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1. Introduction

If A and B are locally convex topological vector spaces, and B has certain
additional structure, then the space L(A,B) of all continuous linear mappings
of A into B is characterized, within isomorphism, as the inductive limit of a
family of spaces, whose elements are functions, or measures. The isomorphism
is topological if L(A,B) is given a particular topology, defined in terms of the
seminorms which define the topologies of A and B. The additional structure on
B enables L(A4,B) to be constructed, using the duals of the normed spaces ob-
tained by giving A4 the topology of each of its seminorms separately.

The representation theorems lead to explicit representations of L(4,B), in
terms of functions, or measures, depending on two variables, if A and B are
certain function spaces. Simple proofs are obtained for some known cases-—when
A or Bis C(P), the space of continuous complex functions on a compact Haus-
dorff space P (Dunford and Schwartz [4] give a representation which includes
this case), and when 4 = I?(P) (1 < p < o) (for which Cac [2] has given a
representation)— but by different methods from these authors. But in addition,
explicit representations, which appear to be new, are obtained for certain pairs
of spaces which are not Banach spaces; when 4 or B are spaces of Schwartz
distributions or test functions [7], having compact support. For example, a
continuous linear mapping from Schwartz test functions into C(P) may be iden-
tified with a suitable indexed family of Schwartz distributions.

2. Calibrations and structured spaces

If A and B are convex spaces (locally convex Hausdorff topological vector
spaces), let L(A4, B) denote the space of all continuous linear mappings from A4
into B. Denote by C(W) the space of all bounded continuous complex functions
on the Hausdorff space W, with the uniform norm. The topology of a convex
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space A can be specified by a (non-unique) calibration, namely a set of semi-
norms {| - [;: A€A}; similarly let {|| - |,:yeT} be a calibration for B.

The topology of 4 is unchanged by adjoining to the given calibration for A
the maximum of each finite subset of the seminorms. The resulting calibration
will be called saturated; it has the property (Bourbaki [1], page 97) that A is
a directed set with pre-ordering >, where for nets {x,} in 4,

(D “xa”u—+0 and = 2 = Ixa“,l—>0,
or equivalently
(2) pz i dk=k(w:||xisklx], (¥xed).
REMARKS. If gy = A and A = u, then the seminorms ” . “u and |- |, are

(topologically) equivalent.

Let A be a convex space whose calibration is saturated. Denote by A4;
the factor space A/o, where o is the equivalencerelation x ¢ y iff “x —y”;,=0,
and A, has the topology given by the corresponding quotient seminorm || - [|,.
Denote by A the completion of 4, and by A4; ' the dual of A].

DEFINITION. A convex space B will be called structured if its elements are
bounded functions from a set W into a Banach space H, and if the topology
of B is specified by seminorms | - |, (y€T) of the form

(3) Iy, = sup [(K,p)(W)|  (yeB,yel)
weW
where K,: B — B is a linear mapping (not necessarily continuous), | I denotes

the norm in H, and the set {K,:yeI'} includes the identity mapping, say for
y=0.

ExaMPpLES. Let D(I) denote the space of infinitely differentiable complex
functions x, having support in the interval I in Euclidean n-space, with topology
given by either of the equivalent sets of seminorms:

@) [x]s = sup [x(0)]
) [x; = max | x],.

Here AeA,, the set of n-tuples A = (4;,2,,-:+,4,) of non-negative integers,
ordered by 2 < A/ iff 2; < 4} for all j, and x® denotes the partial derivative
of x of order (1,,---,4,). Let E(I) denote the space of the restrictions to I of in-
finitely differentiable complex functions on n-space, with topology given by (4)
or (5). Then D(I) and E(I) are structured, in terms of the calibration (4); the
equivalent calibration (5) is saturated.

Any Banach space B is structured, since each ye B may be represented,
by its natural mapping into the second dual space B”, as a complex function
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on the unit sphere in B’ (or, using Choquet’s theorem, as a function on the
set of extreme points of the unit ball in B’); then (3) is immediate, with K as
the identity mapping, and W the domain of the functions.

3. Natural topology for L(A4, B)

Let Te L(A,B), where 4 and B are convex spaces, and the calibration of 4
is saturated. Since T is continuous, for each yeI there are 4;, é’, r such that

Ixfs <6 (=12,-,r(m)=|Tx|,<1.

Since A is a directed set, there is Le A with A = 4, (i = 1,2,---,r). Then, by (1),
there is 4 such that

(6 x| <d8=|Tx|,<1

The values of 2 = A(y,T) determine, for each Te L(4,B), a (non-unique)
function A: T —» A, which will be called an index function for T. The set S(I',A)
of all functions from I' into A is partially ordered by

Q) Ag Z A, <= Ay(y) ZA(y) (all yel);

denote also Ay > A, <> Ay = A, and Ay # A,. From (1), if A is an index function
for T, then so also is any A’ = A. If, in particular, 4 is countably semi-normed,
then there exists a minimal (in terms of =) index function for T; denote it by
Arziu'

Denote by M(A) the subspace of L(A,B) consisting of those TeL(A,B)
for which there is an index function < AeS(I',A). Now

(8) A, = Ap = M(A) = M(Ap);
denote by i, this embedding of M(A,) in M(4,).
Since Te L(A4,B), each of the seminorms
(9) I Ty =sup{|| Tx|,: x|, =1}  (veD

is finite, if u = A(y) for some index function A of T. Topologise M(A) by the
seminorms ” T ”M(y, (yeD).If A, and A; are index functions of T, with A, £ A,,
let 1 = A,(y) and p = Ag(y), for given yeTI'; since u = A,

%] = k[l %

[

with k given by (2); hence

fer xS 1) @ s x5
therefore

(10) IT) sk TH,n 2z 2.

Consequently, i,z is continuous.
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Since also
(11) Aa é Aﬂ é A(S = ia6 = iﬂé o iaﬂa

the family {M(A,); i,,} of spaces and mappings is an inductive spectrum over
S(I'", A) (Dugundji [3], page 420). The inductive limit space of this spectrum is
the quotient space X, ,M(A,)/ =, where X, denotes free union over S(I',A)
and = denotes the equivalence relation

T,e M(A) = Tye M(Ap)
iff there exists 6 = «,f such that
igsT, = ipﬂ}-

It will be convenient to call the topology of this inductive limit space the
natural topology for L(A,B). This topology is locally convex (Robertson and
Robertson [6], page 79, Prop. 4), and, for given topologies for A and B, it is
clearly independent of the particular choice of calibrations for B, or for A so
that (1) and (2) hold. If 4 and B are normed spaces, the natural topology is the
operator norm topology.

The natural topology is a topology of uniform convergence; it could, of
course, be expressed in terms of neighbourhoods instead of seminorms, but
this does not offer any obvious simplification.

4. Representation theorems

Let A be a convex space whose calibration is saturated; let B be a convex
space whose elements are functions whose domain is a set W. A subspace M
of L(A, B) is represented by a vector space @, whose elements are functions (or
measures, or distributions) g whose domain is X x W (where X is a given set)
if thereis a bijection ¢ of M onto Q/p, where o is as equivalence relation on @,
and a bilinear form F[ -, -] such that

(12) (Tx)(w) = F[x,8(-,w)],

where xe A, Te M, we W, and g denotes a representative of the equivalence
class [g] = ¢(T)eQ/p. The equivalence relation p will not be mentioned if it
is the identity. The representation is topological if also M and Q are topological
vector spaces, and ¢ maps the topology of M onto that of Q/p.

As an example of (12), consider A as a space of real-valued functions on a
measure space Y, and T defined by

(Tx)(w) = fy x(Dgz (W) du(y) = F[x,g7(- ,w)].

If each subspace M(A,) of L(A, B) is topologically represented by atopolog-
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ical vector space Q(A,)then, sincethe representationisatopological isomorphism,
there is a bijection ¢* of the inductive limit space, M* say, of the M(A,) onto
the inductive limit space, @* say, of the Q(A,); and ¢* maps the topology of
M* onto that of Q*, since E* doss not change the values of the seminorms
| T, The space Q* will then be called an inductive representation of M*,
or of L(A4,B).

THEOREM 1. Let B be a structured space, of functions which map W into
a Banach space H; let B have calibration {" . [[,: yeI'}. Let A be any convex
space, whose calibration {“ . “13 4 €A} is saturated. For each Ae A, let V, be
a Banach space of functions (or complex measures, or distributions) defined
on a set X, and o, an equivalence relation on V;, such that a congruence (an
isometric isometry) between L(A;,H) and V,/o, is established by

(13) f(x) = Fi[x,f*],
where xe A, fe L(A],H),f*eV,,and F, is a bilinear form, which may depend
on A.

Then L(A,B) is inductively represented by the inductive limit of a family
of spaces U*(A), where Ae S(I', A), and U*(A) is a subspace of

(Vac0)/0a0)) X W.
If TeL(A,B), and A is an index function for T, then

(14) (Tx)(w) = FA(O)[X,g(‘aW)];
(15) Loam = SUI;V I Ky agC w5

where xe A, we W, g(+ ,w)€ Vo, and
K3atVawy = Vam

is a linear mapping determined by K,. The representation is topological if
L(A,B) has its natural topology and U*(A} is topologised by the seminorms
I T80 (e

RemARks. If H = C, the complex field, then each f in the Banach space
A7’ may berepresented as a complex function on the unit sphere of 4; ”(or on the
set of extreme points of the unitballin A; ", using Choquet’s theorem.) In this
sense, (13) is trivial. In various particular cases (see later theorems) V, can be
given explicitly as a space of complex functions or measures.

Not all Ae S(I",A) need contribute to the inductive limit.

If the ¥, are function spaces then, for each A, the subspace M(A) of L(A, B)
is isomorphic to a space of functions W — V,,,, for which the seminorms (15)
are of the form (3); hence each subspace M(A) is also a structured space.
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If A is countably normed, and, for each T, AL, (y) is independent of y,
then L{A4, B) is inductively represented by the inductive limit of a sequence of
spaces U (1 = 0,1,---), where U;*is a subspace of (V,/5;) x W. In particular,
if A is a normed space, then L(A,B) is represented by a subspace U of
(Voloo) x W, with the topology defined by the seminorms

(16) ” T”y = SuPW n K:{Ag( ,W)H (yeF, g( ’W)EVO)'

If A is a convex space with the Mackey topology (so in particular if A4 is
barrelled), then the space of all linear mappings of 4 into B which are continuous
in the given topology of 4 and the weak topology of B coincides with L(4,B),
soisalso represented by Theorem 1. For if T is continuous from A with strong
topology to B with weak topology, then T'is continuous from A with weak topol-
ogy to B with weak topology ([6], page 39, Prop. 13); so if A has its Mackey
topology, T'is continuous from A with strong topology to B with strong topology;
the converse is immediate.

ProOOF OF THEOREM 1. Let A be an index function for Te L(A,B); let yeT;
let A = A(y).Forfixed y, definethe linear mapping f,: 4 — Hbyf, = (K,T.)(w).

Since

(17) i‘i‘:,lfW(x_y)l = sup. [(K,T(x—y))(w)]
= | TG=n],
= [ T]alx=v]s

f.» defines a unique element (also written f,,) of L(A4,;,H). Since

(18)  sup sup ,fw(x), = s”u}:i1 ” Tx ”y = ” T”m< o since 4 = A(y),

weW||x|ja51 I1x

the mappings f,, (we W) are equicontinuous on A4,.
By continuity, f,, can be extended, without increase of norm, to a continuous
mapping f¥: A; — H. By (13),

(19) fa(x) = Fi[x,8,:(* ,w)];

where xe A ,and g, ;( -, w) is written for the function (or complex measure or
distribution) f* corresponding to we W, Thus, for xe Ac A", and A any index
function for T,

(20) (KyTx)(W) = FA(Y)[x’ gy,A(y)( ) W)] .
From (18), with A = A(y),
(21) “T”y,l = Sul:y” fw ” = su%’ ” gy,).(' ,W) ” (yer)’

https://doi.org/10.1017/51446788700009691 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009691

[7] Mappings between vector spaces 111

where || g, w) " denotes the norm in V;, since the mapping f—f* in (13)
is an isometry.
Equation (20) defines a linear mapping ¢, of K,T onto [g,a»(*,°)],
the equivalence class in
(VamlOsm) x W

of which g, s,)(+, ) is a representative. Since F,,, is a bilinear form, and the
mapping f — [f*] defined by (13) is a bijection, y, has zero kernel, so 1//,_1
exists. Denote by o* the canonical mapping of V., into

Vacoy/0acoys
denote by e, any linear embedding of V,, /04, into V,,,. Define

K} Vaoy = Va
by

(22) K¥Xy=e,0y,0K, Yo 'o0c*.

Then K:A maps go ) ) onto g, (-, ). This, with (20), proves (14),
writing g for g, a0 -

Denote by Z(A,) the subspace of V,_, X W consisting of those functions
o,a.0)( * » ) for which all the seminorms (21) are finite, with the convex topology
determined by these seminorms. Since these seminorms are finite for each
Te L(A, B) for which A, is an index function, there is, by (20), a linear injection

jaﬂ: M(Aa) - Z(AB)

for each A, and A; = A, in S(T',A). Let U(A,) = j,,M(4,), with the relative
topology of Z(A,); U(A,) is, in general, a proper subspace of Z(A,)), since the
finiteness of all the seminorms (15) does nof imply that Txe B for all xe A.

Since j,, is a bijection onto U(A,), there is a linear injection ¢, = j,4 ojt:
U(A,)—Z(Ap) which, by (11), satisfies ¢, = ¢p; 0 ¢,5 wheneverA, < Ay < ¢,. Since
Jaa do€s not change the seminorms (15), j,, is continuous. Since j,z = jgz 0 i, and
i,gis continuous, j,zis a continuous mapping onto U(A,); hence ¢,5: U(A,)— U(Ap)
is continuous. Therefore the family {U*(A,); ¢,5}, Where U*(A,)=U(A,)/0 4 (o)
is an inductive spectrum over S(I', A). From (15) and the definition of natural
topology for L(4,B), L(4,B) is inductively represented by the inductive limit
of this spectrum.

THEOREM 2. Let the spaces A and B satisfy the hypotheses of Theorem 1;
let AeS(T',A); define the mapping T: A — B by (14), where g(:,w) € Vacoy, '
we W. Let g be such that Tx € B whenever xe A. For each yeI', assume that

(23) (KyTx) w) = FA(y)[x’K;:Ag( : aW)] >

where K;'fA: Vaoy = Vaey is a linear mapping satisfying
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(24) su%, ” K3 Ag(-,w) ” <o,

Then TeL(A,B), and A is an index function for T.
ProoF. Since T maps A linearly into B, it suffices to show that T'is contin-
uous. From (9) and (3),
[ Tlan = sup  sup [(K,Tx)(w)]

Ixlla)S1 weW

= sup sup |Fap[x,Kfag(- ;w)]|, by (23)

weW |Ix[lapyS1

= sup. | K¥ag(-,w)| by (13)
< by (24).

5. Representations of particular spaces

Let A and B satisfy the hypotheses of Theorem 1; define T by (14). Suppose
that (i) A is such that ¥, and F, are known explicitly, and (ii) the subspace U*(A)
of

(Vawy/oay) X W

for which T maps A4 onto B (rather than onto a superspace of B) can be charac-
terized. Then the representation of L(A4,B) can be given explicitly. Theorems 3
to 7 give examples; in them, all functions (unless stated otherwise) are complex-
valued, I and J are compact real intervals, P and Q are compact Hausdorff spaces,
and V denotes total variation (of a measure). If ¢, is not mentioned, it is the
identity.

THEOREM 3. L(C(P),C(Q)) is isometric and isomorphic to a space of finite
Radon measures g(-,w) on P, where weQ, such that g(-,w) is weak*-con-
tinuous in we Q, and sup,, .o Vg( - ,w) is finite. Then Te L(4,B) if and only if

(25) (Tx)(w) = J; x(v)dg(v,w) (xeC(P),we Q)
(26) IT| = supQ Ve(:,w)

Proor. In Theorem 1, set A = C(P), B = C(Q); A’ = L(A;, C),where
|[ . ”z is the uniform norm, is congruent to the space V of finite Radon measures
on P, and

f(x) = F[x,f*] = f xdf*.

So (14) and (15) give (25) and (26), with (26) finite; and the requirement that T
maps into C(Q) is that g satisfies
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@7 tim [ x(-)dg(- ) = [ x(-)dgC wo)
w=wop P

(w,wo € Q), i.e. the weak*-continuity of g(-,w) in w. Conversely, if Tis defined

by (25), and (26) and (27) hold, then Te L(A,B) by Theorem 2, since by (27),

T maps into C(Q).

THEOREM 4. If 1 < p < oo and p is a measure on P, then L(I] (P),C(Q))
is isomorphic and isometric to a space of functions g(v-w) (ve P, we Q) defined
by the properties:

(28) sup ” g(-,w) ”q< o (pt+qglt=1; | . “q is the LX(P)-norm)
weQ

(29) f g(-,w)du( ) is continuous in w € Q, for each measurable subset E < P.
E

Then Te L(L(P),C(Q)) iff

(30) (Tx)(w) = fp x(v) g(v,w)dp(v) (xe L (P),weQ)

and || T “ is given by the left side of the inequality (28).

Proor. In Theorem 1, set A'=L(P), B = C(Q); A’ = L(4;, C) is congrusnt
to LI(P), with F[x,f*] = [px(v)f*(v)du(v)(x€ A). So L(A,B) is congruent to
a subspace of LI(P) x @, and (14) and (15) give (30) and (28); and (29) follows
on substituting the characteristic function of E for x(-) in (30), and requiring
that Tx e C(Q).

Conversely it suffices, by Theorem 2, to show that (28), (29) and (30) imply
Txe C(Q) if Li(P). There is a simple function X such that | x —%||, < e/(4k),
where k is the supremum in (28). Let h(v,w) = g(v,w) — g(v,wy), wherew, wy € Q.
Since X is a simple function, (29) requires that ”P)'chdp] <¢f2 if weN(wy), a
suitable neighbourhood of w,, depending on &. Then

| J;(x-—i)hdu+ﬁ)€hd,ul

=Ll +] [ #ha

e/(4k)-2k + ¢/2.

[ (Tx)(w) — (Tx)(wo)]

[7AN

A

So Te C(Q).

THEOREM 5. If 1 < p < and p is a measure on P, then L(L)(P),E(J))
is inductively represented by a space of functions g.(v,w)(ve P;weJ;r=0,1,2...)
having the properties:
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. “q is the L‘L(.P)-norm)

31 sup | g (-, W), <o (p7'+q7' =13
welJ

(32) [gr( ' ,W) - gr( ' ’WO)]/[W - WO] - gr+1( : ’WO)

in the weak I, topology on P, as w — w,. i(w,woelJ). Then TeL(L(P),

E(D) iff (Jor xe L)(P); welJ; r =0,1,2,--)

(33) OTH0) = [ e lemdue),

where D is the derivative operator,

ReMARKS. The seminorms || T||, (see (16)) equal the expressions on the left
of (31), for r = 0,1,---. The Theorem remains true for J replaced by (~ co0, ®).

Proor. Let Te L(E,(P),E(J)). For r = 0,1,2,---, the map
D: E(J) - E(J)

is continuous; since also E(J) < C(J),
D'(T) e LL(P),C(J)).
So (31) and (33) follow from (28) and (30) of Theorem 5. From (33),if x € L(P),

G O OTN00, _ [ 8000 =800 4

w — wg
Since Tx e E(J), the left side of (34)— (D™ 'Tx)(w,) as w— w,; and (32) fol-
lows, using (33). From (3) with K, = D7, (16), and (31), the natural topology
for L(L}(P),E(J)) is that given by the sequence of seminorms || T ”, given by
the expressions in (31).

Conversely, define T by (33) with r = 0, and assume (31) and (32); by
Theorem 2, it is required only to verify that Tx € E(J) if x e L}(P). If (33) holds
for some r = 0, then so does (34); by (32),

the right side of (34) — fx(v)g,“(v, wo)du(v)
P

as w — w, in J; hence so does the left side; so (33) holds for r + 1, and, by
induction, for all r; so Tx is infinitely differentiable. Now

I

,=sup sup [(D'Tx)(w)]|

wed [Ixf]»=1

sup sup | x| -] &(-,w)| by (33)

weld ||x|l,=1

sup [ &(-,w)

weld

< by (31).
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So Tx eE(J).

ReEMARKS. Let P be a compact convex subset of Euclidean n-space: let

A = E(P) (see (4) and (5)); let fe A’. Then (compare (6)) there is a seminorm
“ . ",1 of A such that f is continuous in “ . “,1 So f extends by continuity to a
continuous linear functional on A;. To each x e A, attach (uniquely) the set of
functions {x?:q < 1}; this defines an injection j of Ay into the direct sum S,
of finitely many (s,say) copies of C(P). Norm S by

maxsup |x9(1)|.

g=<i teP
Then f~(y) = f(j~'y) (y€jA;)determines a functional f~ on j4; with the same
norm, p(f) say, that fhas asanelement of 4. The Hahn-Banach theorem extends
f~ to a continuous linear functional on S;, with the same norm. Then by the
Riesz representation theorem, there is a (complex) measure on P°, represented
by measures f,* on P, corresponding to the direct summands of S,, such that

(35) S = T f x9(0) dfX(0)
g JP
(36) W= TV

This proof is adapted from the representation [5] for Schwartz distributions
with compact support P. If f is such a distribution, then it is well known that

(37) fx) = Z | xPdff() (xeED)
g=4’ JN

where N is an arbitrary neighbourhood of P, and I is an interval of R*, con-
taining P; here the measures f,* depend, in general, on the choice of N. However,
if P is compact convex then Schwartz [7] shows that N may be replaced by P
in (37), provided A’ is replaced by A, where A/’ depends on P but not on f,

It follows that, within a topological isomorphism, E(P)’ is the space of
Schwartz distributions with support in P, and fe P(E)’ iff f has a representation
(35), (36), for some A€ A;. It is convenient to identify f with the vector {f*: r < 1}
of measures.

THEOREM 6. Let P be a compact convex subset of Euclidean n-space; let Q
be a compact Hausdorff space. Then L(E(P),C(Q)) is topologically represented
by a space of elements g(-,-), where for each we Q,

g(+,w) = {g(,w)r =i}

is a Schwartz distribution with support in P, If Te L(E(P),C(Q)) and A is the
minimal index function for T, then for A = A(0), weQ,
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(38) (Tx)w) = Z | xX"()dg v,w) (xeEP));
r=i P
(3% " T HO,A(O) = Su% p(g(-,w)),

where p(-) is defined in (36);
(40) (g ,w) is weak *-continuous in we Q with respect to E(P).
Conversely, if Tis defined by (38), and (39) and (40) hold, then Te L(E(P),C(Q)).

REMARK. (40) means that,if ¢ -,- > denotes evaluation of a distribution, then
for each x e E(P),

<g(+,w)x(+))
is continuous in we Q.

PROOF. Set A = E(P), A = A,, and B = C(Q) in Theorem 1: if x e E(P)
and fe Ay, then (35)and (36) hold; therefore (38) and (39) follow from Theorem
1;(40)is precisely the condition that Tmaps into C(Q). The converse is immediate
from Theorem 2.

THEOREM 7. Let P and Q satisfy the conditions for P as in Theorem 6.
Then L(E(P),E(Q)) is topologically represented by a space of sequences

{&(50) veAd,

where for each we Q, g,(-,w) is a Schwartz distribution with support in P. If
Te L(E(P),E(Q))

and A is the minimal index function for T, then for A = A(0), xe E(P), weQ,

yeA,,
(41 (D'Tx)(w) = El PX")(v)dgy,,(v,W) = {gy(*,w),x(+))
where )
g( ) ={g.(,")r=i}
(42) N7 1,800 = sup p(g,(+» W) < 03

43) g, ,w) is weak-*-continuous in weQ with respect to E(P);

(44)  g,+1(-,w) = (0/ow) g,( - ,w), the derivative taken in the weak-*
sense on E(P).

Conversely, if T'is defined by (41) with y = 0, and the g, satisfy (42), (43), (44),
and LeA,, then Te L(E(P),E(Q)).
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REMARK. If w has components w;, then dg/0w means the vector with com-
ponents dg/ow;; and h(w,w,)/(w—w,) means the vector with components

h(w,we)/(w — WO)j'

Proor. If Te L(E(P),E(Q)), and yeA,, then D’Te L(E(P),C(Q)) (where D
is the differentiation operator). Hence Theorem 6 applies, and (38), (39), (40)
prove (41) (for each ), (42), (43): except that A may depend ony as wellason T.
From (41), for w,w,€Q,

DTx)(w) — (D'Tx)(wo) _ <&y, w),x(+)> —<g(*, W), X(* )}

45
(45) w— Wy W — Wy

Since T maps into E(Q), (D'Tx)(w,) exists, so the left side of (45) converges
to it as w — w,, hence so does the right side. Let {w,} - w, in Q; let (41)
hold for given y and 4; then

¢n = (gy( : ,W,,) - gy( ' ’WO))/(wn - WO)
is a continuous linear mapping from A4, (where A = E(P)), convergentas w — w,
to g,4+1 (-,wo); by the uniform boundedness principle, g,.,,(*,wo) is also

continuous on A;; hence 4 is independent of y, and (44) holds. The converse
is proved as in Theorem 6.

CorOLLARY. The space L(E(Q)Y ,E(P)’) of all continuous linear mappings
Sfrom Schwartz distributions with support in Q to Schwartz distributions with
support in P, where P and Q satisfy the hypotheses of Theorem 1, has the fol-

lowing representation. Let
UeL(E(Q),E(P));

let xe E(P); let fe E(Q)'; by (37), f may be specified in terms of (complex)
measures h, on Q by

(46) f) = Z | y@wydh(w)  (yeEQ))-

a=p JQ

Then

47 (U (x) | x(v)d, [ fQ by gq,r(v,W)dhq(W)]

r<iA Jp

where the measures g, (- ,w) satisfy (42), (43), (44). And conversely, if U is
defined by (47) then U e L(E(Q),E(P)).

PRrOOF. Since E(P) and E(Q) are reflexive metrisable convex spaces,
U e L(E(Q)',E(P)")
iff U is the adjoint of an element Te L(E(P),E(Q)); and

https://doi.org/10.1017/51446788700009691 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700009691

118 B. D. Craven [14]

(U (x) = f(Tx).
Then (47) follows from (41).
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