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Abstract

If [G+) is a group and M is a nonempty set of endomorphisms of G operating on the left
then G is said to be A/-Goldie when

(i) G has no infinite independent family of nonzero M-subgroups, and
(ii) annihilators in M of subsets of G satisfy the a.c.c. (under set inclusion).

Here we prove some results, analogous to those of a Noetherian module in some special cases,
even when the set M of operators has no other algebraic structure than the existence of a zero
element or in some cases M is at most a finite dimensional commutative near-ring. Precisely
speaking, we prove that the collection of associated operating sets of G is finite and there exists
a primary decomposition of 0 of such a Goldie A/-group, and then if M is a finite dimensional
commutative near-ring with unity, for any x belonging to each associated operating set of G ,
a power of it belongs to the annihilator of G.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 34, 16 A 76,
20 B 99.

1. Introduction

In this paper we introduce the notion of a Goldie operator group and establish
some interesting properties of such a system.

If (G+) is a group and M is a nonempty set of endomorphisms of G
operating on the left then G is said to be M-Goldie when

(i) G has no infinite independent family of nonzero M-subgroups, and
(ii) annihilators of subsets of G in M satisfy the ascending chain condi-

tion (under set inclusion).
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238 K. C. Chowdhury [2]

A Goldie ring is clearly a Goldie Af-group. Every finite dimensional left
module over a left Noetherian ring is a Goldie M-group. An Artinian left
module over a left Artinian ring is a Goldie M-group.

It can easily be seen that a direct sum of two Goldie M-groups is again
a Goldie M-group. An Af-subgroup of a Goldie M-group is a Goldie M-
group. But the homomorphic image of a Goldie A/-group need not be a
Goldie M-group. For in the case of a Goldie ring, a homomorphic image
of a Goldie ring need not be a Goldie ring [2]. A Goldie M-group is called
fully Goldie if every homomorphic image of it is a Goldie M-group.

An M-subgroup H of G is called an essential M-subgroup of G if for
each nonzero M-subgroup K of G, HnK ^ 0. We denote this by H <e G.
Clearly G <e G and 0 <e G if and only if 0 = G. Moreover if H, K are
M-subgroups of G, H c K C G, then H <e G if and only if H <e K <e G.

If an M-subgroup H of G has no proper essential extension inside G
(that is, if H and K are M-subgroups of G then H <e K < G implies
H = K) then H is called a closed M-subgroup of G and we write H <CG.
Thus 0 and G are always closed M-subgroups of G.

An ordered family {Gl,G2, ... ,Gn) of Af-subgroups of G is called an
independent family if (Gl + • • • + G( + • • • + Gn) n Gt = 0 , for 1 < t < n . (The

symbol denotes omission of Gt.)
An Af-group G is called finite dimensional provided G has no infinite

direct sum of nonzero normal M-subgroups. To prove G is finite dimen-
sional, it suffices to show that G has no infinite independent sequence of
nonzero normal M-subgroups.

The annihilator A(S) of a subset S of G is defined as

A(S) = {m e M | ms = 0 for all s e S}.
In our discussion, M will always contain a zero element 0 such that Qg = 0
for all g G G. Thus A(S) ^ 0 for all S. A nonzero M-subgroup H of
G is called a prime M-subgroup of G if for every nonzero M-subgroup K
of H, A(K) = ,4(/O. If> f o r each Af-subgroup H of the Af-group G,
;4(G) = A(H), then G is called a pnwe M-group.

The collection

j / ( G ) = {P c M | P = A(H) for some prime Af-subgroup H of G }

is the family of associated operating subsets of G. An Af-group G is M-
primary if J / ( G ) is a singleton.

Let G be a Goldie Af-group with closed normal Af-subgroups Gx, ... ,Gt

such that
(1) G, n • • • n G, = 0 and G, n • • • n Gt; n • • • n G, / 0, for z = 1, . . . , t and
(2) each quotient Af-group G/Gi is an Af-primary group with s/(G/Gt)

for i^j.
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Then G{ n • • • n Gt is called an M-primary decomposition of 0 of G.
In a unique factorisation domain one can express a non-unit as a finite

product p"x •••pa
n" of positive powers of distinct primes. This result can be

expressed in terms of ideals as (a) = (/?"') n • • • n (/?"').
A similar decomposition of ideals of a commutative Noetherian ring is

known. We extend some portions of this theory to Goldie M-groups.
Here we prove that if G is a fully Goldie M-group and if s/(G) = l u Y,

X C\Y = 0 , then in some cases there exists a closed normal M-subgroup
G' of G such that s*{G) = sf(Cf) U s/(G/G') where sf(Gr) = X and
^{G/G1) = Y. Another interesting result is that in some special cases sf(G)
is a finite collection. Moreover the very interesting and important result we
prove here is the existence of an M-primary decomposition of 0 of such
a Goldie M-group. If Gx n • • • n Gt is such a decomposition of 0 then
s/(G) = J / ( G / G , ) U • • • \Js/{G/Gt). Next, if G is a Goldie M-group where
M is a right near-ring having no infinite direct sum of ideals and is such that
Zy(G) = 0 (where Z{(G) = {g £ G \ Ig - 0 for some essential M-subgroup
/ of G}) then the annihilators of subsets of G in M satisfy the d.c.c. and
if M is a commutative near-ring then for any x e DpgjjcrG) ? t n e r e exists a
t G Z+ such that x' € A(G).

2. Preliminaries

Following are some preliminary lemmas for use in the proofs of the main
results. First we prove the following important lemma which will play a key
role in our theory.

LEMMA 2.1. If an M-group G has no infinite independent family of M-
subgroups then it satisfies the a.c.c. on closed normal M-subgroups.

PROOF. Suppose G does not satisfy the a.c.c. on closed normal M-sub-
groups. Then G has a chain Gr < G2< ••• of closed normal M -subgroups
of G. Since Gn <c G, we have Gn £e Gn+l. Therefore Gn+l must have a
nonzero M-subgroup Cn such that Gn n Cn = 0 . And this is true for each
n . We claim for any t e Z+ , i<t, that

Here

Ct) n C,
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Now if cx: = g2 + • • • + g, + cM + • • • + ct (where gkeGk, k = 2, ... , i, and
c, e C,, I = i, i+1, . . . , t) is an element of (G2+- • •+Gi+Ci+X H \-Ct)DCi

then -ci + g2 + - • • + gi+ci+l + - • -+ct = 0 implies g'2 + -- • + g'i-ci+ci+l+--- +
ct_x — —ct (since G2, ... , Gt are normal subgroups of G), where g'k e Gk>

k = 2, ... , i. Thus

c, € (G2 + • • • + Gt + GM + • • • + G,) n C, C G, n C, = 0 .

Similarly ct_x, ... ,ci are all zeros.
So (G2 + • • • + Gt + Ci+l + • • • + Ct) n C, = 0 and therefore

(C,+ --- + C|. + --- + C,)nCI. = 0.

Hence {Cj, C 2 , . . . } is an independent family of nonzero A/-subgroups of
G. Since G has no infinite independent family of Af-subgroups we can not
have a strictly ascending infinite sequence of closed normal M-subgroups of
G. Thus G satisfies the a.c.c. on closed normal M-subgroups.

LEMMA 2.2. Let G be an M-group satisfying the ax.c. for annihilators of
subsets of G in M. Then A(G)^0 if and only if G = 0.

PROOF. Suppose G = 0 . Then G has no prime M-subgroup. Hence
tf(G) = 0. Again if G ^ 0 consider & = {A(G*) \ G* is an A/-subgroup
of G) . Since G is Goldie, %? has a maximal element, say A(N). Now let
N' ( / 0) be an M -subgroup of G such that N' CN. Then A(N') D A{N).
So by maximality of A(N) it follows that A(N) = A(N'). Thus N is a prime
Af-subgroup of <7. Therefore A(N) £ stf{G), that is,

LEMMA 2.3. Let G be an M-group as above with an exact sequence

Then sf(G>)cj/(G)cj/{&)\Jsf(G").

PROOF. If G = 0 then C?' = 0 and G" = 0 and thus the result is true
in this case. Assume C / 0 . Since g is injective, G' is an Af-subgroup
of G. Therefore s/(G') c J / (G) . Let /4(A0 e J/(C7) for some prime
Af-subgroup N of G. If JVn G' ^ 0, then v4(ATi G') = ,4(JV) since AT
is a prime Af-subgroup of G and N n G', being an Af-subgroup of the
prime Af-subgroup N, is also prime. Therefore ,4(./Vn G1) € s/{G'). Thus
A(N) e s/[G'). Now suppose N nG' = 0 and /z is the restriction of / to
N. Then h is injective, so h(N) S J V C G " . Thus A(N) e J / ( G " ) . Hence
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LEMMA 2.4. Let N be a normal M-subgroup of an M-group G such that
A is a closed M-subgroup of G with N <A<CG. Then A/N <c G/N.

PROOF. If not, let A/N $e L/N < G/N. Then N < A $ L < G and
there is an M-epimorphism f:L—> L/N.

Here f~l(A/N) = A. Since A/N <e L/N, it follows that A <e L and
this is not possible for A <c G. Hence A/N <c G/N. The following two
lemmas are easy to prove.

LEMMA 2.5. If Gx and G2 are two Goldie M-groups then

LEMMA 2.6. If G is a Goldie M-group and P, Q, N are M-subgroups
of G, N<G such that N <P,Q then j / ( P n Q/N) = sf(P/Nn Q/N) C

Let H and K be two M-subgroups of an M-group G such that H <
K < G. Then H is M-essential in K if for any M-subgroup L (c K),
HDL^O.

We now consider the set M of operators as a right near-ring with 1 such
that \g = g, {mx+m2)g = mxg + m2g, (mxm2)g = ml{m2g) forgeG,
m,, m2e M (in other words, G is a left near module over the right near-ring
M).

LEMMA 2.7. Let N and H be M-subgroups of an M-group G such that
H is M-essential in N. If a e N, a / 0 , then there is an essential left
M-subgroup L of M such that La / 0, La c H.

PROOF. Let L = {m € M | ma e H}. Then L is left M-subgroup of
M and Ma c N (since N is an M-subgroup of G and a e N). Also
Ma / 0 (for 1 e M Implies a e Ma). Since H is M essential in iV, we
get MaDH # 0 . Let h = ma (# 0) e H. So La / 0 . We now show that L
is an essential left M-subgroup of M. Let / ( / 0) be a left M-subgroup
of M. We claim that / n L # 0 . Suppose la = 0 . Then la c H. So
I C L. Hence / n i / 0 . And if la / 0 then la is an M-subgroup of G
and la c N. Since H is M-essential in N, la n H / 0 . Hence for some
x(^ 0) e / , xa&H. Thus x € L. Therefore / n L / 0 which implies that
L is an essential left M-subgroup of M .

We define

Z{(G) - {x e G | Ax = 0 for some essential left M-subgroup A of M }
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and for any S (C Af),

TG(S) = {g e G | sg = 0 for all s e S}.

LEMMA 2.8. Let P, Q be annihilators of subsets of G in M such that
PCQ and P is M-essential in Q. If Z, (G) = 0 then P = Q.

PROOF. Let q e Q, q ^ 0 . Since PCQ and P is Af-essential in
Q there exists an essential left Af-subgroup L of Af such that Lq e P.
Lq jt 0 (Lemma 2.7). thus LqrG{P) = 0 . So ? r c ( P ) = 0 implies q e A
(rG(P)) = P (since P is an annihilator of a subset of G in Af). Hence
P = Q-

We see that the Z groups Z3, Z6 , Z1 5, etc. are such Z Goldie groups
that their proper quotients are all prime Z-groups. And in a prime Af-group
all of its Af-subgroups are prime and at least the Af-group itself is a prime
closed extension of each of its prime Af-subgroups. Again G = Z30 is such
a Goldie Z-group that its Z-subgroups are

Ax = {0, 2, 4, . . . , 28}, A2 = {0, 3, 5, . . . , 27},

A^ = { 0 , 5 , 1 0 , . . . , 2 5 } , A4 = {0 ,6 , 12 , . . . , 2 4 } ,

4s = {0, 10,20}, and ^ 6 = {0,15}
of which AA < A2 <c G, A5 < A3 <c G and A6 < A3 <c G. So by Lemma
2.4, A2/A4 <c G/A4 , A3/A5 <c G/A5 and A3/A6 <c G/A6 .

Here each of A2/A4, A3/A5 and A3/A6 is a prime Af-subgroup. Thus
each of a closed extension of itself which is prime. And the remaining quo-
tients G/A{, G/A2 and G/A3 are all primes.

These are such Goldie Af-groups that any prime Af-subgroups N/G' of
G/G' has a prime closed normal extension T/G' such that G' <N < T <c

G.
In what follows our Goldie Af-group G will be of this type.

3. Main results

THEOREM 3.1. Let G be a Goldie M-group described as above. If the set
srf{G) is a union of two disjoint sets X and Y, then there exists a normal
closed M-subgroup G' such that stf{G') = X and ^{G/G1) = Y.

PROOF. Let W = {N <c G \ s/(N) c X}. As 0 is a closed normal
Af-subgroup of G and J / ( 0 ) = 0 , we have X ^ 0 (since 0 C X).

Since G is Af-Goldie, by Lemma 2.1, ^ has a maximal element, (say)
G'. Also, XUJ/(G/Gf) DXUY (Lemma 2.3). Since I n 7 = 0,we have
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Y c si {G/G'). Suppose sf{G/G') % Y. Then there exists a prime M-
subgroup N/G' of G/G' such that A{N/G') es/{G/G') and A{N/G') $Y.
Moreover by hypothesis there is a prime closed M-normal extension T/G'
such that N/G' < T/G' <c G/G' and G' < N < T <c G. Thus T is a closed
normal M-subgroup of G. Since T/G' is nonzero, G' C T and A{T/G') =
A{N/G'). Since T/G' is prime, s/{T/G') is a singleton set, say {P} . We
write simply P. Thus s/{T/G') = P and P & Y. Again by Lemma 2.4,
sf{T) C si{G')\Js/{T/G'). Since s/{G') c X and s/{T/G') = P, we get
j / ( r ) C X U P . Also T C G and j / ( G ) = A r u 7 give j / ( r ) C JSTU7.

So P g Y gives .af(r) c X. Thus r e / and this contradicts the
maximalityof G. Therefore jf(G/G?) c 7 . Thus J f u y c J / ( G ' ) U 7 and
XnY = 0 gives ^ C '

THEOREM 3.2. L ^ G be a Goldie M-group as above. Then s/{G) is finite.

PROOF. We assume the opposite, that is, that $?{G) = {P, Q, R,...} is
infinite.

If sf(G) = PuY and P <£ Y (we write P for {P}) then by Theorem 3.1
there exists a closed normal M-subgroup G' of G such that s/{G') = P,

= Y. Thus

Since Q e J / ( G ) we have Q e si {G/G'), so for some prime A/-subgroup
5'/G' of G/G', A{B'/G') = Q. Thus sf{B'/G') = Q. By hypothesis there
is a prime extension G"/*?' such that B /G' < G"/Gr <C G/G' and G' <
B' < G" <c G. Hence A{G"/G') = A{B'/G') = Q. Therefore s/{G"/G') =
tf{B'/G') = Q. And by Lemma 2.3, s/{G") C sf{G') U s/{G"/G'). It
follows that s/{G") C {/>, (2}. Also by Lemma 2.3, j*(G) C J / ( G " ) U
stf{G/G"). Therefore J / ( G ) C {P, Q} U J / ( G / G " ) , that is, R e (G/G").

In a like manner we get another closed normal M-subgroup G1" of G
such that G' < G" < G1" and for 5 e sf{G), S e s/{G/G'"). Since j / ( G )
is infinite, we get a strictly ascending infinite sequence of closed normal M-
subgroups, which contradicts the Goldie character of G because of Lemma
2.1. Hence s/{G) is finite.

THEOREM 3.3. Let the M-group G be fully Goldie as above.
(I) There exists an M-primary decomposition of 0 in G.
(II) If G, n • • • n Gt is an M-primary decomposition of 0 in G then

U • • -Us/{G/Gt).

PROOF. (I) By the above theorem, s/{G) is finite.
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Let sf(G) = {Px,...,Pt}. Since s/{G) is expressible as a union of two

disjoint sets {Px, ... ,Pt, ... , Pt) and {P,} , by Theorem 3.1, we get closed

normal M -subgroups Gx, ... , Gt of G such that for each / ,

j*{Gt) = {Pl,...,Pi,...,Pt] and s/{G/Gt) = {/»,}.

Also, for each i, G/Gi is M -primary and s/iG/G^s/iG/Gj) for i^j
and s/(Gx n - - - n G , ) c sf(Gx) D •• • n s / { G t ) . Since clearly s/(Gx)n---n
s>f{Gt) = 0 , we then have ^ / ( G 1 n • • • n Gt) = 0 and therefore by Lemma
2.2, Gx n • • • n Gt = 0 . If possible let G, n • • • n G, n • • • n Gt = 0 , that is,
C\j^i Gj-O, for some i, 1 <i <t. Then we get an Af-homomorphism.

,., g^ig + G^..., gTG,,..., g + Gt).

We note that Kera = {g \ g e DJ^GJ = 0} = 0. Thus a is an embed-
ding and hence sf(G) C ^{QJ^G/GJ) . Since (? is fully Goldie, each
G/Gt is Goldie. so it follows from Lemma 2.5 that for each /, sf{G) C
\Jj#J*(G/Gj), *at is, sf{G) C {P,, ... , Pt, ... , PJ which is absurd.
Hence C\Jft.Gj^0.

(II) Next suppose that f|!=i G1,- is a n A/̂ -primary decomposition of 0 in
G. Then the map

a:G^QG/Gj, g ~ (g + G,, ... , g + Gt)
7=1

is an embedding, which means that sf {G) csf ( 0 G/G;) and hence J/(G) C
\Js/(G/Gj). To see the opposite inclusion consider the Af-homomorphism

Now Kery? = {g \ g e f]Gj} = 0. Thus ^ ( D ^ , ^ ) Q ^ifilGt) and
by Lemma 2.2, J^iOj^Gj) ^ 0 . Since J / ( G / G ( ) is a singleton, we get

for each /. Hence

7=1

and since s/(f\m Gj) c j /(G) for each i, we finally get U;=i
. Thus j/(G) = \Sj=xsf{GIGj).

We now give two results on a Goldie Af-group when the operating set M
is a right near-ring with no infinite direct sum of left ideals and ZX(G) = 0.
Theorem 7 of Oswald [5] follows as a corollary to the following result in the
case of a regular left Goldie near-ring [3].
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THEOREM 3.4. Let G be a Goldie M-group with ZX{G) = 0 as above and
such that an essential left ideal of M is essential as a left M-subgroup also.
Then the annihilators of subsets of G in M satisfy the d.c.c.

PROOF. Let B = A{Y), C = A{X), X, Y c G. Then if X c Y we
have B c C . Suppose B c C . Then by Lemma 2.8, there exists a left M-
subgroup D of M such that D c C, BnD = 0. Thus if in the descending
chain A(SX) D A{S2) D ••• we have A(Sk) 2 A(Sk+l), then there exists left
M-subgroups Pk such that Pk c A(Sk) and A(Sk+l) n Pk = 0. Again we
choose a left ideal Xk such that ^4(S'fc+1) D Xk = 0 and A^ is maximal for
this.

Being the left annihilator of Sk+l in M, A(Sk+l) is a left ideal of M. So
A(Sk+1) + Xk is a left ideal of M. So it is essential as a left M-subgroup.
Therefore Pk n (^(5fc+1) + Xfc) / 0 (we write Ak for 4(5*)). Now let
(0 # fefc (€ P J = flfc+1 + xfc, ak+l e ^fe+1, ^ € JTk. This implies
^ = -flfc+i + ** e ^fc+1 + A c 4 + P t C / l t n I t (= Cfc, say). Now if xk

were 0, we would have ak+l = bk e Pk D ^ + 1 = 0. So ^ / 0. Therefore
we get a nonzero left ideal Ck and Cfc n Ak+i = 0. An infinite descending
chain of left annihilators of subsets of G in M gives an infinite direct sum
of left ideals of M. Since M has no infinite direct sum of left ideals,
the descending chain A{ D A2 D • • • is a finite one. Now we prove our last
result of this paper, in the case of a finite dimensional commutative near-ring
with 1.

THEOREM 3.5. LetG be a Goldie M-group where M is a commutative
near-ring with 1 having no infinite direct sum of ideals and is such that
ZX(G) = 0. Then for any x e C\P&^{G)P' tnere exists l € Z+ such that
x' €A{G).

PROOF. Let x e O p e ^ c ) ? • Then for every positive integer i, we get

M-homomorphisms (pt:G-+G, g >-> x' g, i= 1,2, ... . Clearly Ker <p. c

1 . In other words rG(x') C rG(x'+l) which gives

By Theorem 3.4, we get A{rG(xr)) = ^(rG(x'+1)) for some t 6 Z+. Then

rc(^(rG(x'))) = TG(A(TG(xt+l))), that is, TG(X') = rG(xt+l) on Kerp, =
1 . Now we consider the M-homomorphism

f-.x'G^x'G-, x'g~xt+lg.

If x'+lg = xt+1g' then x'+l(g - g') = 0 so g - g e Ker?»t+1 = Ker^( and
thus x'g = x'g'. Hence / is injective. Now x'G < G so s/(x'G) CS/(G).
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If x'G ^ 0 then J</(X'G) / 0 . Then there exists a nonzero M-subgroup
G' of x'G such that A(G') e s/[xlG). Since x e P for each P e J / (G) ,
we get JC e P for each P e sf{x'G). So A: 6 A(G'). And this gives that
xG' = 0 , that is, f(G') = 0 . Since / is injective, it follows that G' = 0, a
contradiction. Hence x'G = 0, that is, xl e
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