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Abstract

If (G+) is a group and M is a nonempty set of endomorphisms of G operating on the left
then G is said to be M-Goldie when

(i) G has no infinite independent family of nonzero M-subgroups, and
(ii) annihilators in M of subsets of G satisfy the a.c.c. (under set inclusion).

Here we prove some results, analogous to those of a Noetherian module in some special cases,
even when the set M of operators has no other algebraic structure than the existence of a zero
element or in some cases M is at most a finite dimensional commutative near-ring. Precisely
speaking, we prove that the collection of associated operating sets of G is finite and there exists
a primary decomposition of 0 of such a Goldie M-group, and then if M is a finite dimensional
commutative near-ring with unity, for any x belonging to each associated operating set of G,
a power of it belongs to the annihilator of G.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 34, 16 A 76,
20 B 99.

1. Introduction

In this paper we introduce the notion of a Goldie operator group and establish
some interesting properties of such a system.

If (G+) is a group and M is a nonempty set of endomorphisms of G
operating on the left then G is said to be M-Goldie when

(i) G has no infinite independent family of nonzero A -subgroups, and

(ii) annihilators of subsets of G in M satisfy the ascending chain condi-
tion (under set inclusion).
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A Goldie ring is clearly a Goldie M-group. Every finite dimensional left
module over a left Noetherian ring is a Goldie M-group. An Artinian left
module over a left Artinian ring is a Goldie M-group.

It can easily be seen that a direct sum of two Goldie AM-groups is again
a Goldie M-group. An M-subgroup of a Goldie M-group is a Goldie M-
group. But the homomorphic image of a Goldie M-group need not be a
Goldie M-group. For in the case of a Goldie ring, a homomorphic image
of a Goldie ring need not be a Goldie ring [2]. A Goldie M-group is called
Sfully Goldie if every homomorphic image of it is a Goldie M-group.

An M-subgroup H of G is called an essential M-subgroup of G if for
each nonzero M-subgroup K of G, HNK # 0. We denote thisby H < G-
Clearly G <, G and 0 <, G if and only if 0 = G. Moreover if H, K are
M-subgroupsof G, HC K C G,then H<, G ifandonlyif H<, K<, G.

If an M-subgroup H of G has no proper essential extension inside G
(that is, if H and K are M-subgroups of G then H <, K < G implies
H = K) then H is called a closed M-subgroup of G and we write H<_G.
Thus 0 and G are always closed M-subgroups of G.

An ordered family {G,, G,, ..., G,} of M-subgroups of G is called an
independent family if (G, +---+Gt+---+Gn)ﬂGt =0,for 1<t<n.(The
symbol ~ denotes omission of G,.)

An M-group G is called finite dimensional provided G has no infinite
direct sum of nonzero normal M-subgroups. To prove G is finite dimen-
sional, it suffices to show that G has no infinite independent sequence of
nonzero normal AM-subgroups.

The annihilator A(S) of a subset S of G is defined as

AS)={meM|ms=0forallseS}.

In our discussion, M will always contain a zero element 0 such that 0g =0
forall g € G. Thus A(S) # @ for all S. A nonzero M-subgroup H of
G is called a prime M-subgroup of G if for every nonzero M-subgroup K
of H, A(K) = A(H). If, for each M-subgroup H of the M-group G,
A(G) = A(H), then G is called a prime M-group.

The collection

K (G)={PC M| P=A(H) for some prime M-subgroup H of G}
is the family of associated operating subsets of G. An M-group G is M-
primary if & (G) is a singleton.

Let G be a Goldie M-group with closed normal M-subgroups G, ..., G,
such that R

(1) G,n---nG,=0 and G,N---NG;N---NG,#0,for i=1,...,¢ and

(2) each quotient M-group G/G, is an M-primary group with & (G/G,)
# 4 (G/G;) for i #j.
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Then G, N---NG, is called an M-primary decomposition of 0 of G.

In a unique factorisation domain one can express a non-unit as a finite
product p" --- p,» of positive powers of distinct primes. This result can be
expressed in terms of ideals as (a) = (p{*)N---N (p").

A similar decomposition of ideals of a commutative Noetherian ring is
known. We extend some portions of this theory to Goldie M-groups.

Here we prove that if G is a fully Goldie M-group and if &/ (G) = XUY,
XNY = @, then in some cases there exists a closed normal A -subgroup
G' of G such that & (G) = & (G') U~ (G/G') where &(G') = X and
& (G/G') = Y . Another interesting result is that in some special cases % (G)
is a finite collection. Moreover the very interesting and important result we
prove here is the existence of an M-primary decomposition of 0 of such
a Goldie M-group. If G, Nn---N G, is such a decomposition of O then
& (G) =L (G/G,)U---UX(G/G,). Next, if G is a Goldie M-group where
M is a right near-ring having no infinite direct sum of ideals and is such that
Z,(G) =0 (where Z,(G) = {g € G| Ig =0 for some essential A -subgroup
I of G}) then the annihilators of subsets of G in M satisfy the d.c.c. and
if M is a commutative near-ring then for any x € (pc ) P there exists a

t € Z* such that x' € A(G).

2. Preliminaries

Following are some preliminary lemmas for use in the proofs of the main
results. First we prove the following important lemma which will play a key
role in our theory.

LEMMA 2.1. If an M-group G has no infinite independent family of M-
subgroups then it satisfies the a.c.c. on closed normal M-subgroups.

ProoOF. Suppose G does not satisfy the a.c.c. on closed normal Af-sub-
groups. Then G has a chain G, < G, < --- of closed normal M-subgroups
of G. Since G, <. G, we have G, £, G,,, . Therefore G, , must have a
nonzero M-subgroup C, such that G, N C, = 0. And this is true for each
n. We claim for any ¢ € Z', i<t,that

(C,+++C+---+C)NC;=0.
Here
(C,+-+C+-+C)NC,

g(G2+...+Gi+Ci+l+---+Ct)ﬂCi.
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Nowif ¢; = g+ +g,+¢; .+ +c¢, (where g, €G,, k=2,...,i,and
q€C,l=1i,i+1,...,1t) isanelement of (G,+---+G,+C,, +--+C,)NC;
then —¢;+g,+ - +8&+c;, +-+c, =0 implies gy+---+8& —c;+c;, +++
—c¢, (since G,, ..., G, are normal subgroups of G), where g,'c €G,,

1=
2,...,i. Thus

(4
k =
¢, €(Gy++G,+G, +-+G)NC,CGNC,=0.

Similarly ¢,_,, ..., ¢, are all zeros.
So (G, +--+G;+C,,, +--+C)NC; =0 and therefore

(C,+-+C,+---+C)NC, =0.

Hence {C,, C,, ...} is an independent family of nonzero M-subgroups of
G . Since G has no infinite independent family of M-subgroups we can not
have a strictly ascending infinite sequence of closed normal M-subgroups of
G . Thus G satisfies the a.c.c. on closed normal M-subgroups.

LEMMA 2.2, Let G be an M-group satisfying the a.c.c. for annihilators of
subsets of G in M. Then A(G)# @ ifandonly if G=0.

PrOOF. Suppose G = 0. Then G has no prime AM-subgroup. Hence
& (G) = . Again if G # 0 consider # = {A(G") | G* is an M-subgroup
of G}. Since G is Goldie, /# has a maximal element, say A(N). Now let
N’ (#0) bean M-subgroup of G such that N' C N. Then A(N') 2 A(N).
So by maximality of A(N) it follows that 4(N) = A(N’). Thus N is a prime
M-subgroup of G. Therefore A(N) € & (G), thatis, & (G) # .

LeEMMA 2.3. Let G be an M-group as above with an exact sequence
0-G646¢La -o.
Then /(G') C #(G) CH (GHYUH(G").

PROOF. If G =0 then G' =0 and G’ = 0 and thus the result is true
in this case. Assume G # 0. Since g is injective, G' is an M-subgroup
of G. Therefore & (G') C #(G). Let A(N) € & (G) for some prime
M-subgroup N of G. If NNG # 0, then A(NNG') = A(N) since N
is a prime M-subgroup of G and N NG, being an M-subgroup of the
prime M-subgroup N, is also prime. Therefore A(NNG') € & (G'). Thus
A(N) € ¥ (G'). Now suppose NNG =0 and h is the restriction of f to
N . Then h is injective, so A(N) = N C G'. Thus A(N) € &(G"). Hence
& (G) C A (GYUH(G").
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LEMMA 2.4. Let N be a normal M-subgroup of an M-group G such that
A is a closed M-subgroup of G with N< A<, G. Then A/N <, G/N.

Proor. If not, let A/N S, L/IN < G/N. Then N< A5 L <G and
there is an M-epimorphism f: L — L/N.

Here f~'(A/N) = A. Since A/N <, L/N, it follows that 4 <, L and
this is not possible for 4 <. G. Hence 4/N <. G/N. The following two
lemmas are easy to prove.

LEMMA 2.5. If G, and G, are two Goldie M-groups then
#(G,0G,)=HS(G)UH(G,).

LEMMA 2.6. If G is a Goldie M-group and P, Q, N are M-subgroups
of G, NaG suchthat N<P,Q then ¥/ (PNQ/N)=%(P/NNQ/N) C
& (P/N)NZ(Q/N).

Let H and K be two M-subgroups of an M-group G such that H <
K < G. Then H is M-essential in K if for any M-subgroup L (C K),
HnNL#D0.

We now consider the set M of operators as a right near-ring with 1 such
that 1g=g, (m; + m,)g=m, g+ m,g, (mm,)g=m (m,g) forgeG,
m;, m, € M (in other words, G is a left near module over the right near-ring

M).

LEMMA 2.7. Let N and H be M-subgroups of an M-group G such that
H is M-essentialin N. If a € N, a # 0, then there is an essential left
M-subgroup L of M such that La# 0, LaC H.

PROOF. Let L = {m € M | ma € H}. Then L is left M-subgroup of
M and Ma C N (since N is an M-subgroup of G and a € N). Also
Ma #0 (for 1 € M Implies a € Ma). Since H is M essential in N, we
get ManH #0. Let h=ma (#0)e H. So La # 0. We now show that L
is an essential left M-subgroup of M . Let I (# 0) be a left M-subgroup
of M. We claim that TN L # 0. Suppose Ia =0. Then Ia C H. So
ICL.Hence INL#0. And if Ia # 0 then Ig is an M-subgroup of G
and Ia C N. Since H is M-essential in N, Ian H # 0. Hence for some
x(#0)€l, xae H. Thus x € L. Therefore I "L # 0 which implies that
L is an essential left M -subgroup of M .

We define

Z,(G) = {x € G| Ax = 0 for some essential left A -subgroup 4 of M}
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and forany § (C M),
r1;(S)={g€G|sg=0forallsesS}.

LEMMA 2.8. Let P, Q be annihilators of subsets of G in M such that
PC Q and P is M-essentialin Q. If Z,(G) =0 then P=Q.

PROOF. Let g € Q, ¢ # 0. Since P C @ and P is M-essential in
Q there exists an essential left AM/-subgroup L of M such that Lg € P.
Lq # 0 (Lemma 2.7). thus Lqr;(P) = 0. So qr;(P) = 0 implies g € 4
(r;(P)) = P (since P is an annihilator of a subset of G in M). Hence

P=0Q.

We see that the Z groups Z,, Z,, Z,, etc. are such Z Goldie groups
that their proper quotients are all prime Z-groups. And in a prime AM-group
all of its M -subgroups are prime and at least the M-group itself is a prime
closed extension of each of its prime M-subgroups. Again G = Z,, is such
a Goldie Z-group that its Z-subgroups are

A,={0,2,4,...,28}, 4,={0,3,5,...,27},
4,=1{0,5,10,...,25}, 4,={0,6,12,..., 24},
Ay ={0,10,20}, and 4,={0, 15}
of which 4, < 4, <, G, 4;<A4;,<,G and A; < 4; <, G. So by Lemma
24, 4,/4,<,.G/A,, A;/A; <. G/Ag and A,/A; < G/A,.

Here each of 4,/4,, A;/A5 and A,/A, is a prime M-subgroup. Thus
each of a closed extension of itself which is prime. And the remaining quo-
tients G/4,, G/A, and G/A, are all primes.

These are such Goldie M-groups that any prime M-subgroups N/G of
G/G' has a prime closed normal extension T/G' such that G < N<T<,
G.

In what follows our Goldie M-group G will be of this type.

3. Main results

THEOREM 3.1. Let G be a Goldie M-group described as above. If the set
& (G) is a union of two disjoint sets X and Y, then there exists a normal
closed M-subgroup G' such that & (G') =X and ¥ (G/G)=7Y.

ProoF. Let # = {N Q. G | #(N) € X}. As 0 is a closed normal
M-subgroup of G and & (0) =, we have Z # & (since T C X).

Since G is M-Goldie, by Lemma 2.1, # has a maximal element, (say)
G' . Also, XU (G/G')2 XUY (Lemma 2.3). Since XNY =@, we have
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Y C #(G/G'). Suppose & (G/G') € Y. Then there exists a prime M-
subgroup N/G’' of G/G' such that A(N/G') € #(G/G') and A(N/G) ¢ Y.
Moreover by hypothesis there is a prime closed Af-normal extension T'/G'
such that N/G' < T/G' 9, G/G' and G < N< T <_G. Thus T isa closed
normal M-subgroup of G. Since T/G is nonzero, G C T and A(T/G') =
A(N/G'). Since T/G' is prime, & (T/G') is a singleton set, say {P}. We
write simply P. Thus & (T/G') = P and P ¢ Y. Again by Lemma 2.4,
H(T) CH(GYUH(T/G). Since ¥ (G')C X and ¥ (T/G') = P, we get
Z(T)YCXUP.Also TCG and & (G)=XUY give (T)CXUY.

So PgY gives &/(T) C X. Thus T € # and this contradicts the
maximality of G. Therefore & (G/G')C Y. Thus XUY C & (G)UY and
XNY =0 gives X CH(G).

THEOREM 3.2. Let G be a Goldie M-group as above. Then % (G) is finite.

ProOOF. We assume the opposite, that is, that &/ (G)={P, Q, R, ...} is
infinite.

If &(G)=PUY and P¢Y (wewrite P for {P}) then by Theorem 3.1
there exists a closed normal M-subgroup G’ of G such that & (G') = P,
& (G/G')=Y. Thus

A (G) = (G)UH(G/G).

Since Q € & (G) we have Q € & (G/G'), so for some prime M-subgroup
B'/G' of G/G', A(B'/G')=Q. Thus & (B'/G’) = Q. By hypothesis there
is a prime extension G'/G' such that B'/G' < G"/G' 9, G/G' and G <
B'<G" 4. G. Hence A(G"/G') = A(B'/G') = Q. Therefore & (G"/G') =
& (B'/G') = Q. And by Lemma 2.3, ¥ (G") C #(G)U¥(G"/G). It
follows that & (G") C {P, Q}. Also by Lemma 2.3, & (G) C & (G") U
& (G/G"). Therefore & (G) C {P, Q} U (G/G"), thatis, R € (G/G").

In a like manner we get another closed normal AM-subgroup G of G
such that G' < G' < G" and for S € ¥ (G), S € ¥(G/G"). Since ¥ (G)
is infinite, we get a strictly ascending infinite sequence of closed normal M-
subgroups, which contradicts the Goldie character of G because of Lemma
2.1. Hence & (G) is finite.

THEOREM 3.3. Let the M-group G be fully Goldie as above.

(I) There exists an M-primary decomposition of 0 in G.

) If G,n---nG, is an M-primary decomposition of 0 in G then
A (G)=H(G/G))U--- UK (G/G,).

ProoF. (I) By the above theorem, & (G) is finite.
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Let #(G)={P,..., P}. Since & (G) is expressible as a union of two
disjoint sets {P,, ..., ﬁ, , ..., P} and {P;}, by Theorem 3.1, we get closed
normal M-subgroups G,, ..., G, of G such that for each i,

&(G)={P,...,P,..., P} and ¥ (G/G,) = {P;}.
Also, for each i, G/G,; is M-primary and % (G/G,) #M(G/Gj) for i #j
and (G, N---NG;) CH(G)N---nK(G,). Since clearly & (G,)N---N
& (G,) = &, we then have & (G, N---NG,) =D and therefore by Lemma
22, G,N---NG, =0. If possible let G,N---NG,N---NG, =0, that s,
ﬂj# Gj =0, for some i, 1 <i<t. Then we get an M-homomorphism.

a:G—»@Gj, g—(g+G,....,8+G,,...,g+G).
J#i
We note that Kera = {g | 8 € ;,,G;, = 0} = 0. Thus o is an embed-
ding and hence & (G) C & (,,,G/G;). Since G is fully Goldie, each
G/G,; is Goldie. so it follows from Lemma 2.5 that for each i, &/ (G) C
U, (G/G,), that is, & (G) € {P,,..., P, ..., P,} which is absurd.
Hence ;;G; # 0.
(II) Next suppose that ﬂ;.=1 G; is an M-primary decomposition of 0 in
G . Then the map

t
a:G—»@G/Gj, gH(g+G1,---,g+G,)
j=1

is an embedding, which means that &/ (G) €% (€ G/G ) and hence & (G)C
U (G/G j) . To see the opposite inclusion consider the Af-homomorphism

B:(G; - G/G;, g~ g+G,.
J#
Now Kerf = {g | g € (\G;} = 0. Thus (N, G,) € #(G/G,) and
by Lemma 2.2, & (N, G,) # &. Since & (G/G;) is a singleton, we get
.sa((ﬂ#i Gj) = (G/G,) for each i. Hence

t t
U« (G/6)=UJ« (G,
j=1 i=1 J#i
and since & (), ,; G;) C & (G) for each i, we finally get U;=1 F(G/G;) €
& (G). Thus & (G) = U;_, # (G/G,).
We now give two results on a Goldie M-group when the operating set M
is a right near-ring with no infinite direct sum of left ideals and Z,(G) =0.

Theorem 7 of Oswald [5] follows as a corollary to the following result in the
case of a regular left Goldie near-ring [3).
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THEOREM 3.4. Let G be a Goldie M-group with Z,(G) =0 as above and
such that an essential left ideal of M is essential as a left M-subgroup also.
Then the annihilators of subsets of G in M satisfy the d.c.c.

PROOF. Let B = A(Y), C = A(X), X,Y C G. Thenif X C Y we
have B C C. Suppose B C C. Then by Lemma 2.8, there exists a left M-
subgroup D of M such that D C C, BND = 0. Thus if in the descending
chain A(S,) 2 A(S,) 2 --- we have A(S,) 2 A(S;,,), then there exists left
M-subgroups P, such that P, C A(S,) and A(S;,,)N P, = 0. Again we
choose a left ideal X, such that A(S,_ ;)N X, =0 and X, is maximal for
this.

Being the left annihilatorof S, in M, A(S,,,) isaleftideal of M. So
A(S;,,) + X, is a left ideal of M. So it is essential as a left M-subgroup.
Therefore P, N (A(S,,,) + X;) # 0 (we write 4, for A(S,)). Now let
0 #) b (€ B) =a,,+x., a, € A4,,, x, €X,. This implies
X =-aq +b €A +PCA+P CANX (=C,,say). Nowif x,
were 0, we would have q, , =b, € P,N4,,, =0. So x;, # 0. Therefore
we get a nonzero left ideal C;, and C, N4, ., = 0. An infinite descending
chain of left annihilators of subsets of G in M gives an infinite direct sum
of left ideals of M. Since M has no infinite direct sum of left ideals,

the descending chain 4, 2 4, 2 --- is a finite one. Now we prove our last
result of this paper, in the case of a finite dimensional commutative near-ring
with 1.

THEOREM 3.5. Let G be a Goldie M-group where M is a commutative
near-ring with 1 having no infinite direct sum of ideals and is such that
Z,(G) = 0. Then for any x € (Vyep ) P there exists t € Z* such that

peY
x' € A(G).

ProOOF. Let x € ﬂpG.SJ(G)P‘ Then for every positive integer i, we get
M-homomorphisms ¢,:G— G, g x'g, i=1,2,.... Clearly Kergp, C
Kerg,,, . In other words rg(x") C r;(x"*') which gives

Alrg(x)) 2 Arg(x™ ).
By Theorem 3.4, we get A(rG(x')) = A(rG(x'+1)) for some ¢t € Z*. Then
ro(A(rg(x") = 145(A(rg(x™"))), that is, rg(x’) = ro(x*') on Kerp, =
Kerg,,, . Now we consider the M-homomorphism
f:xG-ox'G, x'g~— x'“g.

t+1 t+1
(

If x*'g=x""g" then x"*'(g—g')=0s0 g—g' € Kerp,,, =Kerp, and
thus x'g = x’g’ . Hence f is injective. Now x'G < G so & (x'G) C ¥ (G).
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If x'G # 0 then & (x'G) # @. Then there exists a nonzero M-subgroup
G' of x'G such that A(G') € & (x'G). Since x € P for each P € & (G),
we get x € P for each P € &/ (x'G). So x € A(G’'). And this gives that
xG =0, thatis, f(G')=0. Since f is injective, it follows that G' =0, a
contradiction. Hence x‘G = 0, that is, x’ € A(G).
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