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Abstract

As a possible model for fluid turbulence, a Reiner–Rivlin-type equation is used to study
Poiseuille–Couette flow of a viscous fluid in a rotating cylindrical pipe. The equations
of motion are derived in cylindrical coordinates, and small-amplitude perturbations
are considered in full generality, involving all three velocity components. A new
matrix-based numerical technique is proposed for the linearized problem, from which
the stability is determined using a generalized eigenvalue approach. New results are
obtained in this cylindrical geometry, which confirm and generalize the predictions of
previous recent studies. A possible mechanism for the transition to turbulent flow is
discussed.
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1. Introduction

This paper is concerned with attempting to develop a mathematical model that gives
a consistent explanation for the phenomenon of fluid turbulence. It is necessary that
the model should be based purely on the physics of the situation, and avoid heuristics
or confusion between innate material properties (such as viscosity) and predicted fluid
motion (such as velocity distributions). This is, of course, an enormously ambitious
aim, and one which has occupied the attention of the best fluid dynamicists of the past
century or more. Nevertheless, an underlying physical mechanism for the transition
from well-ordered (laminar) flow to disordered turbulent flow remains unclear. As a
result, it is, perhaps, not even possible to give a precise definition of what is meant by
turbulent flow, although anyone who has ever observed the high-speed churning white-
water being ejected from an outflow pipe into a river, for example, has an immediate
intuitive understanding of the term.
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There are two broad reasons for attempting to model turbulent flow, as is described
very engagingly in the notes by George1 [12]. The first reason is provided by the
more immediate practical desire to simulate high-energy flows around aircraft wings or
along coastlines, for example, and to account for the additional drag force, vorticity or
energy loss seen in such flows, when these quantities are not well predicted by laminar-
flow models governed by the Navier–Stokes equations. Since turbulent behaviour is
observed to consist of a combination of a mean-field velocity q that changes slowly
with time, and an apparently random component q′ that fluctuates rapidly in time
and space, the Navier–Stokes equations are traditionally averaged, in an attempt to
derive a new equation for the mean-field component q. This is, in fact, an approach
that was originated by Reynolds [24]. However, because the Navier–Stokes equations
involve a nonlinear convective term, the equation that is derived for the mean-field
component q is not “closed”, in the sense that it also involves a term that consists of
an averaged quadratic product q′iq

′
j of the rapidly changing component. Traditionally,

this term is modelled using some hypothesis that expresses it purely in terms of
the mean-field quantities. Details of such approaches are given by Davidson [6].
Early Reynolds-averaged turbulence models expressed the extra term simply as a
standard diffusion term involving the mean-field velocity components, but multiplied
by an “eddy viscosity” coefficient with a constant value µT much greater than the
regular molecular viscosity µ. This is often not particularly successful in simulating
experimental observations, and so later approaches regarded µT as a function of certain
mean-field flow variables k and ε. In these “K-epsilon” models, each of these variables
is supposed to be governed by its own convection–diffusion equation. Descriptions
of such an approach are provided by Speziale [30] and Kitsios et al. [15]. In other
models, moment-closure techniques are applied to derive an equation directly for the
extra quadratic term q′iq

′
j, and make use of statistical methods. These are described in

review articles by McComb [17] and Cambon and Scott [4]. This class of modelling
techniques for turbulence is not discussed further in this paper.

The second interest in turbulent flow is focussed more on modelling the physical
causes of turbulence, and explaining the reasons for the transition from orderly
laminar flow to turbulent flow, particularly as some critical speed (Reynolds number)
is reached. This is the focus of the present paper. Traditionally, a simple solution
to the Navier–Stokes equation is found, with steady velocity vector q0 and pressure
p0. Then a time-dependent perturbation is made to this solution, in which there
is some small disturbance amplitude characterized by the parameter ε. Thus the
velocity is expressed in the form q = q0 + εq1 + O(ε2), and the pressure becomes
p = p0 + εp1 + O(ε2). Linearized equations of motion for the perturbation quantities
q1 and p1 are generated by retaining only terms to first order in ε. These equations
admit a time dependence in the form exp(−iωt), and so the sign of the imaginary part
of the constant ω determines the stability of the zeroth-order solutions q0 and p0. For
flow in a circular cylindrical pipe, this process is described in detail by Drazin and

1The preface to this electronic book is particularly charming.
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Reid [7, Section 31.2]. They indicate that axi-symmetric flow in a circular cylindrical
pipe is believed to be stable for all Reynolds numbers (flow speeds), and they present
a typical eigenvalue distribution in the complex plane of the constant ω [7, p. 220].

In experimental observations of turbulent flow in a pipe, however, it is found
that there appears to be a critical value of the Reynolds number beyond which a
flow becomes unstable. While the exact value of this critical Reynolds number is in
dispute, this fact has nevertheless led to a degree of dissatisfaction with linearized
theory as described above, and the characterization of stability just in terms of the
constant ω as the eigenvalue of a linearized system of equations for q1 and p1.
Trefethen et al. [33] have argued that even if the eigenvalue distribution suggests
that the overall solution should be stable, the prediction is only really valid for
arbitrarily large times t; initial conditions could cause solution modes to grow rapidly
at early times and act as a trigger for nonlinear instability, even if they are ultimately
stable as t → ∞. Another somewhat obvious criticism of linearized theory is that
perturbations to the background flow are assumed to be infinitesimally small, so that
the eigenvalue-based predictions concerning stability are only strictly valid as ε → 0.
But in a laboratory experiment, all perturbations must be finite in amplitude, so that
even if the zeroth-order solution is linearly stable, it may fail to be nonlinearly stable
to a small but finite-amplitude disturbance. Of course, such a criticism is always
applicable to any linearization of a nonlinear process, and might therefore be of less
immediate concern. Nevertheless, Cherubini et al. [5] have argued that there are
purely nonlinear routes to instability in Navier–Stokes flows. It is known too that
nonlinear finite-amplitude modes may also de-stabilize channel flows of visco-elastic
fluids (Morozov and van Saarloos, [18]). Eckhardt [8, 9] has also indicated that the
generation of turbulence might proceed primarily through nonlinear mechanisms, and
Sano and Tamai [28] identify a “universal” route to turbulence that is characterized
by the appearance of intermittent turbulent “spots” in the flow. In fact, Waleffe [36]
had already shown numerically that the Navier–Stokes equations were capable of
supporting coherent spatio-temporal structures in channel flow, which he identified
as hallmarks of turbulence.

These criticisms of traditional stability theory are doubtless valid, and must affect
the transition to unstable flow behaviour in Navier–Stokes flows. In a recent paper,
Forbes [10] has also examined the consequences of replacing the Navier–Stokes
equation with a slightly more general model of viscous fluid flow. After all, Navier–
Stokes theory is predicated on the assumption that viscous strain rates are small enough
that the constitutive law between the stress tensor T and strain-rate tensor D can be
assumed to be purely linear, of the form T = −pI + 2µD, in which I is the identity
matrix, p is the fluid pressure and µ is its dynamic viscosity. This assumption is
equivalent to Hooke’s law in solid mechanics, and must be questionable for turbulent
flows, which are characterized precisely by the development of large strain rates
due to a high degree of local vorticity. Forbes [10] argued that the large strain
rates encountered at small scales would mean that nonlinear terms in the constitutive
relation between stress and strain rate could no longer be ignored in turbulent flows.
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This turns out to be consistent with the recent experimental results by Pelton et al. [21],
who demonstrated that high-frequency vibrations at small length scales (perhaps
comparable to Kolmogorov length scales) elicited a non-Newtonian response, even
in “simple” fluids. Forbes [10] considered a more general constitutive law of the form
T = −pI + f

(
D
)
, in which f (x) is an analytic function of its argument. Since the strain-

rate tensor D is a (3 × 3) matrix, Forbes argued that the function f (x) only needed to
contain a quadratically nonlinear term, so that f (D) = 2µD + 2τD2 without loss of
generality. This results in the fluid being considered as a more general Stokes fluid
(see Aris [2, Section 6.2]). The simplest description possible assumes that the two
viscosities µ and τmay be assumed to be constants; then the Navier–Stokes description
of the fluid behaviour is replaced by a Reiner–Rivlin equation, pioneered by Reiner
[23] and Rivlin [25]. In fact, Rivlin [26] himself may have seen this equation as a
means of describing turbulence. However, as indicated forcefully by Aris [2, p. 119],
Reiner–Rivlin equations are extremely complicated, to the extent that serious analysis
would appear impossible without sophisticated computer software.

Forbes [10] undertook a (semi-numerical) stability analysis of planar Poiseuille flow
between two parallel plates, driven by a pressure gradient, and proposed a new possible
explanation for the transition from laminar to turbulent flow. His stability analysis
showed that for Reiner–Rivlin fluids the development of flow instability could occur
in a very different manner to the usual situation for Navier–Stokes flow, in which
instability arises when just a single eigenvalue ω develops an imaginary part that
becomes positive, as in the celebrated calculations of Orszag [19]. The Reiner–Rivlin
system reduces to the Navier–Stokes equations when the nonlinear viscosity coefficient
τ is zero, and so of course the results then are identical. However, as τ increases, it is
found that there is a critical value at which an entire line of eigenvalues in the complex
ω-plane develop positive imaginary parts, so that the instability is now caused by
very many eigenmodes, rather than just a single one. Furthermore, the real parts of
these eigenvalues are not rational multiples of one another, with the result that, in this
linearized theory, the solution would consist of an unstable quasi-periodic orbit of very
high dimension. Nonlinear effects are then most likely to result in a cascade to a very
high-dimensional chaotic state through a Ruelle–Takens–Newhouse bifurcation (see
Thompson and Stewart [32, p. 196]). Forbes [10] conjectured this to be the origin of
true fluid turbulence. Forbes also showed this to be a fundamentally three-dimensional
effect, since he proved a theorem that the Reiner–Rivlin equation reduces exactly to
Navier–Stokes behaviour for two-dimensional (planar) flows, for which this type of
transition to instability cannot occur. In a later paper, Forbes [11] considered Reiner–
Rivlin–Couette flow, in which a layer of fluid between parallel plates is caused to
move by the movement of the plates. Qualitatively similar behaviour was encountered
there also, and in this particularly simple geometry, Forbes [11] was able to carry out
an asymptotic analysis for fluids dominated by the nonlinear viscous behaviour, and
confirm analytically some features of the numerical solutions.

The destabilizing influence of nonlinear viscous effects is already known for some
non-Newtonian visco-elastic fluids. What appears to be fully developed turbulence in
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certain polymer fluids, but at zero Reynolds number, has been observed experimentally
by Larson [16]. Strong nonlinear instabilities may arise in visco-elastic fluids, and
are discussed by Pan et al. [20] and Samanta et al. [27]. They may give rise to
“elasto-inertial turbulence”, caused by the interaction of the linear and nonlinear
viscous effects in the Reiner–Rivlin equation. By considering that turbulence might
be a weakly non-Newtonian effect, Forbes [10] suggested the possibility that some
of these more exotic instances of visco-elastic turbulence might be part of the same
mathematical solution branch as the more familiar fluid turbulence in high-speed
fluids. If so, the only major difference between them would lie in the details of the
material nonlinearity of the fluid in question, such as that measured by the nonlinear
viscosity coefficient τ discussed above and in Section 2.

The present paper continues the initial investigation of Forbes [10], and considers
Poiseuille flow of a Reiner–Rivlin fluid in a circular pipe, under a pressure gradient.
In addition, the pipe itself may rotate about its own axis. This circular cylindrical
geometry poses additional difficulties not encountered by Forbes [10], and the Reiner–
Rivlin equations in this more complicated case are derived in Section 2. These
equations are linearized about the basic Poiseuille–Couette flow in Section 3, to
give a complicated set of linear differential equations analogous to the famous
Orr–Sommerfeld equation discussed by Drazin and Reid [7]. The complexity of
these equations, coupled with the additional difficulty associated with coordinate
singularities on the axis r = 0 of the pipe, make the classical linear stability analysis of
this system almost overwhelmingly complicated. After considerable experimentation,
we have developed a matrix-based approach to this problem, combined with a
particular spectral expansion in Bessel functions. This new numerical scheme is
described in Section 4. Results are presented in Section 5, and a discussion in Section 6
concludes the paper.

2. The governing equations in cylindrical coordinates
2.1. Basic equations Consider an incompressible viscous Stokesian fluid of fixed
density ρ. In cylindrical polar coordinates, its velocity vector is denoted q = uer +

veθ + wez. The usual relations apply between these cylindrical coordinates (r, θ, z) and
the Cartesian system (x, y, z), so that

x = r cos θ, y = r sin θ, z = z.

The unit vectors {er, eθ, ez} are written at each point in terms of the corresponding basis
vectors {i, j,k} in Cartesian coordinates as

er = cos θi + sin θj,
eθ = −sin θi + cos θj,
ez = k,

and an important relation between the first two vectors in the cylindrical system is
provided by the result

∂er

∂θ
= eθ and

∂eθ
∂θ

= −er. (2.1)
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Since the fluid is incompressible, its velocity vector q satisfies the continuity
equation divq = 0, which expressed in full gives

1
r
∂(ru)
∂r

+
1
r
∂v
∂θ

+
∂w
∂z

= 0. (2.2)

Forbes [10, 11] has recently suggested that the transition from laminar to turbulent
flow may not be a consequence of the Navier–Stokes equations alone, but rather may
depend on the additional vorticity available from a more complex fluid model that
allows some degree of non-Newtonian behaviour. Arguably, the simplest such system
is a Reiner–Rivlin equation of the form

∂q
∂t

+ (q · ∇)q +
1
ρ
∇p = f +

µ

ρ
∇2q +

2τ
ρ

div(D2). (2.3)

Here, the fluid density is ρ and its usual dynamic viscosity is µ, as for the Navier–
Stokes equation (see Batchelor [3, p. 147]), but now there is a second viscosity
coefficient τ which is the coefficient of the non-Newtonian stress term. A derivation
of this equation is given in the book by Aris [2] and the article by Forbes [10]. The
pressure is p and the vector f represents the body force per mass acting on each fluid
particle, whereas the (3 × 3) matrix

D = 1
2 [(∇q) + (∇q)T ] (2.4)

is the strain-rate tensor. It turns out that equation (2.3) is a reasonably general
description of the conservation of linear momentum for a non-Newtonian fluid without
memory effects, for which the stress tensor T can be written as an analytic function
of the rate-of-strain tensor D in equation (2.4). This is because any such nonlinear
relation of the form T = f (D), in which the function f can be represented by a power
series, can equivalently be written as a linear combination of the identity matrix and
the first two powers D and D2 only, by virtue of the Cayley–Hamilton theorem (see
Harman et al. [13, p. 183]).

2.2. Expression in cylindrical coordinates Even in Cartesian coordinates, the
Reiner–Rivlin type equation (2.3) is not easy to write out in full (indeed, the text by
Aris [2, p. 119] refers to the “appalling” complexity of the system). The task is even
more difficult in cylindrical polar coordinates, because the derivatives of the basis
vectors in equation (2.1) must also be taken into account, and care is required. Thus
the dyadic tensor ∇q in equation (2.4) becomes

∇q =
∂q
∂r

er +
1
r
∂q
∂θ

eθ +
∂q
∂z

ez,

and the indicated derivatives involve both the velocity components and the basis
vectors themselves. After some algebra, the (symmetric) strain-rate tensor (2.4) may
be written as

D = Drrer ⊗ er + Dθreθ ⊗ er + Dzrez ⊗ er

+ Dθrer ⊗ eθ + Dθθeθ ⊗ eθ + Dzθez ⊗ eθ
+ Dzrer ⊗ ez + Dzθeθ ⊗ ez + Dzzez ⊗ ez. (2.5)
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The six independent components of this tensor are

Drr =
∂u
∂r
, Dθr =

1
2

(
∂v
∂r
−

v
r

+
1
r
∂u
∂θ

)
,

Dzr =
1
2

(
∂w
∂r

+
∂u
∂z

)
, Dθθ =

1
r

(
∂v
∂θ

+ u
)
,

Dzθ =
1
2

(
∂v
∂z

+
1
r
∂w
∂θ

)
, Dzz =

∂w
∂z
,

(2.6)

and outer products between two vectors are denoted using the symbol ⊗ in equation
(2.5), following the notation of Kelly [14]. This outer product is itself a rank-one
matrix, and is equivalent to the operation a ⊗ b = abT in matrix algebra.

It is convenient to denote the symmetric quadratic matrix product in (2.3) as Q = D2

and its six independent components are

Qrr = D2
rr + D2

θr + D2
zr,

Qθr = DθrDrr + DθθDθr + DzθDzr,
Qzr = DzrDrr + DzθDθr + DzzDzr,
Qθθ = D2

θr + D2
θθ + D2

zθ,
Qzθ = DzrDθr + DzθDθθ + DzzDzθ,
Qzz = D2

zr + D2
zθ + D2

zz.

(2.7)

The divergence of this tensor Q is now needed for use in the Reiner–Rivlin equation
(2.3), differentiating also the unit vectors in the outer products er ⊗ er and so on, using
equation (2.1). After a considerable amount of algebra, the three components of the
(vector) momentum equation (2.3) are obtained in their final forms

∂u
∂t

+ u
∂u
∂r

+
v
r
∂u
∂θ
−

v2

r
+ w

∂u
∂z

+
1
ρ

∂p
∂r

= fR +
µ

ρ

[
∂2u
∂r2 +

1
r
∂u
∂r

+
1
r2

∂2u
∂θ2 +

∂2u
∂z2 −

u
r2 −

2
r2

∂v
∂θ

]
+

2τ
ρ

[
∂Qrr

∂r
+

Qrr

r
+

1
r
∂Qθr

∂θ
−

Qθθ

r
+
∂Qzr

∂z

]
(2.8)

for the r-component of momentum conservation,

∂v
∂t

+ u
∂v
∂r

+
v
r
∂v
∂θ

+
uv
r

+ w
∂v
∂z

+
1
ρr
∂p
∂θ

= fΘ +
µ

ρ

[
∂2v
∂r2 +

1
r
∂v
∂r

+
1
r2

∂2v
∂θ2 +

∂2v
∂z2 −

v
r2 +

2
r2

∂u
∂θ

]
+

2τ
ρ

[
∂Qθr

∂r
+ 2

Qθr

r
+

1
r
∂Qθθ

∂θ
+
∂Qzθ

∂z

]
(2.9)
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Figure 1. Schematic diagram of Poiseuille–Couette flow in a rotating cylinder.

for the azimuthal θ-component, and finally

∂w
∂t

+ u
∂w
∂r

+
v
r
∂w
∂θ

+ w
∂w
∂z

+
1
ρ

∂p
∂z

= fZ +
µ

ρ

[
∂2w
∂r2 +

1
r
∂w
∂r

+
1
r2

∂2w
∂θ2 +

∂2w
∂z2

]
+

2τ
ρ

[
∂Qzr

∂r
+

Qzr

r
+

1
r
∂Qzθ

∂θ
+
∂Qzz

∂z

]
(2.10)

for the z-component of momentum conservation. The convective and diffusive terms
appearing in (2.8)–(2.10) are given by Batchelor [3, p. 602], and the body force
per mass vector has components fR , fΘ and fZ in the three coordinate directions.
A Reiner–Rivlin-type flow is therefore a solution to the coupled system of equations
(2.2), (2.8)–(2.10), subject to appropriate boundary conditions. In this paper, attention
is focussed on flow in a circular pipe, and the aim is to study the possible transition to
turbulent flow as a result of small perturbations to a steady-state solution.

2.3. Poiseuille–Couette flow Consider now the situation of classical Poiseuille
flow, in which a pipe of radius a is positioned with the z-axis along its centre, and
fluid is driven through it by an applied pressure gradient ∂p/∂z = −G. Body forces are
ignored. In addition, the pipe rotates with constant speed V0 about the z-axis, in the
azimuthal direction. A diagram of the flow configuration is sketched in Figure 1.

The flow is assumed to be steady, with no variation along the pipe and no
dependence on the azimuthal angle θ. The continuity equation (2.2) then shows that
the only solution with bounded radial velocity component u on the z-axis (r = 0) is
simply u = 0. The axial momentum component (2.10) of the Reiner–Rivlin equation
gives the classical result

w0(r) =
G
4µ

(a2 − r2) (2.11)

for the fluid speed along the z-axis. This is Poiseuille flow (see Batchelor [3, p. 180]),
and it satisfies the no-slip boundary condition
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[9] Pipe flow and transition to turbulence 9

w = 0 on r = a (2.12)

at the edge of the pipe.
The azimuthal component (2.9) of the momentum equation independently permits

the solution
v0(r) =

V0

a
r (2.13)

for the fluid speed in the θ-direction. The no-slip boundary condition in this case results
in the requirement

v = V0 on r = a, (2.14)

which is satisfied by the classical Couette flow (2.13).
Finally, the radial momentum equation (2.8) in this case shows that the pressure

must take the form

p0(r, z) = −Gz +
1
2
ρ
[(V0

a

)2
+

3
8
τ

ρ

(G
µ

)2]
r2. (2.15)

As for the plane Poiseuille flow problem discussed in Forbes [10], it is seen here that
the two velocity components in (2.11) and (2.13) are identical to those predicted by the
Navier–Stokes equation for this same situation. However, the pressure is not. There is
an additional term in equation (2.15) proportional to r2, and it is due to the additional
coefficient τ of the non-Newtonian viscosity. This term persists in the absence of the
rotation of the pipe (V0 = 0), and so the uni-directional Poiseuille flow (2.11) might
be able to be used viscometrically, in the sense outlined by Shaqfeh [29], as a means
to measure the non-Newtonian coefficient τ through careful measurement of the wall
pressure.

2.4. Planar flows In these cylindrical coordinates, planar two-dimensional flows
are obtained when the axial velocity component is zero, w = 0, there is no axial
dependence, ∂/∂z ≡ 0, and no force component exists in that direction, fZ = 0. It then
follows from the continuity equation (2.2) that

Dθθ = −
∂u
∂r

= −Drr

in the components of the strain-rate tensor (2.6). As a result, the only nonzero
components of the quadratic tensor Q in equation (2.7) are

Qθθ = Qrr = D2
θr + D2

θθ.

In this case, the axial component (2.10) of the momentum equation is satisfied
identically, and the radial and azimuthal components (2.8) and (2.9) reduce to

∂u
∂t

+ (q · ∇2)u −
v2

r
+

1
ρ

∂

∂r
(p − 2τQrr) = fR +

µ

ρ

[
∇2

2u −
u
r2 −

2
r2

∂v
∂θ

]
,

∂v
∂t

+ (q · ∇2)v +
uv
r

+
1
ρr

∂

∂θ
(p − 2τQrr) = fΘ +

µ

ρ

[
∇2

2v −
v
r2 +

2
r2

∂u
∂θ

]
,

(2.16)
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10 L. K. Forbes and M. A. Brideson [10]

in which the symbols ∇2 and ∇2
2 are the planar gradient and Laplacian operators,

respectively.
Equation (2.16) is precisely the two-dimensional Navier–Stokes equation in polar

coordinates, as given by Batchelor [3, p. 603], except that the pressure is replaced with
the effective pressure

Πeff = p − 2τQrr.

This confirms Forbes’ [10] theorem that the Reiner–Rivlin equation (2.3) in two-
dimensional flow reduces to the Navier–Stokes equation, but with an altered flow-
dependent effective pressure. This, in turn, shows that Squire’s theorem for the Navier–
Stokes equation does not hold for Reiner–Rivlin type flows; Squire [31] proved
that in the Navier–Stokes equations linearized about a base flow, a general three-
dimensional perturbation could be regarded as a planar perturbation, only with an
effective wavenumber made up from the two wavenumbers in orthogonal spatial
directions. As a result, every three-dimensional disturbance is bounded above by
an equivalent two-dimensional perturbation, so that planar flows define the general
stability characteristics. This ceases to be true for non-Newtonian flows governed by
an equation such as (2.3) since, while the two-dimensional form (2.16) is identical to
a Navier–Stokes flow, the fully three-dimensional case is not, and instead has sources
of instability and vorticity that are not equivalent to the corresponding Newtonian case
(with τ = 0).

2.5. Bi-streamfunction formulation The presence of the incompressible continuity
equation (2.2) creates difficulties for the numerical solution of the system of governing
equations in Section 2.1, and it is, therefore, desirable to satisfy continuity exactly,
even in this fully three-dimensional flow.

For incompressible fluids, the continuity equation (2.2) is derived from divq = 0,
and this is solved exactly by any vector potential function A for which q = curlA.
While many forms are possible for the vector potential, in the present case with
cylindrical coordinates it is sufficient to define two streamfunctions Φ(r, θ, z, t) and
Ψ(r, θ, z, t) and take A = Φeθ + Ψez. Then the three velocity components u, v and w in
the radial, azimuthal and axial directions, respectively, may be expressed as

u =
1
r
∂Ψ

∂θ
−
∂Φ

∂z
, v = −

∂Ψ

∂r
, w =

1
r
∂(rΦ)
∂r

(2.17)

without any essential loss of generality. Thus, the three velocity components may be
determined using only the two functions Φ and Ψ, and the relations (2.17) guarantee
that (2.2) is satisfied as an identity. The three components of the Reiner–Rivlin
equation (2.3) may thus be regarded as equations for the three unknown functions
Φ, Ψ and the pressure p.

3. The linearized equations

In this paper, attention is focussed on the problem of Poiseuille–Couette flow in a
circular rotating pipe, as illustrated in Figure 1. This requires solving the system of
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equations (2.8)–(2.10) in cylindrical polar coordinates for the two streamfunctions Φ

and Ψ and the pressure p. A small perturbation to the solution in Section 2.3 is now
considered, by expanding the velocity components and pressure in the form

u(r, z, θ, t) = εu1(r, z, θ, t) + O(ε2),
v(r, z, θ, t) = v0(r) + εv1(r, z, θ, t) + O(ε2),
w(r, z, θ, t) = w0(r) + εw1(r, z, θ, t) + O(ε2),
p(r, z, θ, t) = p0(r, z) + εp1(r, z, θ, t) + O(ε2).

(3.1)

Here, the base flow described by functions v0, w0 and p0 is as given in equations (2.11),
(2.13) and (2.15), respectively. As may be anticipated from Section 2.4 and the recent
papers by Forbes [10, 11], fully three-dimensional flow will be needed in order to see
the differences with Navier–Stokes theory, and this condition is met by the choice (3.1)
for the linearized problem.

These forms (3.1) are substituted into the expressions (2.6) for the elements of the
strain-rate tensor D, the components (2.7) of the quadratic tensor Q and the governing
continuity and momentum equations, and terms retained only to first order in the small
parameter ε. This results in a system of four linear partial differential equations for the
four perturbation functions u1, v1, w1 and p1 in equations (3.1), although the equations
are lengthy, and so are not presented here. Following standard techniques such as those
outlined by Drazin and Reid [7, p. 128], these functions are now further assumed to be
of the Tollmien–Schlichting forms

u1(r, z, θ, t) = Ũ1(r) exp[i(mθ + kz − ωt)],

v1(r, z, θ, t) = Ṽ1(r) exp[i(mθ + kz − ωt)],

w1(r, z, θ, t) = W̃1(r) exp[i(mθ + kz − ωt)],

p1(r, z, θ, t) = P̃1(r) exp[i(mθ + kz − ωt)].

(3.2)

The streamwise wavenumber k is related to the inverse of the wavelength of a
perturbation down the pipe, in the axial z-direction. The quantity m essentially gives
the mode number of disturbances in the azimuthal θ-coordinate, in the direction of
rotation of the pipe. Since a unique value of the solution functions (3.2) is needed
at each point, they must be 2π-periodic in θ, and therefore m must be an integer.
The final constant ω in these expressions is, in general, a complex number of the
form ω = ωR + iωI , and its value must be calculated from the governing equations
and their boundary conditions, as an eigenvalue of the problem. Equations (3.2) show
that disturbances grow with time like exp (ωIt), and thus the imaginary part ωI of the
eigenvalue ω determines stability. The perturbations (3.2) will decay, if ωI < 0 so that
the Poiseuille–Couette flow in Section 2.3 will be stable; however, if ωI > 0 then the
perturbations (3.2) in linearized theory will grow exponentially and the underlying
flow will therefore be unstable.

The continuity equation (2.2) gives rise to the differential equation

Ũ′1 +
1
r

Ũ1 +
im
r

Ṽ1 + ikW̃1 = 0 (3.3)
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12 L. K. Forbes and M. A. Brideson [12]

with the dash denoting differentiation with respect to r. It follows from (2.17) that
this linearized continuity condition may be satisfied identically using two linearized
streamfunctions Φ̃1(r) and Ψ̃1(r) for which

Ũ1 =
im
r

Ψ̃1 − ikΦ̃1, Ṽ1 = −Ψ̃′1, W̃1 = Φ̃′1 +
1
r

Φ̃1. (3.4)

Now the three components (2.8)–(2.10) of the Reiner–Rivlin momentum equation
are likewise linearized, using the expansions (3.1) and the representations (3.2). The
azimuthal component (2.9) when linearized may be expressed formally as

im
r

1
ρ

P̃1 = iωṼ1 + T(r), (3.5)

in which the function T(r) contains all the viscous and convective terms. Similarly, the
linearized radial momentum equation derived from (2.8) takes the form

−iωŨ1 +
1
ρ

P̃′1 = R(r), (3.6)

and the axial momentum component (2.10) of the Reiner–Rivlin equation linearizes to

−iωW̃1 + ik
1
ρ

P̃1 = Z(r). (3.7)

The three functions T, R and Z are lengthy complicated expressions which, for
completeness, are presented in the Appendix A. These three relations (3.5)–(3.7) are
the equivalent of the Orr–Sommerfeld equation in more classical stability analyses of
the Navier–Stokes equation (see Drazin and Reid [7, p. 156]).

4. Numerical solution of the linearized system

The structure of the linearized equations (3.5)–(3.7) permits a spectral series for the
two streamfunction variables Φ̃1 and Ψ̃1 and the reduced pressure variable P̃1. We have
experimented with several representations for these functions, and have chosen a form
which reduces numerical ill-conditioning, and which is consistent with the symmetries
in the linearized system (3.5)–(3.7). In addition, the spectral representation must be
capable of coping with the coordinate singularity on the z-axis r = 0. Accordingly, the
three functions are formally expressed as

Ψ̃1(r) =

∞∑
n=1

BnJm(βmnr),

Φ̃1(r) =

∞∑
n=1

AnJm+1(αmnr),

1
ρ

P̃1(r) = r
∞∑

n=1

PnJ′m(βmnr).

(4.1)

In these expressions, the symbol Jν represents the Bessel function of the first kind
(see Abramowitz and Stegun [1]) of order ν, and J′ν is its derivative with respect to its
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argument. The integer m is the Fourier mode in the Tollmien–Schlichting form (3.2)
assumed for the solution. The constants

βmn =
jm,n
a

and αmn =
jm+1,n

a
(4.2)

also appear in the solution forms (4.1), in which the notation jν,n refers to the nth
positive zero of the Bessel function Jν. These series (4.1) may now be substituted into
the expressions (3.4) to give similar formulae for the three velocity components.

The no-slip conditions (2.12) and (2.14) at the rotating wall at radius r = a require
that Ũ1(a) = Ṽ1(a) = W̃1(a) = 0. The first of these conditions is identically satisfied by
the series (4.1), but the remaining two conditions are yet to be satisfied. In addition,
for numerical implementation, the series must be truncated at some finite order N. To
illustrate the method for imposing the nonslip condition Ṽ1(a) = 0, an extra term at
order N + 1 is initially retained in the series expression for Ṽ1(r), so that its numerical
form becomes

Ṽ1(r) = −

N∑
n=1

BnβmnJ′m(βmnr) − BN+1βm,N+1J′m(βm,N+1r).

This expression is set to zero at r = a, thus giving the equation

BN+1 = −

N∑
n=1

Bn
βmn

βm,N+1
Mmn

for the extra coefficient. Similarly, an extra term at order N + 1 is retained in the series
expression for W̃1, so that when the condition W̃1(a) = 0 is imposed at the edge r = a
of the pipe, it leads to the equation

AN+1 = −

N∑
n=1

An
αmn

αm,N+1
Nmn

for the additional term. In these expressions, and in later work, it is convenient to
define the constants

Mmn =
J′m(βmna)

J′m(βm,N+1a)
and Nmn =

J′m+1(αmna)
J′m+1(αm,N+1a)

, (4.3)

in which the constants βmn and αmn, n = 1, 2, . . . , N + 1, are as defined in equation
(4.2). As a consequence, every series expression involving coefficients Bmn and Amn is
extended in this way, so as to include the contribution at order N + 1 for consistency in
the numerical scheme. No such provisions are required for the pressure function P̃1(r)
in equation (4.1), so the series for this function is simply truncated after the term of
Nth order involving the coefficient PN .
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14 L. K. Forbes and M. A. Brideson [14]

It follows from equation (3.4) that the three velocity components have spectral
representations in the forms

Ũ1(r) =
im
r

N∑
n=1

BnT 1b
n − ik

N∑
n=1

AnT 1a
n ,

Ṽ1(r) = −

N∑
n=1

BnT 2b
n ,

W̃1(r) =

N∑
n=1

AnT 2a
n +

1
r

N∑
n=1

AnT 1a
n ,

(4.4)

in which it is convenient to define further intermediate functions

T 1b
n (r) = Jm(βmnr) −

βmn

βm,N+1
MmnJm(βm,N+1r),

T 1a
n (r) = Jm+1(αmnr),−

αmn

αm,N+1
NmnJm+1(αm,N+1r),

T 2b
n (r) = βmn[J′m(βmnr) −MmnJ′m(βm,N+1r)],

T 2a
n (r) = αmn[J′m+1(αmnr) − NmnJ′m+1(αm,N+1r)].

(4.5)

To begin, the θ-momentum equation (3.5) is spectrally decomposed, by multiplying
it by r2Jm(βm`r) and integrating over the domain 0 < r < a. This gives rise to the
expressions

im
N∑

n=1

CPT
`n Pn = −iω

N∑
n=1

βmn[CPT
`n −MmnCPT

`,N+1] Bn

+

∫ a

0
r2T(r)Jm(βm`r) dr, ` = 1, 2, . . . ,N. (4.6)

In this expression, the constants

CPT
`n =

∫ a

0
r2J′m(βmnr)Jm

(
βm`r

)
dr (4.7)

have been defined for convenience. Now the integral term on the right-hand side of
(4.6) is formally a linear combination of the unknown coefficients Bn and An in the
expressions (4.4), and so can be expressed as∫ a

0
r2T(r)Jm(βm`r) dr =

N∑
n=1

CBT
`n Bn +

N∑
n=1

CAT
`n An. (4.8)

In a more traditional stability analysis of this type, the azimuthal momentum equation
(3.5) would be used to eliminate the pressure function P̃1(r) from the remaining
two momentum equations (3.6) and (3.7) by substitution and cross-differentiation.
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This was the approach used by Forbes [10, 11]. However, the sheer volume of algebra
involved makes this a task that is almost impossible to complete without errors of
some type1. We used this traditional approach here at first, but extensive checking was
needed using a computer-algebra package, and even this could not prevent numerical
errors due to the ill-conditioning that arises from the addition and subtraction of
large quantities of nearly equal magnitude. However, the recognition (4.8) that the
integral term is able to be expressed in this way presents the opportunity to obtain the
coefficients CBT

`n and CAT
`n numerically, in a fashion that is easy to implement, accurate,

and avoids the cost of the formidable algebra otherwise incurred. To obtain these
coefficients numerically, all that is needed is an accurate method for evaluating the
integral on the left-hand side of equation (4.8); that is carried out here using Gaussian
quadrature with 2501 points and the routine written by von Winckel [35]. Then, all
the coefficients are set to zero except B j which is given the value 1. The velocity
components and their derivatives are then calculated from (4.4) and the function T is
evaluated and the integral computed. This immediately gives the coefficient CBT

` j for
j = 1, 2, . . . ,N + 1 and for each ` = 1, 2, . . . ,N. A similar procedure then yields CAT

` j .
This matrix-based approach transforms the system (4.6) into the matrix–vector

equation

imCPT P = −iωEBT B + CBT B + CAT A, (4.9)

in which the (N × N) matrix CPT is made up of components CPT
`n for `, n = 1, 2, . . . ,N

and the matrix EBT has components βmn[CPT
`n − MmnCPT

`N+1]. The remaining two
(N × N) matrices CBT and CAT have components CBT

` j and CAT
` j , respectively, computed

numerically from (4.8) as described above, and the (N × 1) vectors P, B and A are
made up, respectively, from the coefficients Pn, Bn and An, n = 1, 2, . . . , N, in the
representations (4.1).

The radial momentum equation (3.6) is subjected to a similar Fourier analysis. The
equation is multiplied by basis functions Jm(βm`r) and integrated over 0 < r < a. This
gives rise to equations

ωm
N∑

n=1

[
S BR
`n −

βmn

βm,N+1
MmnS BR

`,N+1

]
Bn − ωk

N∑
n=1

[
S AR
`n

−
αmn

αm,N+1
NmnS AR

`,N+1

]
An −

N∑
n=1

CPR
`n Pn

=

∫ a

0
R(r)Jm

(
βm`r

)
dr, ` = 1, 2, . . . ,N, (4.10)

1We recall here Aris’ [2] cri de coeur concerning the “appalling” complexity of even the Cartesian
form of these equations.
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in which it is convenient to define further intermediate constants

S BR
`n =

∫ a

0

1
r

Jm
(
βmnr

)
Jm(βm`r) dr,

S AR
`n =

∫ a

0
Jm+1(αmnr)Jm(βm`r) dr,

CPR
`n =

∫ a

0

[
(βmnr) −

m2

(βmnr)

]
Jm(βmnr)Jm(βm`r) dr.

(4.11)

Once again, it is possible to avoid the formidable volume of algebra involved in
isolating the coefficients Bn and An involved in this equation (4.10) using a numerical
matrix-based approach, in which it is recognized that∫ a

0
R(r)Jm(βm`r) dr =

N∑
n=1

CBR
`n Bn +

N∑
n=1

CAR
`n An, (4.12)

in which the desired coefficients can be determined by setting all the constants Bn and
An to 0, except one which is instead set to 1, and simply reading off its coefficient as the
value of the integral on the left-hand side of (4.12). This integral is evaluated to very
high accuracy using numerical quadrature. As a result, the vector–matrix equation

ωmEBRB − ωkEARA − CPRP = CBRB + CARA (4.13)

is determined from (4.10). In this expression, the (N × N) matrices CPR, CBR and CAR

are made up from the coefficients CPR
`n in equation (4.11) and CBR

`n and CAR
`n in equation

(4.12), respectively. The remaining two matrices EBR and EAR have components[
S BR
`n −

βmn

βm,N+1
MmnS BR

`,N+1

]
and

[
S AR
`n −

αmn

αm,N+1
NmnS AR

`,N+1

]
respectively, making further use of coefficients defined in (4.11).

In a similar manner, the axial momentum equation (3.7) is Fourier- analysed, by
multiplying it by rJm(βm`r) and integrating over 0 < r < a. This gives the further
system of equations

ω

N∑
n=1

[
S AZ
`n −

αmn

αm,N+1
NmnS AZ

`,N+1

]
An − k

N∑
n=1

CPT
`n Pn

= i
∫ a

0
rZ(r)Jm(βm`r) dr, ` = 1, 2, . . . ,N. (4.14)

In this expression, the coefficients CPT
`n are as defined previously in (4.7), and the

additional constants

S AZ
`m =

∫ a

0
[(αmnr)J′m+1(αmnr) + Jm+1(αmnr)]Jm(βm`r) dr (4.15)
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have also been defined. In addition, the integral term in (4.14) can be decomposed
numerically into an expression of the form∫ a

0
rZ(r)Jm(βm`r) dr =

N∑
n=1

CBZ
`n Bn +

N∑
n=1

CAZ
`n An, (4.16)

in which the sets of coefficients CBZ
`n and CAZ

`n are obtained using numerical quadrature
and the technique of making only one of the constants Bn, An at a time be nonzero,
with a value of 1, as described previously. Consequently, equation (4.14) yields the
matrix system

ωEAZA − kCPT P = iCBZB + iCAZA, (4.17)

in which the (N × N) matrix EAZ has components[
S AZ
`n −

αmn

αm,N+1
NmnS AZ

`,N+1

]
.

The three vector equations (4.9), (4.13) and (4.17) constitute a generalized
eigenvalue problem for an eigenvector consisting of components Pn, Bn and An
and eigenvalue ω. However, it is not suitable to be used in this form, because the
eigenvalue ω does not multiply the coefficients Pn in any of these equations, and
as a result, the system contains infinite eigenvalues, and is too ill-conditioned to
give meaningful results. This is a difficulty that is reasonably well understood in
the rheological literature, and is discussed by Valério et al. [34]. To overcome this
problem, the coefficients Pn must be solved for, using equation (4.9), and eliminated
from the remaining two equations (4.13) and (4.17). As discussed previously, this
would normally constitute a prohibitively large amount of algebra, but the numerical
matrix formulation used here makes the task reasonably straightforward. This gives
rise to the block matrix problem[

WBR WAR

WBZ WAZ

] [
B
A

]
= ω

[
XBR −kmEAR

kEBT mEAZ

] [
B
A

]
. (4.18)

This is a generalized eigenvalue problem, which, for given azimuthal vibration number
m and axial wavenumber k, is to be solved for the eigenvector [B A]T and the
eigenvalue ω. The mode is stable, if every eigenvalue ω has negative imaginary part.
In this expression (4.18), the additional (N × N) matrices needed are defined as

WBR = mCBR − iCPR[CPT ]−1CBT ,

WAR = mCAR − iCPR[CPT ]−1CAT ,

WBZ = imCBZ − ikCBT ,

WAZ = imCAZ − ikCAT ,

XBR = m2EBR + CPR[CPT ]−1EBT .

This generalized eigenvalue problem (4.18) is solved using the eigenvalue routine
eig in the numerical package MATLAB. The algorithm is run typically using 2501
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points distributed over the interval 0 < r/a < 1 and the number of modes N between
101 and 401. The integrals in equations (4.7), (4.8), (4.11), (4.12), (4.15) and (4.16)
are all carried out using Gauss–Legendre quadrature as implemented in the routine
by von Winckel [35], over the 2501 numerical points that the routine generates over
0 < r/a < 1.

5. Presentation of results

It is convenient in this presentation of results to nondimensionalize the equations in
the above analysis. In view of the complexity of these systems, details will not be given
here, except to indicate that all lengths are scaled with respect to the pipe radius a and
speeds are made dimensionless using the quantity βa2, in which β = G/(4µ) and G is
the pressure gradient driving the flow in equation (2.11). The constant µ is the usual
(Newtonian) dynamic viscosity. Consequently, there are five dimensionless constants
that describe the solutions to this problem. The first three are related to the details of
the fluid motion, and are

K = ak, Ω =
ω

βa
, γ =

1
βa

(V0

a

)
,

in which V0 is the azimuthal velocity component of the rotating pipe. The constant
K is the dimensionless wavenumber in the axial direction and γ is the rotation speed
parameter of the pipe. The dimensionless frequency Ω is the eigenvalue, for which the
imaginary part determines the stability of the mth rotation mode. There are a further
two dimensionless constants

1
Re

=
1
βa3

(
µ

ρ

)
,

1
F

=
4
a2

(
τ

ρ

)
which describe the properties of the material. The constant Re is a Reynolds number
based on the Newtonian viscosity µ, the characteristic speed at the centre of the pipe
due to the imposed pressure gradient, and the radius of the pipe. The second parameter
F is a dimensionless measure of the effect of the second coefficient τ of nonlinear
viscosity, and was introduced by Forbes [10]. It would instead have been possible
to use the Weissenberg or Deborah numbers (see Poole [22]), but the parameter F
is preferred here, because it is independent of the Newtonian viscosity coefficient
µ. The two material extremes in the Reiner–Rivlin model (2.3) are therefore F = ∞

representing a purely Newtonian flow described by the Navier–Stokes equation, and
Re =∞ which corresponds to a fluid dominated by nonlinear viscosity.

Figure 2 shows the eigenvalues computed for the purely Newtonian flow 1/F = 0,
for the third azimuthal mode m = 3 at Reynolds number Re = 1000. The low mode
numbers K = m = 3 have been chosen in this instance to give behaviour that is very
similar to that shown by Drazin and Reid [7, p. 220]. This is a classically stable
flow, as is evident from the fact that all the computed eigenvalues lie in the half-
space Im{Ω} < 0. As a check on the accuracy of the method, eigenvalues have been
computed with N = 101 and N = 201 Fourier modes, and the agreement between the
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Figure 2. Eigenvalue distribution in the complex Ω-plane, for a purely Newtonian viscous flow (F =∞)
for Reynolds number Re = 1000, wavenumber K = 3, rotation rate γ = 1, at the third azimuthal mode
m = 3.

two sets of results over the region indicated is excellent. In the case N = 201 there
are additional eigenvalues that lie on the approximate vertical line Re{Ω} = 5, but
extending well below the region indicated in Figure 2. These additional eigenvalues
may be spurious, but since they are deeply embedded in the stable region Im{Ω} < 0,
they have no influence on the stability of the Reiner–Rivlin–Couette flow. In this
picture, the rotation rate has been set to γ = 1, although many other values for this
parameter have been tried. It is found that, at moderate values, γ has very little effect on
the location of the eigenvalues and therefore no major influence on stability, although
very large values of γ move the eigenvalues down the diagram somewhat, so making
the solution more stable. This is possibly to be expected on physical grounds, since
a flow dominated by rapid rotation about the central z-axis is more stable to small
disturbances.

The other extreme is illustrated in Figure 3. Here, the usual viscosity terms, with
coefficient µ in equations (3.5)–(3.7), are absent from the momentum equations, so
that the only remaining viscous term is the one involving τ, describing material
nonlinearity. For this infinite Reynolds number case, Re =∞, it is found that N = 201
Fourier modes are needed, to give sufficient accuracy for the eigenvalues Ω. As
described by Forbes [11], it is mostly only the eigenvalues closer to the real axis
that are reliable; while many occur with |Im{Ω}| large, they are mostly numerically
generated, since they vary with increasing number N of Fourier coefficients. This is
visible in Figure 3, where the numerical algorithm of Section 4 has been run both for
N = 201 and N = 401 Fourier modes. The two horizontal lines of eigenvalues, at about
Im{Ω} = ±1, are highly converged and represent genuine eigenmodes for the linearized
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Figure 3. Eigenvalue distribution in the complex Ω-plane, for a purely elastic viscous flow (Re =∞) for
nonlinear viscosity F = 100, wavenumber K = 3, rotation rate γ = 1, at the third azimuthal mode m = 3.

problem in Section 3. This is also true of a section of the two vertical lines at about
Re{Ω} = 5.6, where again the eigenvalues are highly converged and may even occur as
a continuum, although this is not certain.

The other main feature of note in Figure 3 is that the eigenvalues Ω appear to be
symmetrically placed about the real axis. This is, in fact, correct, and it leads to an
important result, which defines the role of the nonlinear viscous terms in the Reiner–
Rivlin equation (2.3). This is summarized in the following theorem.

Theorem 5.1. Poiseuille–Couette flow is always unstable for sufficiently large
Reynolds number.

Proof. This result follows at once from the fact that the eigenvalues ω of the linearized
system of equations (3.3), (3.5)–(3.7) with µ = 0 occur in complex conjugate pairs.
To see this, first take the complex conjugate of each of these equations, and then
observe that the original equations are recovered with new eigenvalue and new velocity
components (ω∗,U∗,V∗,W∗) defined by the relations

ω∗ = ω, U∗ = −Ũ1, V∗ = Ṽ1, W∗ = W̃1, P∗ = P̃1. (5.1)

Here, the overline ω, and so on, denotes the complex conjugate. Because the
momentum equations (3.5)–(3.7) with the additional functions (A.1)–(A.3), are
extremely lengthy, the proof of this remark will only be illustrated here for the simpler
case of the linearized continuity equation (3.3). The complex conjugate of the entire
equation becomes

Ũ′1 +
1
r

Ũ1 −
im
r

Ṽ1 − ikW̃1 = 0.
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Now making the transformations of variables indicated in equations (5.1) reduces this
to

U∗′ +
1
r

U∗ +
im
r

V∗ + ikW∗ = 0,

which is just the original continuity equation (3.3) in the new variables in equation
(5.1). Similar results may be shown in a straightforward manner for the three
momentum components (3.5)–(3.7), after substantial algebra. Thus, if ω is an
eigenvalue, then so is its complex conjugateω. Therefore, there are always eigenvalues
with Im{Ω} > 0 for Re =∞, so that the solution is always unstable. �

It follows from Theorem 5.1 that the additional nonlinear viscosity τ has a
destabilizing effect on the pipe flow. This is counteracted by the dynamic viscosity µ
which damps small disturbances due to its diffusive effect, as expected. When µ is large
(Reynolds number Re is small), the damping effect dominates and the flow is stable.
However, as µ decreases (Re increases), the eigenvalues move up towards the unstable
region Im{Ω} > 0, and for sufficiently small µ (large Re) elastic material nonlinearity
effects begin to dominate, and the distribution of eigenvalues becomes more similar
to that in Figure 3. Importantly in this Reiner–Rivlin model of fluid motion, for
sufficiently large Reynolds number, a very large number of eigenvalues moves into
the unstable region, so that the flow behaviour produced by this linearized problem
consists of an unstable quasi-periodic structure of very high dimension. This is the
situation regarded by Forbes [10, 11] as being representative of the transition to true
turbulence, since the re-introduction of even moderate nonlinearity would cause the
high-dimensional quasi-periodic structure to collapse into a high-dimensional chaotic
strange attractor, through the mechanism of Ruelle–Takens–Newhouse bifurcation
(Thompson and Stewart, [32, p. 196]).

Following Forbes [11], we have created a stability diagram in Figure 4, for wave
and mode numbers K = m = 20 and dimensionless rotation speed γ = 0.1. Similar
results have been generated for other modes, and the higher values K = m = 20 have
been chosen here somewhat arbitrarily for their more interesting eigenvalue patterns,
illustrated later. Different rotation speeds γ have also been investigated, but moderate
values, including zero, produce stability diagrams that are very similar to the one
shown here.

There are three zones illustrated in Figure 4, corresponding to three markedly
different mathematical structures. The first is the left-most region shaded darkly (green
online). In this zone, all the eigenvalues Ω have negative imaginary parts, so that the
overall solutions are stable for parameter values Re and F in this region. The central
lightly shaded (fawn online) region of parameter space is characterized by the fact that
a small number of eigenvalues Ω have ventured into the region of instability Im{Ω} > 0
in the complex eigenvalue plane, so that the solution is now weakly unstable to a small
number of Fourier modes in the representation (4.1). In the final unshaded region to
the right of Figure 4, marked “turbulent”, a very large number of eigenvalues has
crossed into the unstable region of the complex Ω-plane, so that the corresponding
solution involves an unstable quasi-periodic orbit of very high dimension. This is the
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Figure 4. Stability region in the (Re,F) parameter plane, for wavenumber K = 20, rotation rate γ = 0.1, at
mode number m = 20. The solutions are stable in the (green online) region on the left, unstable to a small
number of modes in the central (fawn online) region, and a high-dimensional quasi-periodic solution is
produced in the region marked “turbulent” on the right.

zone identified by Forbes [10] as leading to genuine turbulence, since nonlinearity in
the full system of equations would cause a chaotic attractor of very high dimension
to form. The two boundaries between these three zones are indicated with thin dark
lines in Figure 4, and were estimated by monitoring a large number of computer runs,
and estimating the approximate points of transition. This is necessarily only a crude
estimate by eye, and involves a certain degree of subjective value judgement as to what
represents a true solution of the type on one side of the boundary or the other. Thus
the sizes of the regions shown in Figure 4 are approximate only and therefore subject
to criticism, but they do at least give a qualitative understanding of the three behaviour
types possible in the linearized solution.

A further illustration of the numerical convergence of the eigenvalues is given in
Figure 5, for a case in which the Reynolds number Re and the nonlinear viscosity
parameter F are both finite. With N = 201 Fourier modes, the solution is highly
converged, at least for the significant eigenvalues at the top of the diagram, since
there is excellent agreement with the results with N = 401 eigenmodes. For this larger
number N = 401 of modes, there are additional eigenvalues that extend deeply into the
stable region Im{Ω} < 0 below the portion shown in Figure 5, similar to the situation
described for Figure 2. These, however, have no effect on stability and so are not of
primary interest.

To illustrate further the information encoded in Figure 4, we consider the horizontal
slice through Figure 4 at the value F = 600 of the dimensionless material nonlinearity
coefficient, at four different values of the Reynolds number Re. These four solutions
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Figure 5. Eigenvalue distribution in the complex Ω-plane, for a Reiner–Rivlin viscous flow with Reynolds
number Re = 10 000, nonlinear viscosity parameter F = 1000, wavenumber K = 20, rotation rate γ = 0.1,
at azimuthal mode number m = 20.

are presented in Figure 6. The first of these, for Re = 5000 in Figure 6(a), lies safely
within the dark (green online) region on the left of Figure 4, and so is stable. This
is immediately evident from Figure 6(a), since all the eigenvalues Ω lie in the stable
zone Im{Ω} < 0 below the (red online) arrow at the left of the diagram, similar to the
situation illustrated in Figure 5. Figure 6(b) shows the eigenvalue distribution for the
situation in which the Reynolds number has increased to the value Re = 11 000. At
about this value the solution first begins to become unstable, since a single eigenvalue
crosses the stability boundary Im{Ω} = 0 indicated with the arrow. This solution is
approximately on the boundary between the (green online) darkly shaded region and
the (fawn online) lightly shaded regions in Figure 4. As Reynolds number continues to
increase beyond this border value Re = 11 000 a few more eigenvalues cross into the
unstable zone Im{Ω} > 0, so that the solution contains a small number of modes that
grow reasonably slowly with time, and so are unstable.

The next solution illustrated in Figure 6(c) is for the smallest value of Reynolds
number Re = 30 000, at which an entire line of eigenvalues has crossed into the
unstable zone. It therefore represents a solution on about the second border in Figure 4,
between the middle lightly shaded (fawn online) region and the right-most unshaded
region labelled “turbulent”. It must be admitted frankly that the precise location of
this boundary is very debatable, since already there are many eigenvalues from that
upper branch that are in the unstable zone Im{Ω} > 0, and so it is possible that this
second border should perhaps be positioned at a lower Reynolds number. Somewhat
arbitrarily, we have taken the border between these two unstable solution zones in
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(a) (b)

(c) (d)

Figure 6. Eigenvalue distribution in the complex Ω-plane, for four different Reynolds numbers, with
wavenumber K = 20, rotation rate γ = 0.1, mode number m = 20 and nonlinear viscosity parameter
F = 600. Solutions are shown for Reynolds numbers (a) Re = 5000, (b) Re = 11 000, (c) Re = 30 000 and
(d) Re = 50 000. The (red online) arrow at the left of each set of diagrams shows the stability boundary
Im{Ω} = 0.
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Figure 7. Eigenvalue distribution in the complex Ω-plane, for a purely elastic viscous flow (Re = ∞)
for nonlinear viscosity F = 600, wavenumber K = 20, rotation rate γ = 0.1, at azimuthal mode number
m = 20.

Figure 4 to correspond to the lowest value of Re at which the entire upper branch
of eigenvalues first becomes unstable. It may be the case that this upper line of
eigenvalues is, in fact, a continuum although this so far remains uncertain. In any
event, the solution at Re = 30 000 in Figure 6(c) contains a very large number of
eigenvalues with positive imaginary parts and real parts that are noninteger multiples.
The (linearized) solution for this case therefore contains an unstable quasi-periodic
orbit of very high dimension; this is the situation identified by Forbes [10, 11] as
corresponding to true turbulence, particularly since the re-introduction of nonlinearity
would cause this solution to collapse onto a strange attractor of very high dimension.

The final picture Figure 6(d) in this series is for the case Re = 50 000. As is evident
from the diagram, the pattern of eigenvalues continues to move up into the unstable
zone, with increasing Reynolds number. The upper line of eigenvalues is embedded in
the region Im{Ω} > 0 and additional groups of them have also moved into this region
of the complex Ω-plane. This movement evidently continues as Re is increased, until
eventually the pattern of eigenvalues is dominated by a structure similar to that in
Figure 3, in which the eigenvalues are symmetrically located about the real axis, as
described in Theorem 5.1.

The eigenvalues for the infinite Reynolds number solution for the case K = m = 20
are shown in Figure 7. Obtaining accurate results for very large Reynolds numbers is
more difficult numerically for such large mode numbers K, m, and it is evident that the
eigenvalues even with N = 201 modes have not quite converged in some regions of the
complex Ω-plane. However, the convergence is excellent near the two corner regions
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at about Re{Ω} = 21, where the results for N = 201 and N = 401 are the same, at least
to three significant figures. The distribution of eigenvalues is symmetric about the real
axis, as proven in Theorem 5.1, which shows the destabilizing effect of the nonlinear
viscosity terms, as in Figure 3.

The eigenfunctions Ũ1(r), Ṽ1(r) and W̃1(r) in equations (3.2) vary greatly in shape,
depending on their corresponding eigenvalue Ω. A sample is shown in Figure 8, for the
case Re = 50 000 plotted in Figure 6(d). This eigenmode in Figure 8 has been computed
for the particular eigenvalue Ω = 8.8211 + 2.4042i, chosen somewhat arbitrarily. This
represents an unstable mode that grows exponentially in time (at least in the linearized
theory studied here) and in these diagrams, the real part of the eigenfunction shown
is plotted on the horizontal axis and the radius r is plotted vertically. For Ũ1(r) and
W̃1(r), the function and its first derivative are required to vanish at r = 0 and r = 1 (in
dimensionless coordinates) according to equations (4.4), and Ṽ1(r) must also vanish
at these boundaries. This behaviour is evident in Figure 8. It is interesting that the
function Ũ1(r) in Figure 8(a) is mostly focussed in a narrow cylinder near the centre
r = 0 of the pipe, whereas the dominant region of the function Ṽ1(r) in Figure 8(b)
occurs near about r = 0.8. The axial component W̃1(r) in Figure 8(c) is a combination
of these previous two, as expected from the linearized continuity equation (3.3).

As indicated previously, the rotation speed γ does not greatly affect the nature of
the solutions, although when very large it can have a stabilizing effect, as expected.
This is illustrated in Figure 9. Here, the parameters have the same values K = m = 20
and F = 600 as in Figure 6, and eigenvalues distributions are shown for the same two
Reynolds numbers Re = 30 000 and Re = 50 000 illustrated in Figures 6(c) and (d).
In Figure 9, however, the rotation speed has been increased very greatly to γ = 20.
The stabilizing effect is evident in Figure 9, since the pattern of eigenvalues has been
pulled down towards the bottom of the diagram in both cases. For the flow at Reynolds
number Re = 30 000, there are only a few discrete eigenvalues in the unstable zone
Im{Ω} > 0 rather than the very large number of them that occurred with γ = 0.1 in
Figure 6(c). Similarly, for the case Re = 50 000 the distribution of eigenvalues has been
moved down towards the stable zone, although there is still the line of eigenvalues
in the unstable zone Im{Ω} > 0, and these would again produce a high-dimensional
quasi-periodic orbit, and therefore genuinely turbulent flow would be expected when
nonlinear effects were taken into account.

To conclude this presentation of results, an eigenfunction is shown in Figure 10 for
Reynolds number Re = 50 000 at the large rotation speed γ = 20, as in Figure 9, with
all the other parameters unchanged. The particular eigenfunction shown here is for a
stable mode with eigenvalue Ω = 416.18 − 7.8276i, and has been chosen to illustrate an
interesting mode in which the disturbance is zero over most of the pipe, and apparently
only has compact support over the approximate interval 0.3 < r < 0.55. This represents
a cylindrical ring of fluid disturbance to the underlying Poiseuille–Couette flow in the
pipe, with no perturbation near the centre r = 0 or the wall r = 1 (in dimensionless
coordinates).
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Figure 8. An unstable eigenfunction for the case K = m = 20, F = 600, γ = 0.1 and Reynolds number
Re = 50 000, as illustrated in Figure 6(d). The particular eigenmode shown is for the eigenvalue Ω =

8.8211 + 2.4042i. The real parts of the expressions for the three velocity components are displayed in (a)
u, (b) v and (c) w.
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Figure 9. Eigenvalue distribution in the complex Ω-plane, for the two Reynolds numbers Re = 30 000 and
Re = 50 000, with K = m = 20, F = 600 as in Figure 6, except that the rotation rate is γ = 20. The (red
online) arrow at the left of the diagrams shows the stability boundary Im{Ω} = 0.

6. Conclusions

This paper has continued an investigation begun recently by Forbes [10] into the
details of simple flow of a Reiner–Rivlin fluid, and its stability. In particular, it
has been found that the pipe flow may become unstable at certain critical Reynolds
numbers, which depend upon the second nonlinear viscosity coefficient τ (or 1/F
in dimensionless variables). The instability may take one of two different structural
forms, mathematically; the first is the classical type in which a single mode develops
a positive growth rate, but the second involves a very large number – perhaps
even a continuum – of eigenvalues moving into the unstable zone, over a small
range of Reynolds numbers near some critical value. This second type produces
an unstable solution that contains a very high-dimensional quasi-periodic solution,
which in nonlinear theory is expected to produce a chaotic strange attractor of very
high dimension, through the mechanism of Ruelle–Takens–Newhouse bifurcation
(Thompson and Stewart, [32, p. 196]). It is suggested here, as in Forbes [10, 11] that
this is an important contributor to the transition from laminar to turbulent flow, since
under the high local rates of strain associated with turbulence, the linear Newtonian
hypothesis underlying Navier–Stokes theory may no longer be entirely correct. This is
consistent with the experimental findings of Pelton et al. [21]. As a result, some small
degree of non-Newtonian behaviour would occur, the simplest example of which is
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Figure 10. A stable eigenfunction for the case K = m = 20, Re = 50 000, F = 600 and rotation rate γ = 20,
as illustrated in Figure 9. The particular eigenmode shown is for the eigenvalue Ω = 416.18 − 7.8276i.
The real parts of the expressions for the three velocity components are displayed in (a) u, (b) v and (c) w.

modelled in the Reiner–Rivlin equations. Since this has a destabilizing effect on the
flow, it may be an important mechanism for triggering the onset of turbulence.
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Carrying out a classical linearized stability anaysis of a Reiner–Rivlin fluid is
algebraically extremely complicated in non-Cartesian geometry, and particularly when
coordinate singularities occur, such as at the centre line r = 0 of pipe flow in polar
coordinates, as discussed here. This has been managed here using spectral solution
forms, involving Bessel functions of the first kind. It has been found here that this
can easily give systems of equations that are so extremely ill-conditioned that they are
essentially unusable, and this was eventually overcome in the present paper using the
bi-streamfunction approach of Section 2.5 to prompt the appropriate representation
and spectral decomposition. Nevertheless, this results in algebraic systems that are
so complicated as to be overwhelming for a person attempting to manipulate them,
and errors can easily occur. We checked these systems by making extensive use of
a computer symbolic-manipulation language, but even this was difficult and error-
prone. However, as computers continue to become more sophisticated, it is easy to
imagine that the process of setting up and solving such difficult systems will become
more straightforward as software continues to develop. To overcome this problem here,
however, a new matrix-based approach to the equations was developed, and has proven
to be very successful.

The Reiner–Rivlin equations do possess linearized stability properties that agree at
least qualitatively with experimental observation. For a fixed value of the nonlinear
viscosity coefficient τ (1/F in dimensionless variables) pipe flow is stable for low
values of the Reynolds number Re. But there is a critical Reynolds number at which
a very large number of eigenvalues cross over into the unstable region in the complex
plane, creating a quasi-periodic orbit of very high dimension; this would be expected
to collapse onto a very high-dimensional chaotic attractor once nonlinear effects were
taken into account. From a practical point of view, this would mean that, as Reynolds
number was increased, the flow could be observed to make a transition from laminar
to turbulent behaviour over a moderately narrow band of Reynolds numbers. This
may account for experimental observations of transitional flows and seems worthy of
further study.

The material nonlinearity terms with coefficient τ in the Reiner–Rivlin equation
(2.3) have the effect of destabilizing the flow, and in some sense “compete” with
the usual viscous terms with dynamic viscosity coefficient µ in equation (2.3), which
act to stabilize the system. When material nonlinearity (non-Newtonian behaviour)
dominates, we proved in Theorem 5.1 that eigenvalues occur in complex conjugate
pairs, meaning that such flows must be unstable; the inclusion of nonlinear effects
would then be expected to generate “elasto-inertial turbulence” as described by
Samanta et al. [27]. (It is interesting to note that the transformations (5.1) were
first observed in the numerical results and only later verified analytically as here).
As suggested by Forbes [10], it may therefore be the case that there is a connection
between the regular type of turbulent behaviour commonly encountered in water or
air and the more exotic low-speed turbulence seen in polymer fluids (for example,
see Larson [16]), since both could possibly lie on the same or similar mathematical
solution branch.
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The results discussed here clearly present a great many further questions, which are
outside the scope of this present investigation, but seem worthy of future study. We
have begun initial work on whether the linearized Reiner–Rivlin equations are capable
of supporting an approximate form of the coherent structures found by Waleffe [36];
numerical work seems to confirm this, but much remains still to be done. The inclusion
of nonlinearity in flows such as that studied here is also of interest, and the possible
connection with elasto-inertial turbulence in highly non-Newtonian materials is a rich
avenue for further research.

Appendix A. Momentum equations

This appendix presents the full linearized momentum equations used in the text.
The azimuthal θ-momentum equation after linearization is given by equation (3.5),

in which the majority of the terms in the equation are encapsulated in the function

T(r) = −2v′0Ũ1 − imv′0Ṽ1 − ikw0(r)Ṽ1

+
µ

ρ

[ N∑
n=1

BnT 4b
n + k2

N∑
n=1

BnT 2b
n +

2mk
r2

N∑
n=1

AnT 1a
n

]
+

2τ
ρ

w′′0
[1
2

(
ikṼ1 +

im
r

W̃1

)
+

1
4

(
2ikrṼ ′1 − mkŨ1 + imW̃ ′1

)]
. (A.1)

The linearized r-momentum equation (3.6) for the radial coordinate similarly involves
the complicated function

R(r) = −imv′0Ũ1 + 2v′0Ṽ1 − ikw0(r)Ũ1 +
µ

ρ

[
−

im
r

N∑
n=1

BnT 3b
n −

im
r

k2
N∑

n=1

BnT 1b
n

+ ik
N∑

n=1

AnT 3a
n + ik

(
k2 −

2m
r2

) N∑
n=1

AnT 1a
n

]
+

2τ
ρ

w′′0
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W̃ ′1 + ikŨ1 −

1
4

(
mkṼ1 +

m2

r
W̃1

)
+

1
2

r
(
W̃ ′′

1 + 2ikŨ′1 − k2W̃1

)]
.

(A.2)

The final function involved in the axial z-momentum equation (3.7) is given by the
formula

Z(r) = −w′′0 rŨ1 − imv′0W̃1 − ikw0(r)W̃1 −
µ

ρ

[2m
r2

N∑
n=1

AnT 5a
n +

1
r

N∑
n=1

AnT 3a
n

+
k2

r

N∑
n=1

AnT 1a
n +

N∑
n=1

AnT 4a
n + k2

N∑
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AnT 2a
n

]
+

2τ
ρ
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[
Ũ′1 + ikW̃1

+
1
4

(
imṼ ′1 −

im
r

Ṽ1 −
m2

r
Ũ1

)
+

1
2

r
(
Ũ′′1 + 2ikW̃ ′1 − k2Ũ1

)]
. (A.3)
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The constant µ is the Newtonian coefficient of dynamic viscosity and τ is the second
viscosity coefficient in the non-Newtonian term, as in equation (2.3). The background
axial velocity component w0(r) is given by (2.11) and v0(r) is the azimuthal velocity
component (2.13).

In the expressions (A.1)–(A.3), the four functions T 1b
n , T 1a

n , T 2b
n and T 2a

n are already
given in equation (4.5) and the remaining such intermediate functions are

T 3b
n (r) = βmn[βmnJm(βmnr) − βm,N+1MmnJm(βm,N+1r)],

T 3a
n (r) = αmn[αmnJm+1(αmnr) − αm,N+1NmnJm+1(αm,N+1r)],

T 4b
n (r) = βmn[β2

mnJ′m(βmnr) − β2
m,N+1MmnJ′m(βm,N+1r)],

T 4a
n (r) = αmn[α2

mnJ′m+1(αmnr) − α2
m,N+1NmnJ′m+1(αm,N+1r)],

T 5a
n (r) = αmn[Jm+2(αmnr) − NmnJm+2(αm,N+1r)].

(A.4)

In the last expression in the system (A.4), a recurrence relation was used to obtain the
Bessel function Jm+2 , following Abramowitz and Stegun [1, p. 361]. The constants
Mmn and Nmn are as defined in equation (4.3) in the text. The first term on the right-
hand side of (A.3) is a consequence of the identity w′0(r) = w′′0 r, which follows at once
from Poiseuille flow (2.11).
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[27] D. Samanta, Y. Dubief, M. Holzner, C. Schäfer, A. N. Morozov, C. Wagner and B. Hof, “Elasto-
inertial turbulence”, Proc. Natl. Acad. Sci. USA 110 (2013) 10557–10562;
doi:10.1073/pnas.1219666110.

[28] M. Sano and K. Tamai, “A universal transition to turbulence in channel flow”, Nat. Phys. 12 (2016)
249–253; doi:10.1038/nphys3659.

[29] E. S. G. Shaqfeh, “Purely elastic instabilities in viscometric flows”, Annu. Rev. Fluid Mech. 28
(1996) 129–185; doi:10.1146/annurev.fl.28.010196.001021.

[30] C. G. Speziale, “On nonlinear K − ` and K − ε models of turbulence”, J. Fluid Mech. 178 (1987)
459–475; doi:10.1017/S0022112087001319.

[31] H. B. Squire, “On the stability for three-dimensional disturbances of viscous fluid flow between
parallel walls”, Proc. R. Soc. Lond. A 142 (1933) 621–628; doi:10.1098/rspa.1933.0193.

[32] J. M. T. Thompson and H. B. Stewart, Nonlinear dynamics and chaos (Wiley, New York, 1986).
[33] L. N. Trefethen, A. E. Trefethen, S. C. Reddy and T. A. Driscoll, “Hydrodynamic stability without

eigenvalues”, Science 261 (1993) 578–584; doi:10.1126/science.261.5121.578.

https://doi.org/10.1017/S1446181117000256 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000176
http://www.turbulence-online.com
http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/index.html
http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_III/index.html
https://doi.org/10.1017/S0022112010003617
https://doi.org/10.1038/35011172
https://doi.org/10.1088/0034-4885/58/10/001
https://doi.org/10.1103/PhysRevLett.95.024501
https://doi.org/10.1017/S0022112071002842
https://doi.org/10.1103/PhysRevLett.110.174502
https://doi.org/10.1103/PhysRevLett.111.244502
http://pcwww.liv.ac.uk/~robpoole/PAPERS/POOLE_45.pdf
http://www.jstor.org/stable/2371950
http://www.jstor.org/stable/90643
http://www.jstor.org/stable/97992
http://www.jstor.org/stable/43634450
https://doi.org/10.1073/pnas.1219666110
https://doi.org/10.1038/nphys3659
https://doi.org/10.1146/annurev.fl.28.010196.001021
https://doi.org/10.1017/S0022112087001319
https://doi.org/10.1098/rspa.1933.0193
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1017/S1446181117000256


34 L. K. Forbes and M. A. Brideson [34]
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