of K (Proposition 2.2.5(4)), we may assume that ρ is
irreducible and factors exactly through the Galois group of a totally ramified Galois extension
L/K. We may also assume that the residue field k is imperfect and that the extension is wildly
ramified since the classical case is well-known (Propositions 2.2.5(7) and 2.2.14). We need only
show that Art(ρ) = b(L/K) · dim ρ ∈ Z.

Now we reduce to the finite p-basis case. Choose a finite subset J0 ⊂ J such that k(b̄1/pj )
is linearly independent of l for any j ∈ J\J0. Pick lifts bj ∈ OK of b̄j for each j ∈ J\J0.
Define K1 =K(b1/p

n

j ; j ∈ J\J0, n ∈ N)∧ and L1 =K1L. It is easy to see that [L1 :K1] = [L :K],
eL1/K1

> eL/K , and [l1 : k1]> [l : k], where k1 and l1 are the residue fields of K1 and L1,
respectively. Thus, all the inequalities are forced to be equalities. This implies GL1/K1

=GL/K
and OL1 =OL ⊗OK OK1 . By Proposition 2.2.5(4′), b(L1/K1) = b(L/K). Therefore, we may
reduce to the case where Hypothesis 3.1.2 holds.
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Since adding generic pth roots does not change βK , the condition of this proposition says that
b(L/K) is invariant under the operation of adding generic pth roots. By Proposition 4.1.5, we
may assume that L/K is non-fiercely ramified as the base changes do not change the conductor.
In this case, Proposition 2.2.5(4′) implies that replacing K by K(b1/p

n

j ; j ∈ J, n ∈ N)∧ does not
change the conductor. Hence, we can reduce to the classical case; the statement then follows
from Proposition 2.2.14.

Now we prove (2), following the idea of [Ked07, Theorem 3.5.13]. Let L be a finite Galois
extension of K with Galois group GL/K ; then we obtain an induced filtration on GL/K . It suffices
to check that FilaGL/K/Fila+GL/K is abelian and killed by p; moreover, we may quotient
further to reduce to the case where Fila+GL/K is the trivial group but FilaGL/K is not. As
above, we may reduce to the classical case because the ramification break of any intermediate
extension between L and K is also preserved under the operations above. The statement follows
from Proposition 2.2.14. 2

4.2 Base change for generic pth roots

In this subsection, we prove the key technical result, Theorem 4.2.9. We retain Hypotheses 3.1.2
and 3.2.10. When proving the main theorem, we will need a technical assumption,
Hypothesis 4.2.8, which is satisfied by any recursive thickening space coming from a thickening
space, owing to Example 3.6.5.

Notation 4.2.1. For this subsection, fix j0 ∈ J and n ∈ N coprime to p. As in Definition 4.1.4, let
K(x)∧ be the completion of K(x) with respect to the 1-Gauss norm, and let K ′ be the completion
of the maximal unramified extension of K(x)∧. Let K̃ =K ′((bj0 + xπnK)1/p) and L̃= LK̃. Write
βj0 = (bj0 + xπnK)1/p for simplicity. Denote the residue fields of K̃ and L̃ by k̃ and l̃, respectively.

Lemma 4.2.2. If b̄
1/p
j0

/∈ l, we have the ramification break b(L̃/K̃) = b(L/K).

Proof. Since l̃ = k̃l, we have O
L̃

=O
K̃
⊗OK OL; the lemma follows from Proposition 2.2.5(4′). 2

So we need to deal with the non-trivial case where b̄1/pj0
∈ l. We present an elementary lemma

first.

Lemma 4.2.3. Assume s ∈ Z>0 and βK > s/e+ 1. Let π ∈ OL be such that π/πsL ∈ O
×
L . Then,

there exist no µ ∈ OL′ and b ∈ OL such that µp − b− xπ ∈ πs+1
L OL′ .

Proof. We use induction on s. When s= 0, this statement is equivalent to x /∈ l̃p + l, which is true.
Assume that the statement is true for s < s0 with s0 ∈ Z>0. Suppose that for π ∈ πs0L O

×
L , we can

find µ ∈ OL′ and b ∈ OL such that µp + b− xπ ∈ πs0+1
L OL′ . Then we must have µp ≡ b mod πL.

Since l̃p ∩ l = lp, we may write µ= µ0 + πLµ1 with µ0 ∈ OL and µ1 ∈ πLOL′ such that b≡ µp0
mod πL. Thus,

µp − b− xπ ≡ πpLµ
p
1 + (µp0 − b) + xπ mod p.

Since βK > s0/e+ 1 and x is transcendental over L, we must have µp0 − b ∈ π
p
LOL and s0 > p.

We would then have

µp1 +
µp0 − b
πpL

+ x
π

πpL
∈ πs−p+1

L OL′ ,

which should not exist by the inductive hypothesis. This is a contradiction. 2
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Notation 4.2.4. From now on, we write ψK instead of ψ, as we will be considering the ψ-functions
for different fields.

Notation 4.2.5. Write R
K̃

=O
K̃

Jη0/πK , ηJ , ηm+1K. Applying Construction 3.2.1 to K̃ gives
a function ψ

K̃
:O

K̃
→R

K̃
which is an approximate homomorphism modulo the ideal I

K̃
=

p(η0/πK , ηJ∪{m+1}) · RK .

Lemma 4.2.6. There exists a unique continuous OK-homomorphism f∗ :RK →RK̃ such that
f∗(δj) = ηj for j ∈ J+\{j0} and f∗(δj0) = (βj0 + ηj0)p − (x+ ηm+1)(πK + η0)n − bj0 . It gives the
following approximately commutative diagram modulo I

K̃
.

OK_�

��

ψK // OKJδ0/πK , δJK =RK
f∗

��
O
K̃

ψ
K̃ // O

K̃
Jη0/πK , ηJ∪{m+1}K =R

K̃

(4.2.7)

For a > 1, f∗ gives a morphism f :Am+2

K̃
[0, θa]→Am+1

K [0, θa].

Proof. This follows immediately from Proposition 3.2.8. 2

Hypothesis 4.2.8. For the next theorem, we assume that in Construction 3.6.1 there exists
λ0 ∈ Λ such that the field extension kλ0/kλ0−1 is given by kλ0 = kλ0−1(b̄1/pj0

) and c̄λ0 = b̄
1/p
j0

.

Theorem 4.2.9. Assume Hypothesis 4.2.8 and keep the notation as above. Moreover, assume
that βK > n+ 1. Let a ∈Q>1 and ω > n+ 1. Let TSaL/K,R0,I ,RΛ

be a recursive thickening space

with error gauge >ω. Then TSaL/K,R0,I ,RΛ
×Am+1

K [0,θa],f A
m+2

K̃
[0, θa] is a recursive thickening space

for L̃/K̃ with error gauge >ω − n.

The reader can feel free to skip this proof when reading this paper for the first time; one may
get a feel of the proof through understanding Example 4.2.10.

Example 4.2.10. We continue with Example 3.3.4 and use the notation from there. As in
Notation 4.2.1, we set K ′ to be the completion of K(x) = Qp(ζp)(b, x)∧ with respect to the
1-Gauss norm. (It turns out that K ′ having separably closed residue field is not important for
this example, so we ignore this minor point.) Let K̃ =K ′((b+ xπK)1/p) and L̃= LK̃. Write
β = (b+ xπK)1/p for simplicity. Denote the residue fields of K̃ and L̃ by k̃ = Fp(x, b) and l̃,
respectively.

We first try to understand the extension L̃/K̃ in terms of generators and relations. Recall
that the extension OL/OK is generated by c= (b+ πK)1/p and πL = (bπK)1/p with relations
p0 = up0 − bπK and p1 = up1 − b− πK . These relations do generate L̃/K̃, but they may not
generate the extension on the level of rings of integers. In particular, we need to modify p1

to be

up1 − β
p + xπK − πK = (u1 − β)p + xπK − πK + p(up−1

1 β − · · · − βp−1u1).

So, to get a proper relation, we should use the generator c = (c− β)/πL with the proxy v. The
relation then becomes

q = vp +
x− 1
b

+
p

bπK
((β + u0v)p−1β − · · · − (β + u0v)βp−1).
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Hence v generates an extension of K̃(πL) of degree p with inseparable residue field extension.
The upshot here is that the introduction of the transcendental element x guarantees that we only
divide the relation p1 by an element of norm |πK | but not any further.

Now, we try to understand the base change TSaL/K,ψ ×A2
K [0,θa],f A

3
K̃

[0, θa]. Its ring of functions
is just

K〈u0, u1, π
−a
K δ0, π

−a
K δ1〉/(ψ(p0), ψ(p1))⊗K〈π−aK δ0,π

−a
K δ1〉,f∗ K〈π

−a
K η0, π

−a
K η1, π

−a
K η2〉, (4.2.11)

where f∗(δ0) = η0 and f∗(δ1) = (β + η1)p − (x+ η2)(πK + η0)− b.
Upon replacing u1 by β + η1 + u0v, we see that (4.2.11) becomes

K〈u0, β + η1 + u0v, π
−a
K η0, π

−a
K η1, π

−a
K η2〉

/
(q1, q2)

where

q1 = up0 − (πK + η0)(β + η1)p − (πK + η0)2(x+ η2),
q2 = (β + η1 + u0v)p − (β + η1)p + (πK + η0)(x+ η2)− (πK + η0).

With the help of q1, q2 can be replaced by

q′2 = ((β + η1)p − (πK + η0)(x+ η2))vp + p(· · · )/(πK + η0) + x+ η2 − 1.

It may not be too easy to see immediately that K〈u0, β + u0v, π
−a
K η0, π

−a
K η1, π

−a
K η2〉

/
(q1, q

′
2)

gives a thickening space for L̃/K̃ of error gauge 6βK − 1 = p− 2. But at least q1 is just
ψ
K̃

(up0 − βpπK − xπ2
K) and the major term ((β + η1)p − (πK + η0)(x+ η2))vp + x+ η2 − 1 of q′2

is close to ψ(bq).

Proof of Theorem 4.2.9. Step 1. Find the generators of O
L̃
/O

K̃
.

The difficulty comes from the fact that πL,I and cΛ do not generate O
L̃

over O
K̃

(although
they do generate L̃ over K̃). We need to change the generator cλ0 to an element which gives
either of the following cases.

Case A. The inseparable extension l̃ of l(x̄)sep, which happens when L̃/K̃ has näıve ramification
degree e.

Case B. A ramified extension of näıve ramification degree p, which happens when L̃/K̃ has
näıve ramification degree ep; in this case, the generator is a uniformizer of L̃.

Write L′ = LK ′, which has residue field l′ = l(x̄)sep. Then we have OL′ =OK′ ⊗OK OL. Hence,
O
K̃
⊗OK OL ∼=OK̃ ⊗OK′ OL′ ⊆OL̃. We may extend the valuation vL′(·) to L̃ by allowing rational

valuations in case B. Let βj0 − µ for µ ∈ OL′ be an element achieving the maximal valuation under
vL′(·) among the βj0 +OL′ .

Claim. We have α= vL′(βj0 − µ)6 en/p and one of the following.

Case A. The reduction of c̃λ0 = π−αL (βj0 − µ) in l̃ generates l̃ over l′ (we also set d= 1 by
convention).

Case B. We have v
L̃

(π−[α]
L (βj0 − µ)) = d/p for some d ∈ {1, . . . , p− 1}; in this case we fix a

dth root π
L̃,r0+1

of π−[α]
L (βj0 − µ), which then generates the näıvely ramified extension

O
L̃
/OL′ .

Proof of the claim. We have the norm N
L̃/L′(µ− βj0) = µp − (bj0 + xπnK). By Lemma 4.2.3,

there is no µ ∈ OL′ whose pth power can cancel with the xπnK term, vL′(NL̃/L′(βj0 − µ))6 en,
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and the first statement of the claim follows. When α /∈ N, we fall in case B and the claim is
obvious. Assume, for contradiction, that α ∈ N and the reduction of c̃λ0 lies in l′. Then there
exists µ′ ∈ OL′ such that µ′/παL ≡ c̃λ0 (mod m

L̃
). But then βj0 − µ− µ′ will have bigger valuation,

which contradicts our choice of µ. This proves the claim.

Step 2. Find the generating relations.
By the previous step, we can write

O
K̃
〈ũ0,I , ũΛ\λ0

, ṽ〉/(p̃0,I , p̃Λ\λ0
, q̃)'O

L̃

by sending ũ0,I to c0,I , ũΛ\λ0
to cΛ\λ0

, and ṽ to c̃λ0 in case A and to π
L̃,r0+1

in case B,
where the relations p0,I , p̃Λ\λ0

and q̃ corresponding to ũ0,I , ũΛ\λ0
and ṽ can be obtained using

Construction 3.6.1. Now, we link these relations to the relations p0,I and pΛ for OL/OK . We first
lift the isomorphism

χ̄ : K̃〈ũ0,I , ũΛ\λ0
, ṽ〉/(p̃0,I , p̃Λ\λ0

, q̃)' L̃∼= K̃ ⊗OK OL ' K̃〈u0,I , uΛ〉/(p0,I , pΛ)

to a homomorphism χ :O
K̃
〈ũ0,I , ũΛ\λ0

, ṽ〉 →O
K̃
〈u0,I , uΛ〉[1/(u0,r0)] that sends ũ0,I to u0,I ,

ũΛ\λ0
to uΛ\λ0

and ũ
[α]
0,r0

ṽ to the lift of χ̄(ũ[α]
0,r0

ṽ) using the standard basis defined in

Construction 3.6.1. Then u
(p−1)[α]
0,r0

χ(p̃0,I), u
(p−1)[α]
0,r0

χ(p̃Λ\λ0
) and u

p[α]
0,r0

χ(q̃) are contained in the
ideal (p0,I , pΛ)OK〈u0,I , uΛ〉, because the maximal powers of ṽ in the equations are p− 1, p− 1
and p, respectively.

Step 3. Explain the goal.
We are going to establish an R

K̃
-isomorphism χ : Ã ∼−−→A where

A = SK/(ψK(p0,I) + R0,I , ψK(pΛ) + RΛ)⊗RK ,f∗ RK̃

[
1
p

]
, (4.2.12)

Ã = S
K̃

[
1
p

]/
(ψ

K̃
(p̃0,I) + R̃0,I , ψK̃(p̃Λ\λ0

) + R̃Λ\λ0
, ψ

K̃
(q̃) + R̃q̃). (4.2.13)

Here, S
K̃

=R
K̃
〈ũ0,I , ũΛ\λ0

, ṽ〉 and we can define Na
K̃

for a ∈ (1/ep)N similarly to
Construction 3.6.1. We first define a ring homomorphism χ̃ : S

K̃
[1/p]→A by χ̃(ũ0,I) = u0,I ,

χ̃(ũΛ\λ0
) = uΛ\λ0

and χ̃(ṽ) = ψ
K̃

(χ(ṽ)); the set R̃0,I , R̃Λ\λ, R̃q̃ will be admissible with error gauge
>ω − n, so that χ̃ factors through Ã.

Step 4. Bound the error gauge. We first determine R̃0,I , R̃Λ\λ0
, R̃q̃. We proceed similarly to

Proposition 3.6.6. To write this argument uniformly, we divide into the following four cases.

Case (a). Let p̃ = u
(p−1)[α]
0,r0

p̃0,i0 for some i0 ∈ I and R̃ = u
(p−1)[α]
0,r0

R̃0,I .

Case (b). Let p̃ = u
(p−1)[α]
0,r0

p̃λ for λ ∈ Λ\{λ0} and R̃ = u
(p−1)[α]
0,r0

R̃λ.

Case (c). Let p̃ = u
p[α]
0,r0

q̃ and R̃ = u
p[α]
0,r0

R̃q̃, assuming we are in case A.

Case (d). Let p̃ = u
p[α]
0,r0

q̃ and R̃ = u
p[α]
0,r0

R̃q̃, assuming we are in case B.
By Step 2,

χ̄(p̃) =
∑
i∈I

h0,ip0,i +
∑
λ∈Λ

hλpλ

with some h0,i, hλ ∈ OK̃〈u0,I , uΛ〉, for i ∈ I and λ ∈ Λ. Moreover, in case (a), for some i0 ∈ I
we can require that h0,i ∈N

max{(ei0−1−ei−1)/e,0}
K · O

K̃
〈u0,I , uΛ〉 and hλ ∈N

ei0−1/e

K · O
K̃
〈u0,I , uΛ〉
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for i ∈ I and λ ∈ Λ; in case (d), we can require that hλ ∈N
1/e
K · O

K̃
〈u0,I , uΛ〉 for λ ∈ Λ. Thus, we

want to define R̃ ∈S
K̃

so that −χ̃(R̃) is equal to

χ̃(ψ
K̃

(p̃)) =
∑
i∈I

ψ
K̃

(h0,i)ψK̃(p0,i) +
∑
λ∈Λ

ψ
K̃

(hλ)ψ
K̃

(pλ) + E

=
∑
i∈I

ψ
K̃

(h0,i)(−R0,i) +
∑
λ∈Λ

ψ
K̃

(hλ)(−Rλ) + E

∈


(Nω−1+ei0−1/eη0,N

ω+ei0−1/eηJ∪{m+1}) ·SK ⊗RK RK̃ in case (a),

(Nω−1η0,N
ωηJ∪{m+1}) ·SK ⊗RK RK̃ in case (b) or (c),

(Nω−1+1/eη0,N
ω+1/eηJ∪{m+1}) ·SK ⊗RK RK̃ in case (d),

where the error term E that comes from ψ failing to be a homomorphism (see Proposition 3.2.8)
can be bounded as

E ∈


(NβKη0,N

βK+1ηJ∪{m+1}) ·SK ⊗RK RK̃ in case (a),

(NβK−1δ0,N
βKδJ) ·SK ⊗RK RK̃ in case (b) or (c),

(NβKη0,N
βK+1ηJ∪{m+1}) ·SK ⊗RK RK̃ in case (d).

Thus, we can find polynomials r̃0, . . . , r̃m+1 ∈ OK̃ [ũ0,I , ũΛ\λ0
, ũ

[α]
0,r0

ṽ]�O
K̃
⊗OK OL such that

r̃0 ∈


ũ
ωe−e+ei0−1

0,r0
· O

K̃
[ũ0,I , ũΛ\λ0

, ũ
[α]
0,r0

ṽ] in case (a),

ũωe−e0,r0
· O

K̃
[ũ0,I , ũΛ\λ0

, ũ
[α]
0,r0

ṽ] in case (b) or (c),

ũωe−e+1
0,r0

· O
K̃

[ũ0,I , ũΛ\λ0
, ũ

[α]
0,r0

ṽ] in case (d);

r̃1, . . . , r̃m+1 ∈


ũ
ωe+ei0−1

0,r0
· O

K̃
[ũ0,I , ũΛ\λ0

, ũ
[α]
0,r0

ṽ] in case (a),

ũωe0,r0 · OK̃ [ũ0,I , ũΛ\λ0
, ũ

[α]
0,r0

ṽ] in case (b) or (c),

ũωe+1
0,r0

· O
K̃

[ũ0,I , ũΛ\λ0
, ũ

[α]
0,r0

ṽ] in case (d);

and

−χ̃(ψ
K̃

(p̃))− χ̃(r̃0η0 + · · ·+ r̃m+1ηm+1)

∈



(η0/πK , ηJ∪{m+1})(Nω−1+ei0−1/eη0,N
ω+ei0−1/eηJ∪{m+1}) in case (a),

· (SK ⊗RK RK̃)

(η0/πK , ηJ∪{m+1})(Nω−1η0,N
ωηJ∪{m+1}) in case (b) or (c),

· (SK ⊗RK RK̃)
(η0/πK , ηJ∪{m+1})(Nω−1+1/eη0,N

ω+1/eηJ∪{m+1}) in case (d).
· (SK ⊗RK RK̃)

Further, we can similarly approximate the coefficients of ηjηj′ for j, j′ ∈ J+ ∪ {m+ 1}.
Repeating this approximation gives the expression of R̃ ∈S

K̃
. From this and α6 en/p,
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we can obtain R̃0,I , R̃Λ\λ0
, R̃q̃ ∈ (ηJ+∪{m+1}) ·SK̃

such that

R̃0,i0 ∈ (ũ
ωe−e+ei0−1−en
0,r0

η0, ũ
ωe+ei0−1−en
0,r0

ηJ∪{m+1}) ·SK̃
for i0 ∈ I,

R̃λ ∈ (ũωe−e−en0,r0
η0, ũ

ωe−en
0,r0

ηJ∪{m+1}) ·SK̃
for λ ∈ Λ\λ0;

R̃q̃ ∈

{
(ũωe−e−en0,r0

η0, ũ
ωe−en
0,r0

ηJ∪{m+1}) ·SK̃
in case A,

(ũωe−e−en+1
0,r0

η0, ũ
ωe−en+1
0,r0

ηJ∪{m+1}) ·SK̃
in case B.

These have error gauge >ω − n. Moreover, χ̃ induces a continuous homomorphism χ : Ã →A.

Step 5. Prove that χ is an isomorphism.
To prove that χ is an isomorphism, it suffices to show the surjectivity, as both Ã and A are

finite free modules over R
K̃

[1/p] of the same rank. Since (3.6.2) forms a basis of A over R
K̃

[1/p],
we only need to show that u0,I and uΛ are in the image of χ. This is obvious for u0,I and uΛ\λ0

.

For uλ0 , we first find an element in O
K̃

[ũ0,I , ũΛ\λ0
, ũ

[α]
0,r0

ṽ]�O
K̃
⊗OK OL whose image under χ̄

is uλ0 . Then we use the similar approximation in Step 4 to find an element in Ã whose image
under χ is exactly uλ0 . This finishes the proof. 2

Remark 4.2.14. We expect that when ω and hence βK is ‘large’ compared to [L :K],
Theorem 4.2.9 will also be valid if we add a generic p∞th root (defined in [Xia10,
Definition 5.2.2]); this amounts to controlling the discrepancy between O

L̃
and O

K̃
⊗OK OL.

Hence, in this case, one can obtain a comparison theorem between the arithmetic Artin conductor
and Borger’s Artin conductor [Bor04] as in [Xia10, § 5.4].

4.3 Non-logarithmic Hasse–Arf theorem
In this subsection, we apply Theorem 4.2.9 to obtain Theorem 4.3.5, the Hasse–Arf theorem for
non-logarithmic ramification filtrations.

We assume Hypothesis 3.1.2 until the last theorem. As a reminder, up to the end of the paper
Hypothesis 4.2.8 will no longer be assumed.

Notation 4.3.1. Keep the notation as in Construction 3.1.6. Fix j0 ∈ J and n ∈ N. Let K̃ =
K ′((bj0 + xπnK)1/p) as in Notation 4.2.1. Write βj0 = (bj0 + xπnK)1/p for simplicity.

Lemma 4.3.2. Assume p - n and βK > n. Let aJ+ ⊂ R>0 and a0 = aj0 = am+1 >max{(n−
1)/(p− 1), 1}. Define a′j = aj for j ∈ J+\{j0} and a′j0 = aj0 + n− 1. The morphism f∗ defined
in Lemma 4.2.6 restricts to a morphism

f :A1
K̃

[θa0 , θa0 ]× · · · ×A1
K̃

[θam+1 , θam+1 ]→A1
K [θa

′
0 , θa

′
0 ]× · · · ×A1

K [θa
′
m , θa

′
m ].

In other words, we change the j0th radius from aj0 to aj0 + n− 1.

Proof. It suffices to verify that if |η0|= |ηj0 |= |ηm+1|= θa0 , then |δj |= θa0+n−1; indeed,

δj0 = ((βj0 + ηj0)p − βpj0)− x((πK + η0)n − πnK) + ηm+1(πK + η0)n,

which has norm θa0+n−1 because the second term does and the other terms have bigger norms. 2

Lemma 4.3.3. Keep the notation and assumptions as in the previous lemma. Let E be a
differential module over A1

K [0, θa
′
0 ]× · · · ×A1

K [0, θa
′
m ]. Then IR(f∗E ; aJ+) = IR(E ; a′J+∪{m+1}).

Proof. The morphism f∗ induces a homomorphism on the differentials: dδj 7→ dηj for
j ∈ J+\{j0} and dδj0 7→ p(βj0 + ηj0)p−1dηj0 + (πK + η0)ndηm+1 + n(x+ ηm+1)(πK + η0)n−1dη0.
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Thus,

∂′j |f∗E = ∂j |E for j ∈ J\{j0},
∂′j0 |f∗E = p(βj0 + ηj0)p−1∂j0 |E ,

∂′m+1|f∗E = (πK + η0)n · ∂j0 |E ,
∂′0|f∗E = ∂0|E + n(x+ ηm+1)(πK + η0)n−1 · ∂j0 |E ,

where ∂′j = ∂/∂ηj for j = 0, . . . , m+ 1. Hence,

IRj(f∗E ; aJ+∪{m+1}) = IRj(E ; a′J+) for all j ∈ J\{j0},
IRj0(f∗E ; aJ+∪{m+1}) 6 IRj0(E ; a′J+),

IRm+1(f∗E ; aJ+∪{m+1}) = θn · IRj0(E ; a′J+),
IR0(f∗E ; aJ+∪{m+1}) = min{IR0(E , a′J+), IRj0(E ; a′J+)},

where the second inequality follows from Proposition 2.1.19 and the last equality holds
by Proposition 2.1.17 because x is transcendental over K. It follows that IR(E ; a′J+) =
IR(f∗E ; aJ+∪{m+1}). 2

Theorem 4.3.4. Let L/K be a finite Galois extension satisfying Hypotheses 3.1.2 and 3.2.10.
The highest non-logarithmic ramification break of L/K is invariant under the operation of adding
a generic pth root.

Proof. Adding a generic pth root corresponds to setting n= 1 in the notation of this subsection.
Fix a choice of ψK in Construction 3.2.1. Let TSaL/K,ψK be the standard thickening space for L/K.
By Example 3.6.5, we can turn this standard thickening space into a recursive thickening space
(with error gauge >βK). By Theorem 4.2.9, TSaL/K,ψK ×Am+1

K [0,θa],f A
m+2

K̃
[0, θa] is a recursive

thickening space for L̃/K̃ with error gauge >βK − 1, which is isomorphic to some thickening
space for L̃/K̃ by Proposition 3.6.6.

Let E be the differential module over Am+1
K [0, θa] coming from TSaL/K,ψK . Then the

differential module f∗E is associated to L̃/K̃. Applying Lemma 4.3.3 (to the case n= 1) gives
IR(f∗E ; s) = IR(E ; s) for s> b(L/K)− ε with ε > 0 as in Theorem 3.4.2. The theorem follows
from Proposition 3.5.2. 2

On combining Theorem 4.3.4 and Proposition 4.1.8, we have the following theorem.

Theorem 4.3.5. Let K be a complete discrete valuation field of mixed characteristic (0, p)
which is not absolutely unramified. Let ρ :GK →GL(Vρ) be a representation with finite
monodromy. Then:

(1) Art(ρ) is a non-negative integer;

(2) the subquotients FilaGK/Fila+GK are trivial if a /∈Q and are abelian groups killed by p if
a ∈Q>1.

4.4 Application to finite flat group schemes
This subsection is an analogue of [Xia10, § 4.1] in the mixed characteristic case.

We first recall the definition of Abbes–Saito ramification filtration on finite flat group
schemes [AM04].

Convention 4.4.1. All finite flat group schemes are commutative.
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Definition 4.4.2. Let A be a finite flat OK-algebra. Write A=OK [x1, . . . , xn]/I with I an
ideal generated by f1, . . . , fr. For a ∈Q>0, define the rigid space

Xa = {(x1, . . . , xn) ∈AnK [0, 1] : |fi(x1, . . . , xn)|6 θa for i= 1, . . . , r}.

The highest break b(A/OK) of A is the smallest number such that for all a > b(A/OK),
#πgeom

0 (Xa) = rank OKA. This is the same as Definition 2.2.3 when A=OL; but, in notation,
we use the ring of integers instead of the fields themselves.

Definition 4.4.3. Now we specialize to the case where G= SpecA is a finite flat group scheme.
We have a natural map of points G(Kalg) ↪→Xa(Kalg). Upon composing further with the map
for geometric connected components, we obtain

σa :G(Kalg) ↪→Xa(Kalg)→ πgeom
0 (Xa).

By functoriality of σa, one can see that πgeom
0 (Xa) has a natural group structure and that

σa is a homomorphism [AM04, 2.3]. Define Ga to be the Zariski closure of ker σa. Also, put
Ga+ = lim−→b>a

Gb.

Lemma 4.4.4 [AM04, Lemme 2.1.5]. LetK ′/K be a (not necessarily finite) extension of complete
discrete valuation fields of näıve ramification index e. Let A be a finite flat OK-algebra which is
a complete intersection relative to OK . Put A′ =A⊗OK OK′ ; then b(A′/OK′) = e · b(A/OK).

Definition 4.4.5. We say the finite flat group scheme G is generically trivial if G×Ok K is the
disjoint union of copies of SpecK, with some abelian group structure.

Theorem 4.4.6. Let G= SpecA be a generically trivial finite flat group scheme over OK . Then
b(A/OK) is a non-negative integer.

Proof. Let gcd(n1, n2) = 1, and let Kn1 and Kn2 be two tamely ramified extensions of K with
ramification degrees n1 and n2, respectively. By Lemma 4.4.4, it suffices to prove the theorem
for G×OK OKn1

/OKn1
and G×OK OKn2

/OKn2
, respectively. Thus, we may assume that βK > 2.

The result follows from Theorem 4.3.5 and the same argument as in [Xia10, Proposition 5.1.7]. 2

4.5 Integrality for Swan conductors

In this subsection, we will deduce the integrality of Swan conductors from that of Artin
conductors (Theorem 4.3.5). We will use the fact that the logarithmic ramification breaks behave
well under tame base changes.

We will keep Hypotheses 3.1.2 and 3.2.10 until we state Theorem 4.5.14.

Notation 4.5.1. Let n ∈ N be such that n≡ 1 (mod ep). Define Kn =K(π1/n
K ) and Ln = LKn.

Since Kn and L are linearly independent over K, we have Gal(Ln/Kn) = Gal(L/K). We take
the uniformizers of Kn and Ln to be πKn = π

1/n
K and πLn = πL/π

(n−1)/e
Kn

, respectively.

Notation 4.5.2. Write RKn =OKnJη0/πKn , ηJK. Applying Construction 3.2.1 to Kn gives an
approximate homomorphism ψKn :OKn →OKnJη0/πKn , ηJK.

Lemma 4.5.3. There exists a unique continuous OK-homomorphism f∗n :RK →RKn sending δ0

to (πKn + η0)n − πK and δj to ηj for j ∈ J . This gives the following approximately commutative
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diagram modulo IKn = p(η0/πKn , ηJ) · RKn .

OK_�

��

ψK // OKJδ0/πK , δJK

f∗n
��

OKn
ψKn // OKnJη0/πKn , ηJK

Proof. This result follows from Proposition 3.2.8. In fact, one can carefully choose ψK and ψKn
so that the above diagram commutes, but we do not need this here. 2

Proposition 4.5.4. Fix a ∈Q>0. Let TSaL/K,log,ψK
be the standard logarithmic thickening

space. Then the space

X = TSaL/K,log,ψK
×(A1

K [0,θa+1]×AmK [0,θa]),fn (A1
Kn [0, θa+1/n]×AmKn [0, θa])

is a logarithmic thickening space for Ln/Kn with error gauge >nβK − (n− 1); in particular, it is
admissible.

Proof. First, we have

SK ⊗OK Kn
∼=OKnJη0/πKn , ηJK

[
1
p

]
〈uJ+〉

/
(f∗n(ψK(pJ+))).

Now we consider a construction of the logarithmic thickening space of Ln/Kn, using the same
cJ as for L/K and πLn in Notation 4.5.1. Therefore, the ideal ILn/Kn is generated by p′J+ and

p′0/π
n−1
Kn

, where the prime means to replace u0 with π
(n−1)/e
Kn

u′0.
Lemma 4.5.3 implies that

ψKn(p′0/π
n−1
Kn

)− f∗n(ψK(p′0))/(πKn + u′0)n−1 ∈ π−n+1
Kn

(πnβK−1
Kn

η0, pηJ) · SKn , (4.5.5)

where SKn =OKnJη0/πKn , ηJK〈u′0, uJ〉. Hence,

SK ⊗OK Kn
∼= OKnJη0/πKn , ηJK

[
1
p

]
〈u′0, uJ〉

/
(f∗n(ψK(p′0)), f∗n(ψK(p′J)))

= SKn
[

1
p

]/
(f∗n(ψK(p′0))/(πKn + η0)n−1, f∗n(ψK(p′J)))

gives rise to logarithmic thickening spaces for Ln/Kn with error gauge >nβK − (n− 1); note
that Kn/K being tamely ramified of ramification degree n gives a different normalization on the
error gauge. 2

Proposition 4.5.6. There exists N ∈ N and αL/K ∈ [0, 1] such that, for all integers n >N
congruent to 1 modulo ep, we have

n · blog(L/K) = b(Ln/Kn)− αL/K .

Proof. By Construction 2.1.16, f∗n gives a finite étale morphism fn :A1
Kn

[0, θ1/n)×AmKn [0, 1)→
A1
K [0, θ)×AmK [0, 1) for a > 0. Let E denote the differential module associated to L/K coming

from a standard logarithmic thickening space. By Proposition 4.5.4, f∗nE is a differential module
associated to Ln/Kn given by the thickening space X therein (for some admissible subset of
error gauge 6βKn− (n− 1)). In particular,

ETLn/Kn ⊇ ETL/K ×A1
K [0,θ)×AmK [0,1),fn A

1
Kn [0, θ1/n)×AmKn [0, 1) =: f∗n(ETL/K),

where ETLn/Kn is the étale locus with respect to this chosen admissible subset.
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The morphism fn is an off-centered tame base change, as discussed in § 2.1. By
Proposition 2.1.17, for sJ+ ⊂ R such that A1

K [0, θs0 ]× · · · ×A1
K [0, θsm ]⊂ ETL/K , we have

IR(f∗nE ; sJ+) = IR(E ; s0 + (n− 1)/n, sJ). Thus, by Corollary 3.5.4,

b(Ln/Kn) = n ·min
{
s |Am+1

Kn
[0, θs]⊆ ETLn/Kn and IR(f∗nE ; s) = 1}

= n ·min{s |Am+1
Kn

[0, θs]⊆ f∗n(ETL/K) and IR(f∗nE ; s) = 1}

= n ·min{s |A1
K [0, θs+(n−1)/n]×AmK [0, θs]⊆ ETL/K

and IR(E ; s+ (n− 1)/n, s) = 1}, (4.5.7)

where the second equality holds because, as we shall see in a moment, the minimum of s can be
achieved inside ETL/K . (Here, we have an extra n in the equation because we are supposed to
use |πKn |= θ1/n as the ‘base scale’ in Corollary 3.5.4.)

Applying Proposition 2.1.23(c) to E , we know that the locus Z(E) = {(sJ+) | IR(E ; sJ+) = 1}
is transrational polyhedral in a neighborhood of [blog(L/K),+∞)m+1, namely, where E is defined.
Hence, in a neighborhood of s1 = blog(L/K), the intersection of the boundary of Z with the
surface defined by s1 = · · ·= sm is of the form

s0 − α′s1 = blog(L/K) + 1− α′blog(L/K),

where α′ is the slope; we have α′ ∈ [−∞, 0] by the monotonicity property of Proposition 2.1.23(c).
When n� 0, it is clear that the line s 7→ (s+ (n− 1)/n, s, . . . , s) hits the boundary of Z at
s= blog(L/K) + 1/(n(1− α′)). This justifies the second equality in (4.5.7). It follows that

b(Ln/Kn) = n · blog(L/K) + 1/(1− α′).

The different normalizations for ramification filtrations on GK and GKn give the extra factor n. 2

Remark 4.5.8. With more careful calculations, it is possible to prove the above proposition and
Proposition 4.5.11 below for any n that is sufficiently large and coprime to p.

Notation 4.5.9. Assume p > 2. Let (bJ) be a p-basis of K; it naturally gives a p-basis of Kn.
Let Kn(xJ)∧ denote the completion of Kn(xJ) with respect to the (1, . . . , 1)-Gauss norm, and
let K ′n denote the completion of the maximal unramified extension of Kn(xJ)∧. Set

K̃n =K ′n((bJ + xJπ
2
Kn)1/p), L̃n = K̃nL.

Write βj = (bj + xjπ
2
Kn

)1/p for j ∈ J . By Lemma 4.2.6, we have a continuousOKn-homomorphism
f̃ :OKnJη0/πKn , ηJK→OK̃nJξ0/πKn , ξJ , ξ

′
JK such that f̃∗(η0) = ξ0 and f̃∗(ηj) = (βj + ξj)p −

(xj + ξ′j)(πKn + ξ0)2 − bj for j ∈ J . For a > 1, it gives rise to f̃ :A2m+1

K̃n
[0, θa]→Am+1

Kn
[0, θa] ↪→

A1
Kn

[0, θa]×AmKn [0, θa−1/n], where the last morphism is the natural inclusion of an affinoid
subdomain.

Proposition 4.5.10. Assume p > 2, βK > (2m+ n)/n, and a ∈Q>1. Let X be as in
Proposition 4.5.4. Then the space

X ×(A1
Kn

[0,θa+1/n]×AmKn [0,θa]),f̃ A
2m+1

K̃n
[0, θa+1/n]

is a thickening space for L̃n/K̃n with error gauge >nβK − 2m− n+ 1; in particular, it is
admissible.

Proof. The assertion follows immediately from Proposition 4.5.6 and applying Theorem 4.2.9 m
times. 2
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Proposition 4.5.11. Assume p > 2. There exists N ∈ N such that, for all integers n >N
congruent to 1 modulo ep, we have

n · blog(L/K)− 1 = b(L̃n/K̃n)− 2αL/K , (4.5.12)

where αL/K is the same as in Proposition 4.5.6.

Proof. We continue with the notation from Proposition 4.5.6. The previous proposition implies
that f̃∗f∗nE is a differential module associated to L̃n/K̃n when n >m. By applying Lemma 4.3.3
m times, we have IR(f̃∗f∗nE ; s) = IR(f∗nE ; s, s+ 1/n). By Proposition 2.1.17, this further equals
IR(E ; s+ (n− 1)/n, s+ 1/n). By the same argument as in Theorem 4.5.6, we deduce our result
with the same αL/K . 2

Remark 4.5.13. When p= 2, we study K̃n =K ′n((bJ + xJπ
3
Kn

)1/p) instead; the same argument
as above proves the proposition with (4.5.12) replaced by

n · blog(L/K)− 2 = b(Ln/Kn)− 3αL/K .

For the following theorem, we do not impose any supplementary assumptions on K.

Theorem 4.5.14. Let K be a complete discrete valuation field of mixed characteristic (0, p) and
let ρ :GK →GL(Vρ) be a representation with finite monodromy. Then Swan(ρ) is a non-negative
integer if p 6= 2 and is in 1

2Z if p= 2.

Proof. First, as in the proof of Proposition 4.1.8, we may reduce to the case where ρ is irreducible
and factors through a finite Galois extension L/K, for which Hypothesis 3.1.2 holds. In this case,
Swan(ρ) = blog(L/K) · dim ρ.

By Proposition 2.2.5(4), we have Swan(ρ|Kn) = n · Swan(ρ) for any Kn =K(π1/n
K ) with

gcd(n, ep) = 1. We need only prove that Swan(ρ|Kn) ∈ Z for two coprime values of n satisfying
gcd(n, ep) = 1, and the statement for Swan(ρ) will follow immediately. In particular, we may
assume that βK > 2.

When p > 2, we repeat the same argument again. There exist n1 and n2 that satisfy the
condition of Propositions 4.5.6 and 4.5.11 and are such that gcd(n1, n2) = 1. Thus, by the non-
logarithmic Hasse–Arf theorem, Theorem 4.3.5, we have

n1Swan(ρ) + αL/K dim ρ ∈ Z, n1Swan(ρ) + 2αL/K dim ρ ∈ Z;
n2Swan(ρ) + αL/K dim ρ ∈ Z, n2Swan(ρ) + 2αL/K dim ρ ∈ Z.

This implies immediately that αL/K dim ρ ∈ Z; hence, Swan(ρ) ∈ Z.

When p= 2, a similar argument using Remark 4.5.13 gives Swan(ρ) ∈ 1
2Z. 2

Remark 4.5.15. When p= 2, we expect integrality of Swan conductors in the case where K
is the composition of a discrete completely valued field with perfect residue field and an
absolutely unramified complete discrete valuation field. In this case, we can factor ψK as
OK →OKJδ0/πKK→OKJδ0/πK , δJK with the second map being a homomorphism. This fact
may allow us to show that αL/K is either 0 or 1 depending on whether ∂0 dominates.

We do not know whether the integrality of Swan(ρ) might fail for p= 2 in general.
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4.6 An example of wildly ramified base change

In this subsection, we explicitly calculate an example, which will be used in the next subsection.
This example was first introduced in [Ked07, Proposition 2.7.11]. We retain Hypotheses 3.1.2
and 3.2.10.

Lemma 4.6.1. Let K∗ be the finite extension of K generated by a root of

T p + πKT
p−1 = πK . (4.6.2)

Then K∗ is Galois over K. Moreover, the logarithmic ramification break blog(K∗/K) equals 1.

Proof. Let h(T ) = T p + πKT
p−1 − πK and let $ be a root of h. It is clear that $ is a uniformizer

of K∗. We have

h($ + T ) = ($ + T )p + πK($ + T )p−1 − πK

= T p +
p−1∑
i=1

(
p

i

)
$iT p−i + πK

p−1∑
i=1

(
p− 1
i

)
$p−1−iT i,

h($ +$2T ) = $2pT p + πK

p−1∑
i=1

(
p− 1
i

)
$p−1+iT i +

p−1∑
i=1

(
p

i

)
$2p−iT p−i

= π2
K(1−$p−1)2T p + π2

K(1−$p−1)(p− 1)T

+ π2
K(1−$p−1)

p−1∑
i=2

(
p− 1
i

)
$i−1T i +

p−1∑
i=1

(
p

i

)
$2p−iT p−i.

Here, the terms are organized so that those written in the summations are small. We see that
h($ +$2T )/π2

K is congruent to T p − T modulo $. By Hensel’s lemma, it splits completely in
K∗. Hence, K∗/K is Galois. Moreover, the valuation of the difference between two distinct roots
is 2. This implies that blog(K∗/K) = 1. 2

Notation 4.6.3. Denote the roots of h(T ) = T p + πKT
p−1 − πK by $ =$1, . . . , $p.

For a > 0, the standard logarithmic thickening space TSaK∗/K,log,ψK
for K∗/K is given by

Oa+1
TS,K∗/K,log,ψK

=K〈π−a−1
K δ0, π

−a
K δJ , z〉/(zp + (πK + δ0)zp−1 − (πK + δ0)).

Lemma 4.6.4. Assume a ∈Q>1. The standard logarithmic thickening space TSaK∗/K,log,ψK
×K

K∗ is isomorphic to the product of AmK∗ [0, θ
a] with the disjoint union of p discs defined by

|z −$γ |6 θa−(p−2)/p for γ = 1, . . . , p.

Proof. We can rewrite zp + (πK + δ0)zp−1 − (πK + δ0) = 0 as
p∏

γ=1

(z −$γ) = δ0(1− zp−1). (4.6.5)

Since |z|6 1, the right-hand side of (4.6.5) has norm less than or equal to θa+1, which is less
than θ2. On the left-hand side, for γ 6= γ′ ∈ {1, . . . , p} we have |$γ −$γ′ |= θ2/p. This forces
one of the |z −$γ0 | to be strictly smaller than the others, for some γ0 ∈ {1, . . . , p}. Thus,
|z −$γ0 |= |δ0|/(θ2/p)p−1 = θa−(p−2)/p. 2
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Notation 4.6.6. For γ = 1, . . . , p, we define the K∗-homomorphism f∗γ :OKJδ0/πKK→
OK∗Jη0/$γK by sending δ0 to

($γ + η0)p

1− ($γ + η0)p−1
− πK =

∞∑
n=0

(($γ + η0)p+n(p−1) −$p+n(p−1)
γ ). (4.6.7)

Lemma 4.6.8. For a > 1, f∗γ induces a K-morphism fγ :A1
K∗

[0, θa−(p−2)/p]→A1
K [0, θa+1], which

is an isomorphism when we tensor the target with K∗ over K. Moreover, if we use Fa+1

and F ∗a−(p−2)/p to denote, respectively, the completions of K(δ0) and K∗(η0) with respect

to the θa+1-Gauss norm and θa+(p−2)/p-Gauss norm, then f∗γ extends to a homomorphism
Fa+1→ F ∗a−(p−2)/p.

Proof. The statement follows from the fact that the leading term in (4.6.7) is (2p− 1)$2p−2
γ η0. 2

Proposition 4.6.9. Assume a > 1. Let E be a differential module over A1
K [0, θa+1]. For each

γ ∈ {1, . . . , p}, this gives a differential module f∗γE over A1
K∗

[0, θa−(p−2)/p]. Then we have

IR0(f∗γE ; a− (p− 2)/p) = IR0(E ; a+ 1).

Proof. The proof is similar to Proposition 2.1.17. By Lemma 4.6.8, we have the commutative
diagram

Fa+1

f∗γ
��

f∗gen // Fa+1Jπ−a−1
K T0K0

f∗γ
��

F ∗a−(p−2)/p

f∗gen // F ∗a−(p−2)/pJ$
−pa+p−2
γ T ′0K0

where we extend f∗γ by f∗γ (T0) = ($γ + η0 + T ′0)p/(1− ($γ + η0 + T ′0)p−1)− ($γ + η0)p/(1−
($γ + η0)p−1).

We claim that for r ∈ [0, 1), f∗γ induces an isomorphism

F ∗a−(p−2)/p ×f∗γ ,Fa+1 (A1
Fa+1

[0, rθa+1))'A1
F ∗
a−(p−2)/p

[0, rθa−(p−2)/p).

Indeed, if |T ′0|< rθa−(p−2)/p, then

T0 =
($γ + η0 + T ′0)p

1− ($γ + η0 + T ′0)p−1
− ($γ + η0)p

1− ($γ + η0)p−1

= (($γ + η0 + T ′0)p − ($γ + η0)p) + (($i + η0 + T ′0)2p−1 − ($γ + η0)2p−1) + · · ·

∈ (2p− 1)($γ + η0)2p−2T ′0 + (($γ + η0)2p−1T ′0, T
′p
0 ) · OK∗〈$−pa+p−2

γ η0〉J$−pa+p−2
γ T ′0K.

Hence, |T0|= θ(2p−2)/p · |T ′0|< rθa.

Conversely, if |T0|< rθa, we rewrite the above equation as

T ′0 ∈
1

(2p− 1)($γ + η0)2p−2
T0 + ($γT

′
0) · OK∗〈$−pa+p−2

γ η0〉J$−pa+p−2
γ T ′0K. (4.6.10)

We substitute (4.6.10) back into itself recursively. The equation converges to a T ′0, which is an
inverse.
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Therefore, Lemma 2.1.15 implies that for r ∈ [0, 1),

IR0(E ; a+ 1)6 r

⇐⇒ f∗gen(E ⊗ Fa+1) is trivial on A1
Fa+1

[0, rθa+1)

⇐⇒ f̃∗γf
∗
gen(E ⊗ Fa+1) = f∗gen(f∗γE ⊗ F ∗a−(p−2)/p) is trivial on A1

F ∗
a−(p−2)/p

[0, rθa−(p−2)/p)

⇐⇒ IR0(f∗γE ; a− (p− 2)/p)6 r.

The proposition follows. 2

Construction 4.6.11. Fix a p-basis (bJ) of K; it naturally gives a p-basis of K∗. Fix a choice of
ψK :OK →OKJδ0/πK , δJK as in Construction 3.2.1. We will use the method in Construction 3.2.1
to define ψK∗,γ for γ = 1, . . . , p such that the following diagram commutes.

OK_�

��

ψK // OKJδ0/πK , δJK

f∗γ
��

OK∗
ψK∗ // OK∗Jη0/$γ , δJK

(4.6.12)

For any element h ∈ OK∗ , first write h=
∑p−1

i=0 hi$
i
γ where hi ∈ OK . As in Construction 3.2.1,

write each of the hi as h◦iπ
ei
K for ei = vK(hi) and h◦i ∈ OK ; choose a compatible system of rth

p-basis decomposition of h◦i as

h◦i =
pr−1∑
eJ=0

beJJ

( ∞∑
n=0

(λi,(r),eJ ,n∑
n′=0

αp
r

i,(r),eJ ,n,n′

)
πnK

)
for some αi,(r),eJ ,n,n′ ∈ O

×
K ∪ {0} and some λi,(r),eJ ,n ∈ Z>0. We choose the system of rth p-basis

decomposition of h/$vK∗ (h)
γ to be

h

$
vK∗ (h)
γ

=
1

$
vK∗ (h)
γ

p−1∑
i=0

$i
γ

pr−1∑
eJ=0

beJJ

( ∞∑
n=0

(λi,(r),eJ ,n∑
n′=0

αp
r

i,(r),eJ ,n,n′

)
($p−1

γ +$2p−1
γ + · · · )n+ei

)
and define ψK∗,γ(h) to be the limit

lim
r→+∞

{p−1∑
i=0

($γ + η0)i
pr−1∑
eJ=0

(bJ + δJ)eJ

·
( ∞∑
n=0

(λi,(r),eJ ,n∑
n′=0

αp
r

i,(r),eJ ,n,n′

)
(($γ + η0)p−1 + ($γ + η0)2p−1 + · · · )n+ei

)}
.

This gives a ψK∗,γ defined in the way of Construction 3.2.1; the diagram (4.6.12) is
commutative.

Hypothesis 4.6.13. For the rest of this subsection, let L/K∗ be a finite Galois extension
satisfying Hypotheses 3.1.2 and 3.2.10 and such that L/K is Galois.
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Proposition 4.6.14. Let a ∈Q>1. Then there exists admissible (RJ+)⊂ (δJ+) · SK such

that the logarithmic thickening space for L/K, after extension of scalars from K to

K∗, is isomorphic to a disjoint union of p (different) logarithmic thickening spaces

for L/K∗:

TSaL/K,log,RJ+
×K K∗

∼−−→
p∐

γ=1

TSpa−p+1
L/K∗,log,ψK∗,γ

.

Proof. Write OK∗〈uJ+〉/(pJ+) =OL using Construction 3.1.6. Since OK〈z〉/(zp + πKz
p−1 −

πK) =OK∗ , we may replace the coefficients in pJ+ by elements in OK〈z〉 with degree no greater
than p− 1 in z; we denote the resulting polynomials by p′J+ . Thus, by Lemma 4.6.4 and the
commutativity of (4.6.12),

p∏
γ=1

K∗〈$−pa+p−2
γ η0, $

−pa+p−1
γ ηJ〉〈uJ+〉

/
(ψK∗,γ(pJ+))

∼=K∗〈π−a−1
K δ0, π

−a
K δJ〉〈uJ+ , z〉/(ψK(p′J+), zp + (πK + δ0)zp−1 − (πK + δ0)),

where the latter is a recursive logarithmic thickening space for L/K, base changed to K∗. By
Proposition 3.6.6, this recursive logarithmic thickening space is isomorphic to a logarithmic
thickening space TSaL/K,log,RJ+

for L/K for some admissible subset RJ+ ⊂ (δJ+) · SK . 2

Corollary 4.6.15. Let EL/K be the differential module over A1
K [0, θa+1]×AmK [0, θa]

coming from TSaL/K,log,RJ+
. For γ ∈ {1, . . . , p}, let EL/K∗,γ be the differential module

over A1
K∗

[0, θa−(p−2)/p]×AmK∗ [0, θ
a−(p−1)/p] coming from TSap−p+1

L/K∗,log,ψK∗,γ
. Then EL/K ⊗K K∗ '⊕p

γ=1 fγ∗EL/K∗,γ .

Proof. This follows from Lemma 4.6.4 and Proposition 4.6.14. 2

4.7 Subquotients of logarithmic ramification filtration

In this subsection, we prove Theorem 4.7.3, which says that the subquotients FilalogGK/Fila+
logGK

of logarithmic ramification filtration are abelian groups killed by p if a ∈Q>0 and are trivial if
a /∈Q. This uses the tricky base change discussed in the previous subsection.

We assume Hypothesis 4.6.13 until we get to stating the main theorem, Theorem 4.7.3.

Notation 4.7.1. Fix γ ∈ {1, . . . , p}. Let (bJ) be a finite p-basis of K. It naturally gives a p-basis
of K∗. Denote by K(xJ)∧ the completion of K(xJ) with respect to the (1, . . . , 1)-Gauss norm and
by K ′ the completion of the maximal unramified extension of K(xJ)∧. Write K ′∗ =K∗K

′

and L′ =K ′∗L. Set

K̃γ =K ′∗((bJ + xJ$
p−1
γ )1/p).

Write βJ = (bJ + xJ$
p−1
γ )1/p for simplicity. Denote the residue fields of K̃γ and L̃γ = LK̃γ

by k̃ and l̃, respectively. Take the uniformizer and p-basis of K̃γ to be $γ and {βJ , xJ},
respectively.
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Situation 4.7.2. We have the following diagram of field extensions.

L L′ L̃γ

K∗ K ′∗ K̃γ

K K ′

Note that the (K̃γ)γ=1,...,p are extensions of K ′∗ conjugate over K ′. The ramification filtrations
on G

K̃γ
are stable under the conjugate action of Gal(K ′∗/K

′). To be precise, for any b> 0

and g ∈Gal(K ′∗/K
′), gFilblogGK̃γg

−1 = FilblogGg(K̃γ)
and gFilbG

K̃γ
g−1 = FilbG

g(K̃γ)
inside GK′ .

In particular, since L′/K ′ and hence L̃γ/K̃γ is Galois, b(L̃γ/K̃γ) and blog(L̃γ/K̃γ) do not depend
on γ = 1, . . . , p.

For the following theorem, we do not impose any supplementary assumptions on the field K.

Theorem 4.7.3. Let K be a complete discrete valuation field of mixed characteristic (0, p). Let
GK be its Galois group. Then the subquotients FilalogGK/Fila+

logGK of the logarithmic ramification
filtration are trivial if a /∈Q and are abelian groups killed by p if a ∈Q>0.

Proof. We proceed as in the proof of Theorem 4.3.5. Fix a > 0. Let L be a finite Galois extension
of K with Galois group GL/K with an induced ramification filtration. We may assume that
Fila+

logGL/K is the trivial group but FilalogGL/K is not. We may also assume Hypothesis 3.1.2.
Furthermore, by Proposition 2.2.5(4), we are free to make a tame base change and assume
that a= blog(L/K)> 1 and pβK >m(p− 1) + 1. Finally, we may replace L by LK∗ since
blog(K∗/K) = 1 by Lemma 4.6.1. We need to show that FilalogGL/K is an abelian group killed by
p if a ∈Q>1 and trivial if a /∈Q.

We claim that each of the logarithmic ramification breaks b > 1 of L/K will become a non-log
ramification break bp− p+ 2 on L̃1/K̃1. In other words, FilblogGL/K ⊆ Filpb−p+2G

L̃γ/K̃γ
for any

γ ∈ {1, . . . , p} and b > 1. (It does not matter which γ we choose, as they give the same answer
by Situation 4.7.2.) Then the theorem is a direct consequence of the non-logarithmic Hasse–Arf
theorem, namely Theorem 4.3.5(2).

To establish the claim, it suffices to prove the highest ramification breaks, as the others will
follow from the calculation of the other extensions L.

For each γ ∈ {1, . . . , p}, there exists a unique continuous OK∗Jη0/$γK-homomorphism f̃∗γ :
OK∗Jη0/$γ , δJK→OK̃γ Jη0/$γ , ηJ , η

′
JK such that f̃∗γ δj = (βj + ηj)p − (xj + η′j)($γ + η0)p−1 − bj

for j ∈ J . For a > 1, f̃∗γ gives a morphism f̃γ :A2m+1

K̃γ
[0, θa]→Am+1

K∗
[0, θa].

Let TSaL/K∗,ψK∗,γ be the standard thickening space for L/K∗ and ψK∗,γ . We have a Cartesian
diagram as follows.

TSaL/K∗,ψK∗,γ

uujjjjjjjjjjjjjjjjj

Π

��

TSaL/K∗,ψK∗,γ
×Am+1

K∗ [0,θa],f̃γ
A2m+1

K̃γ
[0, θa]f̃γoo

Π

��
A1
K∗

[0, θa+(2p−2)/p]×AmK∗
[0, θa] Am+1

K∗
[0, θa]

fγoo A2m+1

K̃γ
[0, θa]f̃γoo
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By applying Theorem 4.2.9 m times, TSaL/K∗,ψK∗,γ ×Am+1
K∗ [0,θa],f̃γ

A2m+1

K̃γ
[0, θa] is an admissible

recursive non-logarithmic thickening space (of error gauge >pβK −m(p− 1)> 1), which is
isomorphic to an admissible non-logarithmic thickening space for L̃γ/K̃γ by Proposition 3.6.6.
Thus f̃∗γEL/K∗,γ is a differential module associated to L̃γ/K̃γ .

By Proposition 4.6.9 and Lemma 4.3.3, we have

IR(f̃∗γEL/K∗,γ ; s) = IR
(
EL/K∗,γ ; s, s+

p− 2
p

)
= IR

(
(fγ)∗EL/K∗,γ ; s+

2p− 2
p

, s+
p− 2
p

)
.

The claim follows from Corollaries 4.6.15 and 3.5.4. 2
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