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Abstract. We prove that, for non purely atomic measures, L?(u, X) is a Grothen-
dieck space if and only if X is reflexive.

1. Introduction. Let (Q, Z, ) be a finite measure space and X a Banach space. We
denote by L?(u,X) (1=p <) the Banach space of all X-valued Lebesgue-Bochner
p-integrable functions over Q and by L”(u, X') the Banach space of all measurable and
essentially bounded functions from Q to X. The question of when a property passes from
the Banach space X to X-valued function spaces has been extensively studied (see [15] for
a survey on these topics). In this paper, we deal with Grothendieck’s property. X is said to
be a Grothendieck space, whenever weak*-convergence and weak-convergence of
sequences coincide in the dual space X* [6], [13, Ch. 5]. Grothendieck’s property for
C(K, X) has been analyzed in [2] and [11]. It is also known [1] that £,(X), (1 <p <) is
Grothendieck if and only if X is Grothendieck. We prove that, for non purely atomic
measures and 1<p <o, L?(u,X) is Grothendieck if and only if X is reflexive. The
notations and terminology used and not defined in the paper can be found in {5] or [7].

2. Results. We begin by describing when a Banach space contains a quotient
isomorphic to co. Let us mention that this result has been obtained in [10, Theorem IV.3]
for separable Banach spaces.

LeMMA. X has a quotient isomorphic to ¢, if and only if X* contains a weak*-null
sequence equivalent to the unit basis of ¢,.

Proof. First of all, note that there is a bijection between linear continuous maps T
from X into ¢, and weak*-null sequences in X*. We have T(x) = ((x*,x)) forall x e X
and T*(a) = ¥ a,x¥ for all a = (a,) € 4.

(=) Assume that T:X — ¢, is a quotient map; then T* is an isomorphism into, and
hence (x}) is equivalent to the unit basis of ¢;.

(&) Take T(x) = ({xX x)). Since (x}) is equivalent to the unit basis of ¢, we have that
T* is an isomorphism into. Therefore, the range of T is dense and closed [4, p. 168-169],
and we deduce that T is onto. d

RemMARk. There is a dichotomy for a linear continuous map 7 from a Banach space X
into ¢y either (a) there is an infinite subset M < N such that ST is onto, where § is the
canonical projection from cy(N) onto ¢o(M) or (b) T* is weakly precompact, ie., T*
sends bounded subsets into weakly conditionally compact subsets. To see this, note that,
by the previous Lemma, T(x)=({x} x)) for some weak*-null sequence (x}) and
T*(a) =3 a,x* Thus, if (a) does not hold, then, again by our Lemma, {x}:n e N} is a

weakly C(;'nditionally compact subset of X* and therefore its closed absolutely convex hull
A also is ([14, Addendum]}). Finally, note that T* maps the closed unit ball of ¢, into a
subset of A. Condition (b) can be also replaced by the weaker condition (b') T is
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unconditionally convergent, because, if 7 is not unconditionally convergent, there is an
operator S:cy— X such that ST is an isomorphism into [5, p.54]; thus T*S* is a quotient
map. Hence, assuming (b), T*S* is weakly precompact map onto ¢ and we obtain a
contradiction.

Our first theorem can be considered as a dual version of Emmanuele’s theorem [8]
about complemented copies of ¢y in L?(u, X).

THEOREM 1. Let (Q,Z, u) be a non purely atomic measure space, let 1 <p = and
assume that X* contains a copy of ¢;. Then L?(u, X) contains a quotient isomorphic to c.

Proof. We shall construct a weak*-null sequence in L?(u, X)* equivalent to the
unit basis of #; thus by the above lemma, we shall obtain a quotient isomorphic to c.
There is no loss of generality in considering the case of [0, 1] with the Lebesgue measure.

Let (x¥) be a sequence in X* equivalent to the standard basis of 4; i.e. there are
positive constants « and 8 such that for all finite sequences ay,a,,...,a, of scalars we
have

n

a 2 la;| =

i=1

n

ax;t
1

<B2 lal
i= X* i=1
Consider the sequence (r,) of Rademacher functions on [0, 1] and define a sequence of
simple functions by f,:=rx¥e LY(u, X*)(n € N), where 1/g +1/p = 1. Since |r,(z)|=1
for all t € [0,1] and n e N, we have
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whenever a,, a,, . . . , a, are scalars. Hence, by integration,
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In other words, (f,) is a LY(n, X*)-sequence equivalent to the unit basis of ¢. Since
L9(u, X'*) can be isometrically embedded in L”(u, X)* [6, p. 97], it follows that (f,) is a
sequence in (L”(u, X))* equivalent to the unit basis of 4.
Let us show that it is also a o(LP(u, X)*, L?(u, X))-null sequence. Take f e
LP(u, X). Since (x}¥) is bounded and the measure is finite, we have

i (=i | 0061 £0) )

<timat || r0f @) du()] =0 0
n [0.1) X
If X contains a copy of ¢, then X* also contains a copy of 4 [5, p. 211] and, by
Theorem 1, L?(u, X) contains a quotient isomorphic to ¢y (1 <p < «). However, note
that this quotient does not come, in general, from a complemented copy of 4, since
L?(u, X') contains a complemented copy of ¢ if and only if X does [12].

THEOREM 2. If (Q,Z,n) is not purely atomic and 1<p <o, then LP(u,X) is a
Grothendieck space if and only if X is reflexive.
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Proof. On the one hand, if X is reflexive, then LP(u,X) is reflexive, and hence
Grothendieck.

On the other hand, assume that L”(u,X) is a Grothendieck space. Since X is
isomorphic to a complemented subspace of L”(u,X), X is Grothendieck. Duals of
Grothendieck spaces are weakly sequential complete. Thus, via Rosenthal’s theorem we
obtain that either X* is reflexive or X* contains a copy of ¢. Therefore, if X is
non-reflexive, by Theorem 1, L?(u, X)) has a quotient isomorphic to ¢, and we get a
contradiction. We note that this implication also holds for p = +. a

In the context of Banach lattices, Theorem 2 can be also rephrased in terms of
quotients isomorphic to cp. The main fact is a proposition that partially answers a question
posed by Diestel [6] (to give an internal characterization of Grothendieck spaces).

ProrosiTioN. Let X be a Banach lattice. Then X is a Grothendieck space if and only if
X contains no quotient isomorphic to ¢,.

Proof. (=) Note that Grothendieck’s property is inherited by quotients.
(&) Assume that X is not Grothendieck. Then, we can find a weak*-null sequence
(x¥) = X* without any weakly null subsequence. Since X has no quotient isomorphic to
o, X cannot have a complemented copy of ¢ and this implies that X* cannot have a copy
of cp. By a known result on Banach lattices, we deduce that X* is weakly sequentially
complete. Therefore, appealling to Rosenthal’s theorem, we deduce that (x¥) has a
subsequence equivalent to the unit basis of ¢. This contradicts the initial Lemma. O

CoroLLARY 1. Let X be a Banach lattice and 1 <p <=,

(1) If u is purely atomic, then LP(u, X) contains a quotient isomorphic to c, if and
only if X contains a quotient isomorphic to ¢,.

(2) If p is not purely atomic, then L”(w, X) contains a quotient isomorphic to ¢y if
and only if X is not reflexive.

Proof. (1) Note that if (x¥) is a weak* null sequence in £, (X*) = (£,(X))* equivalent
to the unit basis of £, then there must be k € N such that (x}(k)) = X* is equivalent to
the unit basis of £. (2) follows form the proposition above and Theorem 2. g

This corollary is not true for arbitrary Banach spaces. Namely, take a quasireflexive
separable Banach space Xof order n = 1. On the one hand, since every quotient of X is
quasireflexive of order »n [3], X has no quotient isomorphic to ¢;. On the other hand,
assume that X is a Grothendieck space. Since X is separable, by Diestel [6], the identity in
X is weakly compact; thus X is reflexive.

For p =+, Theorem 2 is not true, in general, In this case, a concept from local
Banach theory appears as a necessary condition for being Grothendieck.

CoroLLARY 2. Let (Q,Z,u) be a non purely atomic measure. If L™(u,X) is a
Grothendieck space, then X is reflexive and X does not contain all €, uniformly

complemented.

Proof. As we pointed out in the proof of Theorem 2, X must be reflexive.

On the other hand, suppose that there are operators J,: {7 — X, P,: X — {}, such
that P,J, is the identity in ¢] and ||J,|| ||P,|| = A for some A >0 and for all n € N. Then,

(®, ¢7)- is isomorphic to a complemented subspace of £.(X) which in turns is clearly
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complemented in L*(u, X). Since (8,¢7). contains a complemented copy of 4 [9], we
obtain a contradiction.

Concerning the condition in Corollary 2, note that there are reflexive Banach spaces
which contain all ¢} uniformly complemented. An example: (B, ¢7),.
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