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ANNULAR DEHN FUNCTIONS OP GROUPS

STEPHEN G. BRICK AND JON M. CORSON

For a finite presentation of a group, or more generally, a two-complex, we define a
function analogous to the Dehn function that we call the annular Dehn function.
This function measures the combinatorial area of maps of annuli into the complex
as a function of the lengths of the boundary curves. A finitely presented group has
solvable conjugacy problem if and only if its annular Dehn function is recursive.

As with standard Dehn functions, the annular Dehn function may change with
change of presentation. We prove that the type of function obtained is preserved
by change of presentation. Further we obtain upper bounds for the annular Dehn
functions of free products and, more generally, amalgamations or HNN extensions
over finite subgroups.

0. INTRODUCTION

Suppose G is a finitely presented group. It is well-known that the word problem
for G is solvable if and only if the Dehn function associated to some and hence any
finite presentation is recursive. In this paper we turn to the conjugacy problem. We
introduce and study the annular Dehn function, and obtain results analogous to those
in [2].

The annular Dehn function is defined in an analogous way to that of the standard
Dehn function. Let if be a finite two-complex. Consider a pair of edge-circuits w and
u which cobound some singular annulus A in K, that is, are freely homotopic in K.
Define

AK(W,U) — min{a(S) | S is a singular annulus with boundary toUu},

where a(S) is the area of the singular annulus, that is, the number of preimage subdisks.
Note that the definition could also be given in terms of annular van Kampen diagrams.
For convenience sake, we allow the possibility of w or u being the trivial loop. In that
case the singular annulus is degenerate, that is, is a singular disk. We define the annular
Dehn function of K to be

n) = max.{Ai((w, u) \ w and u cobound some

singular annulus and \w\ + \u\ ̂  n}.
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454 S.G. Brick and J.M. Corson [2]

Since we allow for empty circuits and degenerate annuli, it is clear that 6K ^ JK where
8K is the ordinary Dehn function.

If V is a finite presentation then the annular Dehn function can also be defined
algebraically. The cobounding edge-circuits are replaced by words representing conju-
gate group elements and A-p is denned using the minimal number of relators necessary
to show two given words represent conjugate elements.

A standard argument (see [7]) shows its conjugacy problem is solvable if and only
if the annular Dehn function 77? is recursive. A similar statement is true for finite
two-complexes.

An alternate approach to the conjugacy problem is to try to bound the length of
the conjugating element and to then make use of the regular Dehn function. Fix a finite
generating set X and take the length function \*\x on G determined by it. If g and
h are conjugate elements in G, let

c(<7i h) — m i n \ \s\ 9 = shs~1 \

and define the annular width function ax to be

ax(n) =max{c(g,h)}

where the maximum is taken over all such elements with \g\x + \h\x ^ n. As we shall
show below, it easy to bound the annular Dehn function in terms of the annular width
function and the regular Dehn function. In fact, it works both ways. We shall prove
that the annular width function can be bounded by using the annular Dehn function.

Our first result shows that the type of the annular Dehn function does not change
with change of presentation. A similar result holds for the annular width function.
Here, by "type" we mean the following: We say that / =3 g if there are constants a, 6, c
so that for all n the following holds:

f(n) ^ a-n + b- g(c-n)

(here / , g : {1 ,2 , . . . } —> N). We say that / and g are of the same type, and we write
/ = g, if both f =4 g and g =4 f are true. As is standard practice, when we speak of
the annular Dehn function of a group, we are speaking of a function only defined up to
equivalence of type.

Standard results about hyperbolic groups show that they have linear annular Dehn
functions. And it is a consequence of [6], that quasigeodesic asynchronously combable
groups have annular Dehn functions bounded by double exponential functions.

For the regular Dehn function, that is, that associated to disks and the word
problem, it is a result of [1] that quasi-isometries preserve the type of function obtained.
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[3] Annular Dehn functions 455

In the case of the annular Dehn function that is not true. In fact, commensurability
does not preserve the type of annular Dehn function obtained. This is a consequence
of a construction found in [3] and the observation that if / = g and / is bounded by
a recursive function then so is g.

For our result about amalgamations, we need to recall another notion. We say a
function / is subnegative if / ( n ) + / ( m ) ^ f(n + m) , for all m, n e N \ {0}. Given a
function h, we write h for the subnegative closure of h, that is, the smallest subnegative
function greater than or equal to h.

We make use of the subnegative closure in the following result: if G is an
amalgamation A *c B where C is finite and A and B are finitely presented, then
7G =3 m a x { 7 A , 7 B } . There is a similar result for HNN extensions.

It is perhaps worth remarking that our original hope was to obtain a new proof of
the solvability of the conjugacy problem for one-relator groups (see [4]). However, we
were unable to complete the proof.

In the following, by a cellular map, we mean one transverse to the cell-structure of
its target space. In other words, we take the "picture" approach to maps and areas.

1. INVARIANCE UNDER CHANGE OF PRESENTATION

Let K and L be finite two-complexes with isomorphic fundamental groups. Fix
basepoints. Then there are basepoint-preserving cellular maps / : K —> L and g :

L —> K so that the induced maps f, and gm of fundamental groups are inverses to one
another.

Since K and L are finite complexes, the maps / and g are Lipschitz in the
following sense: there is a constant k such that

(i) | / (w) | ^ k • \w\ for each edge-path w of K,

(ii) \g(ui)\ ^ k • \w\ for each edge-path w of L,
(iii) a(f(S)) ^ k • a(S) for each singular surface S in if,
(iv) a(g(S)) ^ k • a(S) for each singular surface 5 in L.

The Lipschitz constant is the key idea of the proof of the invariance of the annular Dehn
function:

THEOREM 1 . 1 . Let K and L be finite connected two-complexes with isomorphic

fundamental groups. Then JK = It •

P R O O F : We start by considering the case where one of the complexes is obtained
by collapsing a maximal tree. So assume T is a maximal tree in K and L = K/T. Let
a : K -> L be the natural projection map. Since T is a finite tree, there is a bound c
to the length of a reduced path in T. Let C — 2c + 1. A loop w of length ^ / i n K
projects to a loop a(w) in L of length ^ /, while a loop w in L of length ^ / may be
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lifted to a loop in K of length ^ C • I, by lifting the edges one at a time and joining
them up by reduced paths in the maximal tree. Abusing notation slightly, we denote
the lift by a~1(w). Note that a~1(w) may not project to w. However it will project to
a loop freely homotopic to w, where the homotopy takes place inside the one-skeleton.
In other words w may not itself be cyclically reduced. As some of the attaching maps
of the two-cells might themselves be not cyclically reduced, we need to allow for this
possibility. Also note that we can also project and lift singular annuli without changing
their areas.

Suppose w and u are freely homotopic edge-circuits in L with \w\ + \u\ ^ n.
Then a~1(w) and a~1(u) are freely homotopic edge-circuits in K with |or~1(iw) | +
| a - 1 ( u ) | ^ C • n. Let S be a minimal area singular annulus cobounding a~1(w) and
a~1(u). Then a(S) is a singular annulus cobounding w and u. Thus it follows that
lL{n) < 7if (C -n) . Conversely, suppose w and u are freely homotopic edge-circuits in
K. Then a(w) and a(u) are freely homotopic in L. Note that |a(u>)| -I- |a(w)| ^ n.
Let S be a minimal area singular annulus cobounding a(w) and a(u). Lifting 5 gives a
singular annulus of the same area cobounding w and u. It follows that 7x(n) ^ 7z,(n).

Now we turn to the general case. By the above, we may assume that both K and L
have a single vertex. Fix a positive integer n. Suppose w and u are freely homotopic
edge-circuits in K with |u>| + |u| ^ n. Then f(w) and f(u) are freely homotopic
edge-circuits in L. Further by the above | /(w)| + |/(w)| ^ kn. Thus there is a singular
annulus S in L cobounding f(w) and f(u) with a(S) ^ 7i(fcn).

Now apply g and we get a singular annulus g(S) cobounding g(f(w)) and g(f{u))
with a(g(S)) ^ k'y^kn). As edge-circuits g(f(w)) and g(f(u)) are different from w
and u. But since g+ and /» are inverses, g(f{u>)) and w represent the same element
in ni(K); a similar statement holds for ff(/(w)) and u (note: here is where we use the
fact that / and g preserve basepoints). So we can find singular disks D\ and D2 with
D\ bounding g(f(w)) • w~1 and D2 bounding g(/(u)) • u " 1 . And since \w\, \u\ ^ n,

we may assume a(Di) $C 6K ((k2 + l )^J •

Now glue £>i and D2 onto g(S). This yields a singular annulus cobounding w

and u. Its area is bounded above by

+ k^L(kn).

By the invariance of the ordinary Dehn function (see [2] for example), we know 6K = 6L •
And by construction 6L ^ JL • Putting this together, after taking a maximum over all
such freely homotopic loops, yields IK =$ 7L • By symmetry, n ^ IK , and it follows
that JK = 1L • u

Let us turn now to invariance of the annular width function.
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THEOREM 1 . 2 . Let Xi and X-i be two finite generating sets of a group G.
Then aXl = aX2 .

PROOF: Fix a positive integer n. Denote by |*|Xj and \*\X2 the length functions
on G induced by X\ and X2 respectively. There is a constant k such that

£ • \9\x2 < I^IA-! < k • \9\x2

for all g € G.
Now assume g and h are conjugate elements of G with \g\Xl + \h\x ^ n. Then

|g|x + \h\x ^ k • n. Choose s € G with sgs~l — h and |s|jf2 = cX2{g,h) (that
is, s is the shortest word, when measured using X2, conjugating g to h). Then, by
minimality,

cxj. (9,h)^\s\Xi ^k-\s\X2=k-cX2(g,h) < A; • CTX2 (A: • n)

Taking the maximum over all such g and h yields

ffXl(n) ^ A; • crXi{k • n)

and thus aXl =4 aX2 . Similarly aX2 =$: aXl and it follows that aXl = aX2 . D

As mentioned in the introduction, the annular width function, together with the
regular Dehn function, can be used to bound the annular Dehn function. The idea
is simple, u and w represent conjugate elements if and only if there is some s with
W = sws~1u~1 representing the identity in the group. Now use the solution of the
word problem given by the regular Dehn function, keeping in mind the length of the
word W.

Conversely, the annular Dehn function yields a bound for the annular width func-
tion. Take m to be the maximum length of the relators. Suppose A is a singular
annulus. Look at the transverse structure of A, that is, its picture. We can compute its
width by taking a path connecting the two boundary components of the annulus which
is transverse to the arcs of the picture and misses all the subdisks. Now by counting the
number of transverse arcs it crosses, we see that each subdisk and the two boundary
components may contribute as many points of intersection as half of its length.

It is clear that the above comments yield the following result:

PROPOSITION 1 .3 . Suppose V = (X \ R) is a finite presentation and m is
the maximum of the lengths of the relators. Then

Jv{n) ^
n

for all n.
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2. R E T R A C T S AND DIRECT PRODUCTS

We turn to the case of a retract of groups:

THEOREM 2 . 1 . Let H be a retract of a finitely presented group G. Then 7# =<;
7G a n d <JH =$ <JQ •

PROOF: Let p : G —> H be a retraction of a finitely-presented group G onto a
subgroup H, with i : H C G denoting the inclusion map. Choose a finite presentation
for G such that some subpresentation is a presentation of H. Then if {L,K) is the
pair of associated two-complexes we have K C L and there is a cellular retraction
p : L —> K such that p* = p. Each two-cell D of L \ K is mapped by p in a cellular
fashion. Let m be the largest area of the maps p\ D : D —> K for all such D.

Fix a positive integer n. Let a and /? be freely homotopic edge-circuits in K with
\a\ + \P\ ^ n. Clearly they are also freely homotopic in L. Suppose A is an annular
diagram in L cobounding a and /3 and of minimal area. Then p(A) is an annular
diagram in K cobounding a and (3. Then it is clear that, due to the way p maps the
two-cells of L \ K, we have a(p(A)) ^ m • a(A). Thus

AK(a, 13) ^ a(p(A)) ^ m • a(A) ̂  m

And taking the maximum over all such a and (3 yields

^ m-7z,(n),

whence JK =̂  1L as desired.
Now to consider the annular width functions, choose finite generating sets X and

Y for G and H respectively with Y C X. Letting A; be the maximum of |/9(x)|y over
all x e X, we see that |/o(#)|y ^ k • \g\x for all g € G.

Fix a positive integer n. Suppose h\ and h2 are conjugate elements of H with
\h\\Y + |/*2|y- ^ n- Note that since Y C X we also have l/iil^ + |^2lx ^ n- Choose
s S G so that /12 = shis~1 and I s^ = cx{h\,h,2) (that is, s is a conjugating element
for h\ and /12 in G of minimal length in terms of X). Then apply the retraction p
and we see that /12 = p{s)h\p{s)~ . So

cY{hi,h2) ^ |p(s)|y < k- \s\x = k-cx(hi,h2) ^ k-ax{n)

and taking the maximum over all such h\ and h2 yields ay (n) ^ k • ax (n) and hence

OY =3 <̂ x as desired. D

It turns out that for direct products, the annular width function yields a simpler
bound than the annular Dehn function:
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THEOREM 2 . 2 . Suppose G and H are finitely presented groups. Then

P R O O F : Since G x H retracts onto G and also onto H, we have by Theorem 2.1

that max{crG, crH} =4 crGxH • But OG+OH = max{<7G> OH) , so we get OG+/7H 4 VGxH •

For the other half of the argument, fix a positive integer n , and choose finite
generating sets X and Y for G and H. Take Z = X L)Y as the generating set for
G x H. Suppose gi € G and hi € H for i = 1,2 with g\hi conjugate to 52^2 and
with |<7i/i.i|z + |52^2|z ^ n. Then g\ is conjugate to 52 in G and h\ is conjugate
to /12 in i ? . Note that \g\\x + |<72|x ^ n and | f t i | y + | ^2 | K ^ n . Let s e G with
<?2 = s g i s " 1 with | s | x ^ crxC^) and t £ H with /12 = t / i i^"1 with | i | y ^ cryin). Then
32/»2 = stg1hi(st)~1 and

I**U = l s lx + lfly ^ o-x(n) + <rY{n).

Hence cz(gihi,g2h2) ^ ^ x ( n ) +<ry(n) and taking maximum over all such gxh\ and

P2/12 yields
oz(n) ^crx{n) + aY(n).

Hence the result follows. D

3. AMALGAMATIONS

We begin with the annular width function of an amalgamation.

THEOREM 3 . 1 . Suppose G *c H is an amalgamated free product where G and

H are finitely presented groups and C is a finite group. Then

OG*CH ^(?G + °H = max{aG, crH}.

P R O O F : Choose finite generating sets X and Y for G and H respectively such
that XHY = C\{1}. Then Z - X U Y is a generating set for G *c H. We establish
the result by showing that oz =$ <*x + &Y •

Fix a positive integer n and let g and h be conjugate elements of G *c H such
that \g\z + \h\z ^ n. Write g = U1U2 • • • up where u i , . . . , up is a "reduced sequence,"
that is, the Ui are elements alternately in G and H, and if p > 1, then none of the itj
lie in the amalgamated part C. We may further assume that \g\z = J2\ui\ where |UJ|
means either |wi|^ or |wt|yi depending on whether Uj is in G or in if . To get such
a sequence, write g as a product of generators and their inverses, say g = x\X2 • • -xm,
where m = \g\z- Then let ui,U2,--,um be a reduced sequence of "syllables" in G
and H.
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Assume initially that g and h are cyclically reduced (nontrivial) elements. (Then
each cyclic permutation of the sequence U\,... ,up is reduced; see [5, IV.2].) Let
b = max{cz(a,a ')} where the maximum is taken over the (finite) set of pairs {a, a')
from C such that a and a' are conjugate in G *c H. Then we claim that

cz(g,h) ^ (&+l )n+2[<7 X (n)+oy(n) ] .

Indeed, if p > 1, then by the conjugacy theorem for amalgamations (see [5, IV.2]), h

is obtained by cyclically permuting the product g = U\ • • • up and conjugating by an
element of C. That is, h = (sa)~1g(sa) where s — ui • • -Uk (some k < p) and a € C,
and hence, cz(g,h) ^ \sa\z ^ \g\z + 1 ^ n.

So now suppose p = 1 and choose s such that sgs'1 = h. Write s = si • • • sq,

where Si,... ,sq is a reduced sequence. Since h is cyclically reduced, if q = 1, then g

and h are conjugate in one of G or H, in which case cz(g, h) ^ ma.x{ax(n),<TY(n)} •

Otherwise, q > 1 and Sggs*1 must be contained in C, that is, g is conjugate in one
of G or H to an element a € C. And similarly /i is conjugate in one of G or H to
an element a' of C. Thus, in this case, cz(g,h) ^ max{crx(|ff| + 1 ) , O Y ( | # | + l )} +
cz(a,a') + max{<7x(|/i| + 1 ) , O Y ( | / I | + l ) } ^ 6 +2max{«Jx(n),o'y(n)} , completing the
claim.

For the general case, note that g and h are conjugate to cyclically reduced elements,
say 50 and h0, and that cz(g,go) ^ \g\z and cz(h,h0) ^ | / i | z . Moreover, | g o | z ^ \g\z

and | / i o | z ^ H z - Thus, by the above, cz(g0,h0) ^ (b+ l)n + 2[<rx(n) + oY{n)\.

It follows that cz(g, h) ^ (b + 2)n + 2[<rx(n) + (7y(n)], from which our desired result
follows. U

We turn now to the annular Dehn function. Our approach is to construct the
standard topological model of the amalgamation. This space X contains a two-sided
subcomplex F carrying the the amalgamating subgroup. Given a singular annulus over
X, we use transversality to conclude that the inverse image of F is a collection of arcs
and simple closed curves. We then proceed by induction on the number of such arcs and
simple closed curves. Note that it is also be possible to argue algebraically as above,
using normal forms.

THEOREM 3 . 2 . Suppose G *c H is an amalgamated free product where G and
H are finitely presented groups and C is a finite group. Then

P R O O F : Suppose C — {ci, C2,. . . , c^} where c\ is the identity. Take finite presen-
tations VG — (xi,Cj | n ) and VH = (Vm^Cj \ st) for G and H respectively, both of
whose generating sets contain all the Cj. Then V = (XJ, ym, Cj \ rj, st) is a presentation
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[9] Annular Dehn functions 461

for the amalgamation G*cH . Let KG , KH , and K be the canonical two-complexes of
the presentations VG , ~PH and V respectively. Form a new complex X by joining KG
and KM by a bouquet of circles cross an interval, F x [—1,1], where the circles corre-
spond to the generators Cj. There is an obvious quotient map that collapses F x J - 1 , 1 ]
onto F, so K is a. quotient of X.

Fix a positive integer n. Given edge circuits u and v in K representing conjugate
elements, with \u\ + \v\ ^ n , form edge circuits vl and v' in X representing the same
elements. Any singular annulus in X which cobounds v! and v' can be modified by
the quotient map X —> K to a singular annulus over K cobounding u and v. We
compose with the quotient map and then collapse the inverse images of the /-fibers.
Our approach will be to use transversality for singular annuli in X and then look at
what happens to the area of the corresponding singular annuli in K. In the following
we shall omit reference to X and will proceed as if we were using transversality for
singular annuli in K.

We need first to define a constant a. Consider all possible pairs of distinct elements
Cj and Cfc of C which are conjugate either in G or in H. Take a to be the sum of
the areas of minimal cobounding annuli for all such pairs. Since C is finite a is a finite
constant.

Given an edge circuit w in K, write w = w\- • • wm where the Wi are edge circuits
alternately in KG and KH • Treating w as a cyclic word, define Lw to be the smallest
such m (the quantity Lw was called the cyclic free product length in [2]). We shall
prove that for any such u and v,

AK(u,v) ^ a + max(;yi<-G,7/i rw)(|u| + |u| + Lu + Lv)

Since Lu + Lv ^ \u\ + \v\ ^ n, taking the maximum over all such u and v yields the
theorem. For convenience, let MU}V — a + max (7K G >7AT H ) (IUI + \v\ + Lu + Lv).

Starting with a singular annulus A cobounding u and v, using transversality we
may assume that the inverse image of F is a collection of properly embedded arcs and
simple closed curves. We can assume that no simple closed curve bounds a disk inside of
A. We can further assume that each of these arcs and loops is mapped to a single edge
in F, as each element of C is represented by such an edge. Observe that the number
of such arcs is equal to [Lu/2\ + [Lv/2\ (which is equal to (Lu + Lv)/2 provided that
LU,LV ^ 2). We establish the desired inequality by using induction on Lu + Lv to
show that the minimal area singular annulus A of this type in K that cobounds u and
v has area ^ Mu>v.

If Lu = Lv — 1 then there are no arcs in the inverse image of F. We have two
cases. First suppose that there are no simple closed curves in the inverse image of F.
Then u and v represent elements of one of the two factors, say for example G, and are
already conjugate in that factor. Clearly we have A^(u, v) ^ 7x G ( |u | + \v\) ^ Mu,v.
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Now suppose there are some simple closed curves in the inverse image of F. Enu-
merate them as a i . . . , ajt. Assume they are indexed so that at is next to at+i, that
is, the subregion bounded by at and at+i misses the other a* 's. Also assume that u
is next to a i and a^ is next to v. We shall bound the area of A by splitting it up into
three regions, the region A\ bounded by u and c*i, the region A2 bounded by ai and
a*, and the region A3 bounded by a t and v.

Each ai maps to an edge in F representing an element of C. We can assume that
no element of C is mapped to more than once. For if a% and ay both map to the same
element of C, then we can cut out the annular region between a* and aj, glue c*j and
a, together, and obtain a singular annulus for u and v with fewer simple closed curve
components. It is then easy to see that the area of A2, the region bounded by a\ and
afc, is less than or equal to our constant a, by construction.

As for the areas of regions A\ and A3, merely observe that they map entirely
into either KH or KQ and their boundaries map to elements having lengths bounded
by \u\ + 1 and \v\ + 1 respectively. Thus the area of A\ is bounded above by
max(7K G,7K H)( |u | + 1) and that of A2 by max {JKG>1KH)(\V\ + 1)- Using subneg-
ativity, noting that Lu + Lv = 2, and including our bound for the area of A2 yields the
desired result that the area of A is bounded above by Mu>v.

Now assume Lu + Lv > 2. If there are any arcs connecting one of the boundary
components to itself, say that mapping to u, take an innermost one, p. The arc, p,
together with a portion of the boundary of the annulus, say w, bounds a disk D that
contains no other arcs or simple closed curves. The disk D maps entirely into either
KH or KG • Say it maps into KQ • Note that the boundary of D is mapped to a word of
length \w\ +1 and its area is thus bounded by 8KG{\W\ + 1|) ^ 7K-G(|IO| + 1|). We need
only bound the area of A\IntD, which is asubannulus A' cobounding edge-circuits u\
and v with LUl +LV ^ Lu + Lv — 1 (if Lu = 2 then LUl = 1, otherwise LUl — Lu-2).
By induction, the area of A' in K is bounded above by

MUltV = a + max ( 7 ^ , 7 ^ ) (|u!I + \v\ + Lul +LVJ.

The area of A, being the union of A' and D, is therefore bounded above by

a + max {IKG,1KH) ( K | + M + LUl + Lv) + JKG (\W\ + 1|).

Now use subnegativity and the facts that |«i| + \w\ = \u\ and LUl + 1 ^ Lu to obtain
the desired result.

On the other hand, suppose there are arcs in the inverse • image of F but no
arc connects a boundary component to itself. By cutting along each arc we ob-
tain a collection £>i,... , Dk of subdisks, where k = Lu = Lv. The components
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of Di n dA are mapped to subpaths Uj and Vi of u and v respectively. Since

Di is mapped entirely into one of KQ or KH , it follows that the area of Di is

^ max (6KG, 6KH)(\ui\ + \vi\ + 2) ^ max(7"K-G,7"K-//)(|ui| + \vt\ + 2). By subnega-

tivity and the facts that |u| = |ui |- |—-+|ufc| and \v\ — \vi\ + •• - + |vfc|, it follows that

the area of A is bounded above by max (SKG, ^KH) (|u| + |u| + 2fc). Since 2k = Lu+Lv,

our result follows. D

In the case of a free product, that is, where C is trivial, we can use Theorem 2.1
and say a bit more:

COROLLARY 3 . 3 . Suppose G and H are finitely presented groups. Then

For HNN extensions, we have the following result. The proof is similar to that of
Theorems 3.1 and 3.2, with free product length replaced by HNN-length. We omit the
details.

THEOREM 3 . 4 . Suppose G *c <f> is an HNN extension where G is a finitely
presented group and C is a finite group. Then

crG*c<t> ^ °G

Using induction, we can also obtain a result for the fundamental group of a fi-
nite graph of groups where the edge groups are all finite. We leave the details of the
statement and proof to the reader.

4. EXAMPLES

We conclude with a few examples illustrating our results and mention some subse-
quent work that we are pursuing. Throughout this section, as elsewhere, all groups are
assumed to be finitely presented.

As noted in the introduction, hyperbolic groups are those groups whose Dehn
functions are linear, and they are also precisely the groups whose annular Dehn functions
are linear. In particular, for a hyperbolic group, the Dehn function is = -equivalent to
the annular Dehn function. It seems interesting to ask what other groups have this
property. A sufficient condition for this property is that the annular width function
be linear (see Proposition 1.3). That is, if G is a group such that ac(n) = ni then

Regarding the class of groups that have linear annular width functions, first of all
note that it clearly contains all (finitely generated) Abelian groups and it includes all
hyperbolic groups by the general fact that crc =$ 1G\ see Proposition 1.3. Furthermore,
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the property of having a linear annular width function is preserved under forming direct
products (by Theorem 2.2) and free products (by Corollary 3.3) and taking retracts (by
Theorem 2.1). And the fundamental group of a finite graph of such groups with finite
edge groups also has linear annular width function (by Theorems 3.1 and 3.4).

In particular, a direct product of finitely many hyperbolic groups has a linear an-
nular width function. Hence, for any such group G, 7G(" ) = Sc(n) =$ n2 (by [2,
Proposition 2.1]). Moreover, if G contains a Z x Z subgroup, then G is not hyperbolic
and hence 5Q(TI) = n2 (as a subquadratic Dehn function is known to imply hyperbol-
icity). Thus 7G(^ ) = n2, unless G is virtually cyclic (and hence hyperbolic).

It is easy to show, by an argument similar to the proof of Theorem 3.1, that if
G *c H is an amalgamation such that C lies in the centre of G and in the centre
of H, then ac*cH =$ &G + &H • In particular, every amalgamated free product of
Abelian groups has a linear annular width function. The situation for HNN extensions
of Abelian groups is more complicated. As a test case, we consider, in a separate paper,
group extensions of free Abelian groups by Z. It turns out that for such an extension
G, the annular Dehn function is always bounded above by an exponential function, and
is bounded by a polynomial function if G is nilpotent.

REFERENCES

[1] J.M. Alonso, 'Inegalites isoperimetriques et quasi-isometries', C.R. Acad. Sci. Paris 311
(1990), 761-764.

[2] S.G. Brick, 'On Dehn functions and products of groups', Trans. Amer. Math. Soc. 335
(1993), 369-384.

[3] D. Collins and C.F. Miller, III, 'The conjugacy problem and subgroups of finite index',
Proc. London Math. Soc. 34 (1977), 535-556.

[4] A. Juhasz, 'Solution of the conjugacy problem in one-relator groups', in Proceedings of
the Workshop on Algorithmic Problems, Math. Sci. Res. Inst. Publ. 23 (Springer-Verlag,
Berlin, Heidelberg, New York, 1991).

[5] R.C. Lyndon and P.E. Schupp, Combinatorial group theory (Springer-Verlag, Berlin, Hei-
delberg, New York, 1977).

[6] W.D. Neumann, 'Asynchronous combings of groups', Intnat. J. Algebra Comput. 2 (1992),
179-185.

[7] S.J. Pride, 'Star-complexes, and the dependence problems for hyperbolic complexes', Glas-
gow Math. J. 30 (1988), 155-170.

Department of Mathematics and Statistics Department of Mathematics
University of South Alabama University of Alabama
Mobile, AL 36688 Tuscaloosa AL 35487-0350
United States of America United States of America
e-mail: brick@mathstat.usouthal.edu e-mail: jcorson@mathdept.as.ua.edu

https://doi.org/10.1017/S0004972700032433 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032433

