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SHARP INTEGRAL INEQUALITIES BASED ON
GENERAL EULER TWO-POINT FORMULAE
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Abstract

We consider a family of two-point quadrature formulae, using some Euler-type identities.
A number of inequalities, for functions whose derivatives are either functions of bounded
variation, Lipschitzian functions or fl-integrable functions, are proved.

1. Introduction

In the recent paper [5] the following two identities, named the extended Euler formulae,
have been proved. For n > 1 and every x e [0, 1]

• l

Jo
and

(1.2)
Jo

where T0(x) = 0 and

~~ (1-3)
k=\

for 1 < m < n, while

*»<*> = - -7 f B*n(x-t)df*-l\t),

R2
n(x) = - - f [B;(x - t) - Bn{x)]
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556 J. PeCaric, I. Peric and A. Vukelic [2]

Here, as in the rest of the paper, we write f0 g(t) d<p(t) to denote the Riemann-Stieltjes
integral with respect to a function <p : [0,1] -> OS of bounded variation, and/J g(t) dt
for the Riemann integral. The identities (1.1) and (1.2) extend the well-known formula
for the expansion of a function in Bernoulli polynomials [15, page 17]. They hold for
every function/ : [0, 1] -> OS such that/ '""" is a continuous function of bounded
variation on [0, 1]. The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are
the Bernoulli numbers, and Bk(t), k > 0, are periodic functions of period 1, related
to the Bernoulli polynomials as

B*k(t) = Bk(t), 0 < t < 1 and B*k(t + 1) = B*(t), t e K.

The Bernoulli polynomials Bk(t), k > 0, are uniquely determined by the following
identities:

B't(t) = kBt^t), * > 1 ;
B0(t) = l, Bk(t + 1) - Bk(t) = ktk~\ k>0.

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that B£(/) = 1 and B*(t) is a discontinuous function
with a jump of — 1 at each integer. It follows that Bk(\) = Bk(0) = Bk for k > 2, so
that Bk (/) are continuous functions for k > 2. We get

B*k'(t) = kB*k_l(t), * > 1 , (1.4)

for every t e K when k > 3, and for every t e K \ 1 when k = 1, 2. In this paper we
study, for each real number* e [0, 1/2], the general two-point quadrature formula

r 1
-[f(x)+f(l-x)] + E(f;,x), (1.5)

with E(f;x) being the remainder. This family of two-point quadrature formulae was
considered by Guessab and Schmeisser in [14] and they established sharp estimates for
the remainder under various regularity conditions. The aim of this paper is to establish
a general two-point formula (1.5) using identities (1.1)—(1.2) and to give various error
estimates for the quadrature rules based on such generalisations. In Section 2 we use
the extended Euler formulae to obtain two new integral identities. We call them the
general Euler two-point formulae. In Section 3, we prove a number of inequalities
which give error estimates for the general Euler two-point formulae for functions
whose derivatives are from the Lp -spaces, thus we extend the results from [14] and we
generalise the results from papers [6-8,16] and [17]. These inequalities are generally
sharp (in the case p = 1 the best possible). Special attention is devoted to the case
where we have some boundary conditions and in some cases we compare our estimates
with Fink's estimates ([13,14]).
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2. General Euler two-point formulae

For k > 1 and fixed x € [0, 1/2] define the functions Gx
k(t) and F£(t) as

G*(r) = B;(X -t) + B*k(l -x-t), t € 01

and F*(/) = G£(r) - .8*00, f € R, where

flt(x) = Bt(x) + flt(l - *), x g [0, 1/2], Jk > 1.

In particular, we get B^x) = 0, B2(x) = 2x2 - 2x + 1/3 and Bz(x) = 0. Also,
for Jfc > 2 we have Bk(x) = Gx

k{0), that is, F^{t) = G\(t) - Gx
k(0), k > 2, and

Fx(t) = Gx(t), t e l l . Obviously, Gx
k(t) and ^ ( r ) are periodic functions of period 1

and continuous for k >2.
Let / : [0, 1] -> OS be such that f(n~l) exists on [0, 1] for some n > 1. We

introduce the following notation for each x e [0, 1/2]:

D(x) = [f (x) + f (1 - x)]/2.

Further, we define %{x) = 0 and, for 1 < m < n, x e [0, 1/2],

where Tm(x) is given by (1.3). It is easy to see that

( t ° ] (2.1)
*=1

In the next theorem we establish two formulae which play a key role in this paper. We
call them the general Euler two-point formulae.

THEOREM 2.1. Let f : [0, 1] -» K be such that f(n~X) is a continuous function of
bounded variation on [0, I], for some n > 1. Then for each x e [0, 1/2]

Jo
(2.2)

Jo
and

r f(t)dt = D(x) - fa_,0c) + R2
n(f), (2.3)I

./o
where

R±V) = JTJ Gx
n(t)df <-»(», Rl(f) = ^-rf Fx(t)df^\t).

2{n\) Jo l{n\) Jo
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PROOF. Put x = x and x = 1 — x in formula (1.1) to get two new formulae. Then
multiply these new formulae by 1/2 and add. The result is formula (2.2). Formula
(2.3) is obtained from (1.2) by the same procedure.

REMARK 1. If in Theorem 2.1 we choose x = 0, 1/2, 1/3, 1/4 we get the Euler
trapezoid [6], the Euler midpoint [8], the Euler two-point Newton-Cotes [17] and the
Euler two-point Maclaurin formulae respectively.

By direct calculations for each x e [0, 1/2], we get

(2.4)

GUt) =

and

-2t,
-2r+l,
-2t-

2t2 +

2t2-

2t2-

2t2,

2t2-

2t2-

-2P
-2t3

-2r3

+6x2

1-2,

2 J C 2 -

2/ +
4t +

2t +
4t +

0<t<x;
x < t < 1 -

1 —x < t:

-2*+ 1/3,
2x2+l/3,
2x2-2x +

0<t
2x, x < t
2, 1 - J C

+ (-6x2 + 6x -
+ 3r2

+ 6/2

-6x

+ (-6x2 -
+(~6x2 +
+ 3,

-x;

< 1,

7/3

<x

< 1

< t

l)r,
l)r

6x

o<
JC <

- J C ;

< l

+ 3*2,

-7) r

r <

t <

X <

0

X

1

•*;
l -

r<

< t
< t

— X

- x;

1,

<x;

< 1 - J C ;

< t < 1.

(2.5)

(2.6)

(2.7)

We now will prove some properties of the functions Gx
k(t) and F£(t) defined above.

The Bernoulli polynomials are symmetric with respect to 1/2, (see [1]), that is,

(2.8)

Also, we have Bk{\) = Bk(0) = Bk, k > 2, 5,(1) = -B,(0) = 1/2 and Bv_x = 0,
j > 2. Therefore we get B2J-i(x) = 0,;' > 1 and Bv(x) = 2B2j(x), x e [0, 1/2].
Now, we have F^^it) = Gy_l(t)J > 1, and

Fy (0 = Gy (0 - h (*) = Gx
v (0 - 2B2j(x), x e [0, 1/2], j > 1. (2.9)

Further, the points 0 and 1 are the zeros of F^(t) = Gx
k(t) - Gx

k(0), k > 2, that is,
F/(0) = F/(l) = 0, k > 1. As we shall see below, 0 and 1 are the only zeros of
Flj(t) for; > 2 andx e [0, 1/2 - 1 / 2 ^ U (1/2V3, 1/2]. Next, setting / = 1/2
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in (2.8) we get Bk(l/2) = (-l)*B*(l/2), k > 1, which implies that fly., (1/2) = 0,
j > 1. Using the above formulae, we get F£_,(l/2) = Gx

2j_l(l/2) = 0, j > 1.
We shall see that 0, 1/2 and 1 are the only zeros of Fv_x(t) = Gx

2j_x(t), forj > 2

and* 6 [0, 1/2 - 1/2 V3~) U (l/2-s/3, 1/2]. Also, note that for* e [0, 1/2],; > 1,

Fy (1/2) = Gx
2j (1/2) - fl2, (*) = 2B2j (1/2 - x) - 2B2, (*). (2.10)

LEMMA 2.2. For k > 2 we have Gx
k{\ - t) = (-l)kGx

k(t), 0 < t < 1

PROOF. AS the functions B*k (t) are periodic with period 1 and continuous fork > 2,
similar to [6,8,16] and [17] we get these two identities.

Note that the identities established in Lemma 2.2 are valid for k = 1, too, except at
the points x and 1 — x of discontinuity of Fx(t) = G\(t).

LEMMA 2.3. Fork>2 and x e [0, 1/2 - 1 / 2 ^ U (1/2N/3, 1/2] the function
G\k_l(t) has no zeros in the interval (0, 1/2). For 0 < / < 1/2 the sign of this
function is determined by

(-I)*"1 G^_,(0 > 0, x € [0, 1/2 -

( - D * G W 0 > 0 . x 6 (1/2V3, 1/2].

PROOF. For it = 2, G3 (r) is given by (2.7) and it is easy to see that for 0 < / < 1/2,
Gx(t) < 0, x 6 [0,1/2 - 1/2V3) and G^(r) > 0, x e (1/2^3, 1/2]. Thus our
assertion is true for k = 2. Now, using a simple induction similar to that in [6,8,16]
and [17] we prove that G^_,(r) cannot have a zero inside the interval (0, 1/2). To
determine the sign of G^_,(r), note that Gx

2k_x(x) = B2*-i(l - 2x). We have [1,
23.1.14], (-l)*B2*-i(0 > 0, 0 < t < 1/2, which implies forx € [0, 1/2 -

( -D ' - 'G '^Cc) = (-l)*-'fl2*-i(l -2x) = (-l)*B2*_,(2x) > 0

and for* € (l/2>/3, 1/2]

( - D ' G ^ . t c ) = (-l)*fla-i(l - 2*) > 0,

which completes the proof.

COROLLARY 2.4. Fork > 2 and* € [0, 1/2 - 1/2^3) the functions (-l)*/%(r)
a/uf (— l)tG2^(f) are strictly increasing on the interval (0, 1/2) and strictly decreasing
on the interval (1/2, 1). Also, for x e (1/2^3, 1/2] the functions (-1)*"1 F^{t) and

https://doi.org/10.1017/S1446181100009676 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009676


560 J. Pe&iric, I. Peric and A. Vukelic [6]

(— I)*"1 Gx
u(t) are strictly increasing on the interval (0, 1/2), and strictly decreasing

on the interval (1/2, 1). Further, for k > 2, we have

and

max \F^(t)\ = 2\Bu{\/2-x) -

max \Gx
u{t)\ = 2max

PROOF. Using (1.4) we get [(-l)*F&(r)]' = [(-l)*<3*(0]' = 2*(-l)*-1G2 t_1«
- l ) * - 1 ^ . , ^ ) > OforO < t < 1/2 and x e [0, 1 /2-1/2^3) , by Lemma 2.3.

Thus (-l)kF^(t) and (-l)kGx
2k(t) are strictly increasing on the interval (0, 1/2).

Also ) byLemma2.2 ,wehaveFi ( l -0 - F^(t),0 < t < 1 and Gx
u(\-t) = Gx

u(t),
0 < t < I, which implies that (-l)kF^(t) and (-l)kGx

2k(t) are strictly decreasing
on the interval (1/2, 1). The proof of the second statement is similar. Further,
^2*(0) = F2k(l) = 0, which implies that 1^(01 achieves its maximum at t = 1/2,
that is, maxl6,o.,] \Fx

k(t)\ = |F£(1/2)| = 2\B2k(l/2 - x) - B2k(x)\. Also

max \Gx
2k(t)\ = max {|G^(0)|, |G^(1/2)|} = 2max{\B2k(x)\,

/6lO, 1)

which completes the proof.

COROLLARY 2.5. Fork > 2, andx e [0, 1/2 - 1/2 V3) U (1/2 V3, 1/2] we have

f \F2\_l(t)\dt= f \GX
U_X(

Jo Jo

Jo U

Fx
k_l(t)\dt= f |G2i_1W|Jr = d

Jo *
Also, we have

I \Gx
2k(

Jo

.'I and

k(t)\dt < 2\Bu(x)\ = 4\Bu(x)\.

PROOF. Using Lemmas 2.2-2.3 we get

2 l rx (,^12

2
, i-ijtv-/ - / ~2jtvJ)l = TI^2*(1 /2 — x) — /^(-Oli

which proves the first assertion. By Corollary 2.4 and because /^(O) = F^(l) = 0,
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F^(t) does not change its sign on the interval (0, 1). Therefore using (2.9) we get

%{t)\dt = f F^(t)dt = I [G^W-Bu
Jo Jo

= 1*2*001,

which proves the second assertion. Finally, we use (2.9) again and the triangle
inequality to obtain the third formula.

3. Inequalities related to the general Euler two-point formulae

In this section we use formulae established in Theorem 2.1 to prove a number of
inequalities using Lp norms for 1 < p < oo. These inequalities are generally sharp
(in the case p = 1 the best possible). Special attention is devoted to the case where
we have some boundary conditions and in some cases we compare our constants with
the Fink constants ([13,14]).

THEOREM 3.1. Assume (p, q) is a pair of conjugate exponents, 1 < p, q < oo.
Let | / (n ) |p : [0, 1] —*• Rbean R-integrable function for some n > 1. Then for every
x € [0, 1/2], we have

f(t)dt-D(x)+Tn_i(x)

i:f(t)dt-D(x)

<K(n,p,x)-\\fM\\p and (3.1)

</r(n,p,;c)-||/<n)||p, (3.2)

where
1/9

The constants K(n, p,x) and K*(n,p,x) are sharp for 1 < p < oo and the best
possible for p = 1.

PROOF. Applying the Holder inequality we have

i/q
• W l

= K(n,p,x)\\fin)\\p.
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Using the above inequality, from (2.3) we get estimate (3.1). In the same manner,
from (2.2) we get estimate (3.2). Now, we consider the optimality of K(n, p,x). We
shall find a function / such that

\ F*n(t)f
Mdt=( \F'n(t)\" dt) / \fw(t)\"dt) .

\Jo \Jo / \Jo /

For 1 < p < oo take / to be such that

\ (3.3)

where forp = oo we put/ ( n )(O = sgnFf(t). For constant K*(n,p, x) the proof of
sharpness is analogous. For/? = 1 we shall prove that

\fin\t)\dt (3.4)

is the best possible inequality. Suppose that |F*(t) \ attains its maximum at <b € (0, 1).
First, we assume that F^(t0) > 0. For £ small enough define//"""(O by

0, t < t0;

(t-to)/e, t e [to, to + s];

Then, for e small enough,

s:F;o)fr«)dt
to+e

Now, from inequality (3.4) we have

^ j ° F*{t) dt < F^to) j*+° l-dt = Fx
n{t0).

Since

l i m ^ y F*n(t)dt=Fx
n(t0),

the statement follows. If F*(tQ) < 0, then we take

//"-"(0 =
1, t < to;

- ( r - to - e)/e, t e [t0, to + e ] ; .

0, t > to + s

and the rest of the proof is the same as above. Proof of the best possibility of the
second inequality is similar.
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REMARK 2. Basically we have three types of estimates:

563

and

£

£

f(t)dt-D(x)+T2k(x)

1/<7 a1

2(2*

2(2*

l/<7 / / . I

(jf \faM\t)\»dt

In the following theorem we are interested in the sharpness of the above estimates
in the presence of boundary conditions.

THEOREM 3.2. Assume that (p, q) is a pair of conjugate exponents, 1 < p, q < oo
and k e N. Let f : [0, 1] —> K be a function such that we have boundary conditions
y (2.-0(0) = fai~])(l) for i = 1, . . . , *. Then for every x e [0, 1/2] and \fp-k)Y
R-integrable, we have

Lf(t)dt-D(x)
'/P

• (3.5)

For R-integrable we have

\l f(t)dt-D(x)

and for [f (2*+2)r|p R-integrable we have

(3.6)

If(t)dt-D(x)
jL\i.K-r^.y- v o / Vo /

(3.7)

Inequality (3.5) is sharp for p = 2 and inequalities (3.6) and (3.7) are sharp for
1 < p < oo and best possible for p = 1.
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PROOF. Inequality (3.5) is sharp since a function / for which we have equality in
(3.2) in the case p = 2, n = 2k is defined by fm(t) = GuO), so we can choose/
such that

_1

1

(2k + l)(2/t + 2)(2* + 3)
and generally

(2k + l)(2k + 2) • • • (4k — 2i + 1)

which gives /^'" ' '(O) = / ^ ' " " ( l ) = 0, i = 1, ... ,k. In relation to the sharpness
or the best possibility of inequality (3.6), notice first that approximation /0 / (t) dt ^
D(x) — T2k(x) is exact of order 2& + 1. Take any function / which is optimal for
inequality (3.1) in the case n = 2k + 1, 1 < p < oo. Set

2k

g(t) = f (0 + V a,t' =f(t) + a2kt
2k + a^-,?2*-1 + • • • + a2t

2 + axt.

We have g(2k~l)(t) = / ( 2*-"(r) + (2k)\a2kt + (2ik - l)!aa-i so

0 = g^-'^O) =/<2 i-1>(0) + (2k - DlajM.,,

0 = ^ " " ( l ) = / ( 2 i - 1 J ( l ) + (2k)\alk + (2k - I)\a2k-U

which gives a2k, a2*-i- Using g(2*~3) and conditions gak~i}(0) = 0 = g(2*~3)(l) we
analogously obtain a2k_2, a2k^ and so on. So the function g is also optimal for (3.1)
and satisfies the boundary conditions g°-'~X)(\) = gi2i~])(0), i = 1 , . . . , k. Inequality
(3.7) can be treated in the same way.

In the following we calculate the optimal constants in the cases p = 1, p = oo and
p=2.

COROLLARY 3.3. Let f : [0, 1] -»• K be given. Iff is L-Lipschitzian on [0, 1],
then for each x 6 [0, 1/2]

II f(t)dt-D(x)
Ax2 + (1 - 2x)2

L. (3.8)

PROOF. Using (2.4) for each x 6 [0,1/2] and applying (3.1) with n = 1 and
p = oo we get the above inequality.
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REMARK 3. The inequality (3.8) has been proved by Guessab and Schmeisser on
the interval [a, b] in [14] (see also [10]). They also proved that this inequality is
sharp for each admissible x. Equality is attained exactly in the case of equality in
Theorem 3.1 where we put/'(f) = sgn F'(t).

COROLLARY 3.4. Let f : [0, l]

then for each x € [0, 1/4]

( f(t)dt-D(x)
Jo

and for each x 6 [1/4, 1/2]

be given. Iff is L-Lipschitzian on [0, 1],

-x + i ) + g(l -4*)3/2] L (3.9)

f(t)dt-D(x) (3.10)

PROOF. Using (2.6) for each x e [0, 1/4] and applying (3.1) with n = 2 and
p = oo we get the above inequalities.

REMARK 4. The inequalities (3.9) and (3.10) have been proved by Guessab and
Schmeisser on the interval [a, b] in [14]. They also proved that these inequalities are
sharp for each admissible x.

COROLLARY 3.5. Let f : [0,1]

then for each x e [0, 1/2-

f(t)dt-D(x) + ^
/o 2

for each x € [l/2 - l/2->/3,

be given. Iff is L-Lipschitzian on [0, 1],

18>/3

M +—^(
6/ 18V3

and for each x e [1/2^3, 1/2]

f(t)dt-D(x)
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PROOF. Using (2.5) for each x € [0,1/2 - 1/2 V5] we get

.1/2

/

I /.1

\Gx
2(t)\dt = 2J

Jo[ /•1/2 /• 1/2-71-12*7275 "

- / Gx(t)dt + 2j G\{t)dt

4 / l
G5(

for each A: e [l/2 - 1/2^3, 1/2V5]

/

I p\/2-J\~\2x-/2jl
\Gx

2(t)\dt = 4

and for each x e [1/2^3, 1/2] we get

J \G\{t)\ dt =-Aj Gx
2{t)dt = j(?3(y-x*+x-1/6).

Therefore, applying (3.2) with n = 2 and p = cx>, we get the above inequalities.

REMARK 5. In Theorem 3.2 it was proved that (3.5) is sharp just for p = 2.
We mention here that comparing the sharp constant from Guessab and Schmeisser
in [14] in the case p = oo and our constant, we conclude that inequality (3.5) is
not generally sharp. Namely, our constant for boundary conditions / ' ( I ) = / ' (0 ) ,
n = 2 and x = 0 is 1 / (18^) , while they have 1/32 (note that the sharpness of (3.5)
under conditions / ' ( I ) = / ' (0 ) implies the sharpness of the same inequality under
conditions/'(I) = / ' ( 0 ) = 0).

COROLLARY 3.6. Let f : [0, 1] -> Vibe given. Iff" is L-Lipschitzian on [0, 1],
then for each x e [0, 1/2 -

https://doi.org/10.1017/S1446181100009676 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100009676


[ 13] General Euler two-point formulae

for each x 6 [l/2 - 1/2^3, 1/4]

567

for each x € [l/4,

and for each x 6 [1/2V3, 1/2]

f(t)dt-D(x) + ^

PROOF. Using (2.7) for each x e [0,1/2 - 1/2^3] we get

/ \Fj(t)\dt = 2 \F3*(t)\dt = -2 Fl
Jo Jo Jo

3 X2

1/2

for each x e [1 /2- 1/2^3, 1/4]

\F;«)\dt = -2 Fj{t)dt + 4

Jo Jo

= ^ [G*4 (1/2) - 2GJ ( V -

/

F*(t)dt

- 1/2) +
= 5 [^ (1/2) - 2FI (y/-3

for each x e [1/4,1/2^3]

f l .̂1/2 ,

/ |F/( / ) | rfr = - 2 / F;(t)dt + 4
Jo Jo Jo

- 1/2)] ,

Fx
y{t)dt
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and for each x e [1/2-/3, 1/2] we get

/"' f1/2 l r - l 1
/ \Fj(t)\dt = 2 F^t)dt = - - <?J (1/2) - B4(x) = - - F 4

l ( l / 2 ) .
Jo Jo ^ L

 J z
Therefore, applying (3.1) with n = 3 and p = oo, we get the above inequalities.

REMARK 6. L e t / : [0, 1] - • R be such that/*""1' is an L-Lipschitzian function
on [0, 1] for some n > 3. Then for eachx e [0, 1/2 - 1/2V5) U (l/2>/3, 1/2], from
Corollary 2.5 we get

K(2k - 1, oo, x) = ̂ j |i»a(l/2 - x) -

and #(2*. oo.x) = -^- \Bu(x)\.

If in the first inequality in Corollary 3.6 we put k = 2 we get the same inequalities as
in Corollary 3.6 when x is from the intervals [0, 1/2 - 1/2V3) and (1/2V^, 1/2].

REMARK 7. If in Corollaries 3.3-3.6 and Remark 6 we choose x = 0, 1/2, 1/3 we
get inequalities related to the trapezoid (see [3,6,12]), the midpoint (see [4,8,11])
and the two-point Newton-Cotes formulae (see [17]), respectively. For x = 1/4 in
Corollaries 3.3-3.6 we get inequalities related to the two-point Maclaurin formulae
(see [10]).

COROLLARY 3.7. Let f : [0, 1] ->• K be a given function. Iff is a continuous
function of bounded variation on [0, 1], then for x € [0, 1/2]

I/'f(t)dt-D(x) < 1 + | 4 ;~1 |vo1(n. (3.1D
4

PROOF. From the explicit expressions (2.4) we have

max IF.'WI = max{2x, -2x + 1} = max{A, 5},
re[O,l]

where A = 2x, B = -2x + 1. Also, max{/l, B) = (A + fi + |A - 5|)/2, so using
this formula and applying (3.1) with n = 1 and p = 1 we get the above inequality.

REMARK 8. The inequality (3.11) has been proved by Dragomir in [9].

COROLLARY 3.8. Let f : [0, 1] ->• K be a given function. Iff is a continuous
function of bounded variation on [0, 1], then for each x 6 [0, 1/4]

II"f(t)dt-D(x)
4;c -

16
(3-12)
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and for each x € [1/4, 1/2]

II'f(t)dt-D(x) (3.13)

PROOF. From the explicit expressions (2.6) and for each x e [0, 1/4] we have

max IF*(01 = max{2x2, -2x + 1/2}
re(O,l]

and for each x e [1/4, 1/2], maxr£[o,i] \F£(01 = 2x2. So using these two formulae
and applying (3.1) with n = 2 and p = 1 we get inequalities (3.12) and (3.13).

COROLLARY 3.9. Let f : [0, 1] -> R be given. Iff is a continuous function of
bounded variation on [0, 1], then for each x 6 [0, 1/2]

I/'JO 2

PROOF. Using (2.5) for each x e [0, 1/2] we get

max |G*2(0l = max{|G2(0)|, \G2(x)\,

Therefore, applying (3.2) with n = 2 and p = 1, we get the above inequality.

REMARK 9. We mention here that comparing the best possible constant from
Guessab and Schmeisser in [14] in the case p = 1 and our constant, we conclude
that inequality (3.5) is not generally best possible. Namely, our constant for boundary
conditions/ '(I) = / ' ( 0 ) , n = 2 and* = 0 is 1/12, while they have 1/16.

COROLLARY 3.10. Let f : [0, 1] -> K be given. Iff" is a continuous function of

bounded variation on [0, 1], then for each x € [0, 1/4]

Jf f(t)dt-D(x)
1

7 2 ^
(l-12x2)3'2V0'</")

and for each x e [1/4, 1/2]

f(t)dt-D(x)-\
3/2

PROOF. Using (2.7) for each x e [0, 1/2 - l/2\/3] we get

/ l
max |F/(01 =

^ 12s*
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for each* 6 [l/2 - 1/2V3, 1/4]

'(01 = max

[16]

max |
fe[0,l]

ft , - A

for each x e [l/4, 1/2VT|

max |F/(01 = max
(€[0.11 3

f —V 2 ± y

and for each x e [1/2^3, 1/2] we get

(01 =max |

Therefore, applying (3.1) with n = 3 and/? = 1, we get the above inequalities.

REMARK 10. L e t / : [0, 1] -» K be such that/*""1' is a continuous function of
bounded variation on [0, 1] for some n > 3. Then for each x e [0, 1/2 — l/2\/3~) U
( 1 / 2 N / 3 , 1/2], from Corollary 2.4 we get

- 1, 1,*) =

K(2k- 1, 1,JC) =

2 ( 2 * - 1 ) ! l e i o T i ] ' • 2 * - > v ' / ' '

^\B2k(l/2-x)-B2k(x)\ and

1

If in the first inequality in Corollary 3.10 we put k = 2 we get the same inequalities as
in Corollary 3.10 when x is from the intervals [0, 1/2 - 1/2V3) and ( 1 / 2 ^ , 1/2].

REMARK 11. If in Corollaries 3.7-3.10 and Remark 10 we choose* = 0, 1/2, 1/3
we get inequalities related to the trapezoid (see [3,6,12]), the midpoint (see [4,8,11])
and the two-point Newton-Cotes formulae (see [17]), respectively. For* = 1/4 in
Corollaries 3.7-3.10 we get inequalities related to the two-point Maclaurin formulae
(see [9]).

Now, we calculate the optimal constant for p = 2.

COROLLARY 3.11. Let | / ( n ) | 2 : [0, 1] ->• 05 be a R-integrable function for some
n > 1. Then for each x 6 [0, 1/2], we have

f(t)dt-D(x)+Tn-dx)

r_i\"-i

(2n)!
B2n(l-2x)]

1/2

ll/(n)
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and

f(t)dt-D(x)+fn(x)

PROOF. Using integration by parts and also using [5, Lemma 1] we have

*\t)dt = (-1)- " / " " 1 , ) - - ; 2
9

in + \){n + 2) • • • (In -

f G*nJo

Now,

f F*\t)dt= I \G*n(t)-Bn(x)]2 dt
o Jo L J

L *\t) -2Gx
n(t)Bn(x) + B*(x)\dt

1

o

REMARK 12. For n = 2 we have the boundary conditions / ' ( I ) = / '(0)- For
x = 0 our constant from Theorem 3.2 is l/(12\/3). Guessab and Schmeisser in [14]
also have l/(12\/3) which confirms the sharpness of our inequality in this case.

Finally, we give the values of the optimal constant for n = 1 and arbitrary p from
Theorem 3.1.

REMARK 13. Note that K*(\,p,x) = K(l,p,x), for 1 < p < co, since G]{t) =
Fj'(r). Also, for 1 < p < oo we can easily calculate K(l, p,x). We get

] ' " . i < , < o d (3.H,

REMARK 14. Equality (3.14) has been proved by Dragomir on the interval [a, b] in
[10].

REMARK 15. If in Remark 13 we choose x = 0, 1/2, 1/3, 1/4 we get inequalities
related to the trapezoid (see [6]), the midpoint (see [8]), the two-point Newton-Cotes
(see [17]) and the two-point Maclaurin formulae (see [10]), respectively.
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In the following theorem we use (2.2) and a technical result from the recent paper
[16] to obtain a Griiss-type inequality related to the general Euler two-point formula
(see [16]).

THEOREM 3.12. Suppose that / : [0, 1] - • R is such that / ( n ) exists and is
integrable on [0, I], for some n > 1. Assume that mn <fM(t) < Mn, 0 < t < I, for
some constants mn and Mn. Then for x e [0, 1/2]

f f(t)dt-D(x)
Jo

< Cn(Mn - mn), (3.15)

where Cn = (l/4(n!))/0' \G*n(t)\dt.

REMARK 16. If in Theorem 3.12 we choose x = 0, 1/2, 1/3 we get inequalities
related to the trapezoid, the midpoint and the two-point Newton-Cotes formulae (see
[16]). For x = 1/4 we get inequalities related to the two-point Maclaurin formulae.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

THEOREM 3.13. / / / : [0, 1] -> R is such that /(2*> is a continuous function on
[0, 1], then for some k > 2 there exists a point r\ € [0, 1] such that

(i) far x e [0, 1/2 — 1/2V3) (3.16)

and

(3.17)

PROOF. We can rewrite R^ff) forx e [0, 1/2 - 1/2N/3) as

where

Jk = ('(-it*
Jo

From Corollary 2.4 it follows that (-l)kF^(s) > 0, 0 < s < 1 and the claim follows
from the mean value theorem for integrals and Corollary 2.5. The proof on the interval
(1/2V% 1/2] is similar.
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REMARK 17. For it = 2 formulae (3.16) and (3.17) reduce to

w(>») and * 4 V ) =

respectively, which are formulae proved for x = 0 in [6], for x = 1/2 in [8] and for
x = 1/3 in [17].

COROLLARY 3.14. Let f e C°°[0, 1] and X e K be such that 0 < k < 2n
and | / ( 2 i ) (0l < A-2* far t e [0, 1] and k > *o/or ^o/ne Jko > 2. Then for x <=
[0, 1/2 - l/2>/3) U (1/2N/3 , 1/2] we have

= D{x) - i f ] ^ [/^-'>(1) -/«-»<0>] • (3.18)

PROOF. From Theorem 3.13 when it > jfco we have that

so (3.18) follows.
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