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Abstract
We consider a family of two-point quadrature formulae, using some Euler-type identities.

A number of inequalities, for functions whose derivatives are either functions of bounded
variation, Lipschitzian functions or R-integrable functions, are proved.

1. Introduction

In the recent paper [5] the following two identities, named the extended Euler formulae,
have been proved. For n > 1 and every x € [0, 1]

1
£ @) =f FOdi+ Ty + R () (L.1)
and ol
£ ) =f £ dt + Ty () + RA), (12)
(4]
where Ty(x) = 0 and
Tax) =) ﬂ‘k(,x—) [£ &) - £ &), (1.3)
k=1 )

for 1 < m < n, while

1
Rl(x) = —i/ B:(x —n)df " "(n),
n! 0
1
Ri(x) = -%/ [B;(x — 1) — B.(x)] df "~ "(»).
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Here, as in the rest of the paper, we write fo1 g(1) de (1) to denote the Riemann-Stieltjes
integral with respect to a function ¢ : [0, 1] — R of bounded variation, and fol g(t) dt
for the Riemann integral. The identities (1.1) and (1.2) extend the well-known formula
for the expansion of a function in Bernoulli polynomials [15, page 17]. They hold for
every function f : [0, 1] — R such that f ®~ is a continuous function of bounded
variation on [0, 1]. The functions B(¢) are the Bernoulli polynomials, B; = B, (0) are
the Bernoulli numbers, and B} (¢), k > 0, are periodic functions of period 1, related
to the Bemoulli polynomials as

Bi(t) =By (1), 0<t<1 and B;(t+1)=B;(), teR.

The Bernoulli polynomials B,(t), k > 0, are uniquely determined by the following
identities:

Bo(t) =1, Bi(t+1)—B,(t) =kt*', k>0

By(1) = kB, (1), k> 1

For some further details on the Bernoulli polynomials and the Bernoulli numbers see
for example [1] or [2]. We have that B;(t) = 1 and B} (?) is a discontinuous function
with a jump of —1 at each integer. It follows that B,(1) = B(0) = B, for k > 2, so
that B/ (¢) are continuous functions for k > 2. We get

B(1) = kB;_,(1), k=>1, (1.4)

forevery t € R when k > 3, and forevery t € R\ Z when k = 1, 2. In this paper we
study, for each real number x € [0, 1/2], the general two-point quadrature formula

1
1
/ f(t)dt=E[f(x)+f(1—X)]+E(f;,X), (1.5)
0

with E(f ;x) being the remainder. This family of two-point quadrature formulae was
considered by Guessab and Schmeisser in [14] and they established sharp estimates for
the remainder under various regularity conditions. The aim of this paper is to establish
a general two-point formula (1.5) using identities (1.1)-(1.2) and to give various error
estimates for the quadrature rules based on such generalisations. In Section 2 we use
the extended Euler formulae to obtain two new integral identities. We call them the
general Euler two-point formulae. In Section 3, we prove a number of inequalities
which give error estimates for the general Euler two-point formulae for functions
whose derivatives are from the L, -spaces, thus we extend the results from [14] and we
generalise the results from papers [6—8, 16] and [17]. These inequalities are generally
sharp (in the case p = 1 the best possible). Special attention is devoted to the case
where we have some boundary conditions and in some cases we compare our estimates
with Fink’s estimates ([13, 14]).
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2. General Euler two-point formulae

For k > 1 and fixed x € [0, 1/2] define the functions G}(¢) and Fj () as
G®)=B,x—-0+B(1—-x—-1), telR
and Ff (1) = Gi(f) — Bi(x),t € R, where
Bi(x) = Bu(x) + Be(1—x), x€[0,1/2], k> 1.

In particular, we get Bi(x) = 0, éz(x) = 2x* — 2x + 1/3 and Bs3(x) = 0. Also,
for k > 2 we have B,(x) = G{(0), that is, Ff(t) = Gi(t) — G;(0), k > 2, and
Fi (1) = G5(1), t € R. Obviously, G;(¢) and F[ () are periodic functions of period 1
and continuous for k > 2.

Let f : [0,1] — R be such that f @D exists on {0, 1] for some n > 1. We
introduce the following notation for each x € [0, 1/2]:

Dx)=[f &)+ f(1-x)]/2
Further, we define To(x) =0and,forl <m <n,x €0, 1/2],
Tox) = [T () + Tn(1 — 0)1/2

where T,,(x) is given by (1.3). It is easy to see that

m

To(x) = % Z E"k(,—” [F%P) - £ &P @)]. .1
k=1 )

In the next theorem we establish two formulae which play a key role in this paper. We
call them the general Euler two-point formulae.

THEOREM 2.1. Let f : [0, 1] — R be such that f "~V is a continuous function of
bounded variation on [0, 1], for some n > 1. Then for each x € [0, 1/2]

1
ffmm=0m—ﬁm+ﬂv) (2.2)
0
and
1
ffMM=Dm—ﬁ4n+ﬁvx (2.3)
0

where

B 1 1 - 1 1
1 — X (n-1) 2 — X (n-1)
Rn(f)——z(n!) A G(0df "~ "(1), R(f) —2(n!)/o Fi () df "7 (1).
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PROOF. Put x = x and x = 1 — x informula (1.1) to get two new formulae. Then
multiply these new formulae by 1/2 and add. The result is formula (2.2). Formula
(2.3) is obtained from (1.2) by the same procedure.

REMARK 1. If in Theorem 2.1 we choose x = 0, 1/2, 1/3, 1/4 we get the Euler
trapezoid [6], the Euler midpoint [8], the Euler two-point Newton-Cotes [17] and the
Euler two-point Maclaurin formulae respectively.

By direct calculations for each x € [0, 1/2], we get

[ 21, 0<t1<x;
FfF=G®=1{-2t+1, x<t<l-x; (2.4)
=2t+2, l—-x<t<l,
(212 + 2x% — 2x + 1/3, 0<r<x;
Gi(t) = {2 — 2t + 2x* + 1/3, x <t<l-x; (2.5)
20 -4t + 22 -2 +7/3, 1l—-x<t<l1,
212, 0<t<ux;
FF() =42 —2t+2, x<t<1-ux; (2.6
202 —4r+2, l—-x<t<l
and
—283 + (=6x% + 6x — 1)1, 0<tr<ux;
FE() = 63 = | —2tz+3tz+ (—6xz —Dr+3x2% x<t<l-x; (2.7')
=27+ 61° + (—6x* +6x — )t
+6x% — 6x + 3, l-x<t<1.

We now will prove some properties of the functions G§(¢) and F[(r) defined above.
The Bernoulli polynomials are symmetric with respect to 1/2, (see [1]), that is,

Bi(1 —x) = (-1)*Bi(x), k=>1. (2.8)

Also, we have B;(1) = Bk(O) =B, k>2, Bi(1)=—-B,(0) =1/2and By;_; =0,
j = 2. Therefore we get sz 1x)=0,j > 1and sz (x) = 2By (x), x € [0, 1/2].
Now, we have Fz’;_,(t) = G;j_l(t) j = 1,and

Fi(0) = G (1) — By (x) = G, () - 2B, (x), x€[0,1/2], j=1. (29)

Further, the points 0 and 1 are the zeros of F;(f) = G{(t) — G;(0), k > 2, that is,
F}0) = Fi(1) =0, k = 1. As we shall see below, 0 and 1 are the only zeros of
Fj (1) forj > 2and x € [0,1/2 = 1/2V/3) U (1/2+/3, 1/2]. Next, setting t = 1/2
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in (2.8) we get By(1/2) = (—1)*B(1/2), k > 1, which implies that B,;_,(1/2) = 0,
J = 1. Using the above formulae, we get F{j_l(l/2) = ng_,(1/2) =0,j > 1
We shall see that 0, 1/2 and 1 are the only zeros of Fz"j_l(t) = G’z‘j_,(t), forj =2
and x € [O, 1/2 - 1/2«/5) U (1/2\/3, 1/2]. Also, note that forx € [0,1/2],j > 1,

G3;(1/2) = 2B3;(1/2 — x) and
F5(1/2) = G&(1/2) — By (x) = 2By (1/2 — x) — 2By; (). (2.10)

LEMMA 2.2. For k > 2 we have Gi(1 — 1) = (-D*Gi(1), 0 <t < 1 and
FFl—-n=(-D'Ff@),0<t< 1.

PROOF. As the functions B (t) are periodiq with period 1 and continuous for k > 2,
similar to [6, 8, 16] and [17] we get these two identities.
Note that the identities established in Lemma 2.2 are valid for k = 1, too, except at

the points x and 1 — x of discontinuity of F{(t) = G} (?).

LEMMA 23. For k > 2 and x € [0,1/2 — 1/2+/3) U (1/24/3, 1/2] the function
G5,_,(t) has no zeros in the interval (0,1/2). For 0 < t < 1/2 the sign of this
function is determined by

DG (>0, xe[0,1/2—1/2v/3) and
(1G4, (0 >0, x € (1/2v/3,1/2].

PROOF. Fork = 2, G5(¢) is given by (2.7) and it is easy to see that for0 < ¢ < 1/2,
Gi(1) < 0,x € [0,1/2 ~ 1/24/3) and G5(t) > 0, x € (1/2+/3,1/2]. Thus our
assertion is true for k = 2. Now, using a simple induction similar to that in [6, 8, 16]
and [17] we prove that G3,_,(r) cannot have a zero inside the interval (0, 1/2). To

determine the sign of G5, _, (), note that G,_,(x) = By (1 — 2x). We have [l,
23.1.14], (=1)*By_1(¢) > 0,0 < t < 1/2, which implies for x € [O, 1/2 — 1/2\/5)

(=D¥'G5_ (x) = (=1)* "By (1 = 2x) = (= 1)* By (2x) > 0
and for x € (1/2v/3, 1/2]
DML ®) = (— DByl = 20) > 0,
which completes the proof.

COROLLARY 2.4. Fork > 2 and x € [0, 1/2 — 1/2+/3) the functions (—1)* F5 (1)
and (—1)* G5, (¢t) are strictly increasing on the interval (0, 1/2) and strictly decreasing
on the interval (1/2, 1). Also, forx € (1/2\/5, 1/2] the functions (—1)*~' F5 (¢) and
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(—1)*"1 G%,(2) are strictly increasing on the interval (0, 1/2), and strictly decreasing
on the interval (1/2, 1). Further, for k > 2, we have

max | F3 (D] = 2|Bu(1/2 — x) — Bu(x)]

and
max G ()| = 2max (| By (x)], |Bu(1/2 — x)|}.

PROOF. Using (1.4) we get [(—1)*F5 (1) = [((-1D*GL (DY = 2k(—1)*! G5, 1 ()
and (—=1)*'G%,_,(1) >0for0 <t < 1/2andx € [0, 1/2— 1/2«/5), by Lemma 2.3.
Thus (—1)*F} (1) and (—1)*G%,(¢) are strictly increasing on the interval (0, 1/2).
Also, by Lemma 2.2, we have Fj, (1—1) = F;(1),0 <t < land G5, (1-1) = G},(1),
0 < t < 1, which implies that (—l)kF;k(t) and (—1)"G§k(t) are strictly decreasing
on the interval (1/2,1). The proof of the second statement is similar. Further,
F5,(0) = F3.(1) = 0, which implies that | F}, (¢)| achieves its maximum at t = 1/2,
that is, max,eo,1) | F3,(¢)| = | F3,(1/2)| = 2|Ba(1/2 — x) — By (x)]. Also

max | G5, (1) = max {|G3,(0)], | G5,(1/2)|} = 2 max {|Byu(x)|, | Bu(1/2 = x)1},
which completes the proof.

COROLLARY 2.5. Fork > 2, and x € [0, 1/2 — 1/2+/3) U (1/2+/3, 1/2] we have

1 1
2
/ | Py (D]dt = / |G (Dl dt = ZlBZ"(l/Z —x) — By (x)l.
0 0
Also, we have

1
/0 |F(1)| dt = |Bu(x)] = 2|Bu(x)| and

]
f 1G5 (D dr < 21Bu(x)] = 41Bu(x)].
0

PROOF. Using Lemmas 2.2-2.3 we get

12
/ Gy (D dt
0

1 2
= ZIG&(1/2) — Gu(O)] = 71Bx(1/2 — x) — Bu(x)I,

172
0

1 X
=2‘—ﬁ6u(t)|

1
/; |G (D]dt =2

which proves the first assertion. By Corollary 2.4 and because F3(0) = F3;(1) =0,
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F3,(¢) does not change its sign on the interval (0, 1). Therefore using (2.9) we get

1 1
/ FL(t)dt| = f (G, (1) — Bu(x)ldt

0

1
‘/wmmm=
1]

= |Bu(x),

2k + IG;k+l(t)|0 éu(x)
which proves the second assertion. Finally, we use (2.9) again and the triangle
inequality to obtain the third formula.

3. Inequalities related to the general Euler two-point formulae

In this section we use formulae established in Theorem 2.1 to prove a number of
inequalities using L, norms for 1 < p < 00. These inequalities are generally sharp
(in the case p = 1 the best possible). Special attention is devoted to the case where
we have some boundary conditions and in some cases we compare our constants with
the Fink constants ([13, 14]).

THEOREM 3.1. Assume (p, q) is a pair of conjugate exponents, 1 < p,q < 0.
Let |f ™|P : [0, 1] = R be an R-integrable function for some n > 1. Then for every
x € [0, 1/2], we have

1
ffmm—0m+ﬁ4m§Kmmawauam 3.1)
0

1
/fmm—Dm+tu)
0

< K*(n,p,x)-If l,, (3.2)

where

1 1 l/q
K(n,p,x):—'—[/ |F,f(t)|th] ,

1/q
Kopo0 = g [ [ 1ezcomar]

The constants K(n, p,x) and K*(n, p,x) are sharp for | < p < 00 and the best
possible for p = 1.

PROOF. Applying the Holder inequality we have

L[ o 1 / ; e
\2(;;!)/ Frof P mdr) < o ,)[ IF; (:)|th] 1F @1,
= K(n,p, Ol -
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Using the above inequality, from (2.3) we get estimate (3.1). In the same manner,
from (2.2) we get estimate (3.2). Now, we consider the optimality of K (n, p, x). We
shall find a function f such that

1 1/q 1 1p
= (/ |FX (D)7 dt) (/ TARIG] dt) )
0 0

For 1 < p < ootake f to be such that

1
f Fi(nf ™ dt
0

fO@ =sgn F{ (0| F; ()¢, (3.3)

where for p = oo we put f ™ (1) = sgnF*(t). For constant K*(n, p, x) the proof of
sharpness is analogous. For p = 1 we shall prove that

1
< max IF,f(t)lf If ()| dt 3.4)
1€[0,1] o

1
[ FX(0)f (1) dt

0

is the best possible inequality. Suppose that | F (r){ attains its maximum at , € (0, 1).
First, we assume that F; (%) > 0. For ¢ small enough define f *~V(z) by

0, t < I
fEPW={¢—-1t)/e, teltth+el
1, t> 1t +e.
Then, for € small enough,
1 to+e 1 1 fo+e
/ FX(fP@de| = / FX(t)=dt| = —/ FX(t)dt.
0 o £ £ o

Now, from inequality (3.4) we have

fote +e 1
—f Fy(r)ydet < F;(to)f —dt = F ().
e J, 0 &

Since
p+E

1
lim - Fi(t)dt = F (1),

e—>0 g o

the statement follows. If F () < 0, then we take

1, t <1,
[P ={-¢-n-¢)e, teltto+el.
0, t>t+e

and the rest of the proof is the same as above. Proof of the best possibility of the
second inequality is similar.
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REMARK 2. Basically we have three types of estimates:

1
/ f@®dt - D(x) + Tu(x)
0

1 1 I/q 1 1/p
- X q (2k)
T (/0 1G5 ()] dt) (/0 f (t)I"dt) ,

1
/ F)dt = D&x) + Tu®)
0

! l Ya ! 1/p
202k + D! 3 k1)
= 22k + 1)! (/0 | Goes (DI dt) (/0- Vi (t)|”dt)

1
/ £ dt — D) + Tux)
0

l 1 1/q 1 1/p
Porea—— x 9 (2k+2)
=22kt 2) (]0 |22 (0] dt) (_/0. If (t)l"dt> .

In the following theorem we are interested in the sharpness of the above estimates
in the presence of boundary conditions.

and

THEOREM 3.2. Assume that (p, q) is a pair of conjugate exponents, 1 < p,q < 0
and k € N. Let f : [0, 1] = R be a function such that we have boundary conditions
FEDO) = fFEVA) fori = 1,...,k. Then for every x € [0, 1/2] and |f @0
R-integrable, we have

1 ! 1/q 1 1/p
—_— X @K
= 2@0) (/0 'GZk(’)W’) (fo \f (t)l"dt) . (39

For |f ®+V|P R-integrable we have

1 1 1/q 1
P e——— s q Qk+1) ¢\ (P
= 2@k+ 1) (/0|02k+,(t)| d’) (folf 0] dt)

I
/f (1ydt—D(x)
0

I/p

1
ff (1) di—D(x)
0

(3.6)
and for |f **D¢|P R-integrable we have
1 1 1 /9 1 _ 1/p
[£@a-peo| < m(]ow;m(mwz) (fir +>(t)|"dz)
G370

Inequality (3.5) is sharp for p = 2 and inequalities (3.6) and (3.7) are sharp for
1 < p < o0 and best possible for p = 1.
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PROOF. Inequality (3.5) is sharp since a function f for which we have equality in
(3.2) in the case p = 2, n = 2k is defined by f ®¥(r) = G% (1), so we can choose f

such that -
1
F@N(p) = T G (D),
1
(2k-3) t) = — Gt

d @ Ck + D)2k +2)(2k +3) 230
and generally

FE P = - ) N

QRk+1)2k+2)---(4k—=2i+1)’

which gives f@1(0) = f@-D(1) = 0,i = 1,..., k. In relation to the sharpness
or the best possibility of inequality (3.6), notice first that approximation j;)l f@dt=
D(x) — ﬂk(x) is exact of order 2k + 1. Take any function f which is optimal for
inequality (3.1)inthecasen =2k + 1,1 < p < 0. Set

2k
gy =f+ Zai"i =fO)+aut* +ay ™'+t @t +ar

i=1
We have g%*D(¢) = £ *=D(¢) + k) layt + (2k — 1)!ay_, so

0= g™ "0 = f* YO0 + 2k - Dayy,
0= g®="(1) = fFA* D) + (k) 'ax + (2k — 1)lay.,

which gives ay, axy_,. Using g~ and conditions g®*¥(0) = 0 = g®*-3(1) we
analogously obtain ay;_;, ay_-3 and so on. So the function g is also optimal for (3.1)
and satisfies the boundary conditions g% -"(1) = g®-1(0),i = 1, ..., k. Inequality
(3.7) can be treated in the same way.

In the following we calculate the optimal constants in the cases p = 1, p = oo and
p =2

COROLLARY 3.3. Let f : [0,1] — R be given. If f is L-Lipschitzian on [0, 1],
then for each x € [0, 1/2]

1 2 PR
/ F(tydt - D(x)‘ < ML (3.8)
0

PROOF. Using (2.4) for each x € [0, 1/2] and applying (3.1) with n = 1 and
p = 00 we get the above inequality.
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REMARK 3. The inequality (3.8) has been proved by Guessab and Schmeisser on
the interval [a, b] in [14] (see also [10]). They also proved that this inequality is
sharp for each admissible x. Equality is attained exactly in the case of equality in
Theorem 3.1 where we put f'(t) = sgn F}(z).

COROLLARY 34. Let f : [0, 1] — R be given. If f' is L-Lipschitzian on [0, 1],
then for each x € [0, 1/4]

6

1
f f@)ydt— D(x)
0

< [—% (xz -x+ l) + é(l —4x)3/2] L (3.9

and for each x € [1/4, 1/2]

1
f F(®dt = D(x)
0

<12+1L (3.10)
_2xx6. .

PROOF. Using (2.6) for each x € [0, 1/4] and applying (3.1) with n = 2 and
p = o0 we get the above inequalities.

REMARK 4. The inequalities (3.9) and (3.10) have been proved by Guessab and
Schmeisser on the interval [a, b] in [14]. They also proved that these inequalities are
sharp for each admissible x.

COROLLARY 3.5. Let f :[0,1] — R be given. If f' is L-Lipschitzian on [0, 1],
then for each x € [O, 1/2 — 1/2@

B
23 oty - )]

1 - 12x3)2L,
> ( )

=

1
/ f(dt - D(x) +
0

1
183
foreachx € [1/2 - 1/24/3,1/2+/3]

B
zz(x)[f%l) —f’(0)]l

< 4( x4+ x 1)3/2+ ! (1 —12x3% | L
— 13 6 183

and for each x € [1/2\/§, 1/2]

1
/ fdt— D)+
0

By(x)
2

’ _f! i _ .2 _13/2
Fm f(0)]53 x’+x L.

6

1
‘/ f()dt— D)+
0
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PROOF. Using (2.5) for each x € [0, 1/2 — 1/2+/3] we get

1 1/2
/ |G5(0)] dt=2/ IG5 (1) dt
0 0

172 1/2-1=-12x3/2/3
2 —/ G;(t)dt+2/ G’z‘(t)dt:'
0

0

4

172-V1=12x%/2V3
/ Gy (t) dt

0

1/2-V1-12x%/24/3 4 — 12x2
—4 ——G‘( ' Y L Ak
37°\2 23

foreach x € [1/2 — 1/2V/3, 1/24/3]

1 12-V/1-123/23
/ |GL(t)| dt = 4/ Gi(t)dt
0

-x2+x+1/6
4 1 J1- 2
= - G’; —x2+x—-1- _G’; __—._IZL
3 V 6 2 23

and for each x € [1/2+/3, 1/2] we get

1  —x+x=1/6
/ |G ()| dt = -4f
0 0

Therefore, applying (3.2) with n = 2 and p = 00, we get the above inequalities.

4
G5 dt = 2 G (V="+x=16).

REMARK 5. In Theorem 3.2 it was proved that (3.5) is sharp just for p = 2.
We mention here that comparing the sharp constant from Guessab and Schmeisser
in [14] in the case p = o0 and our constant, we conclude that inequality (3.5) is
not generally sharp. Namely, our constant for boundary conditions f’(1) = f'(0),
n =2and x =0is 1/(18+/3), while they have 1/32 (note that the sharpness of (3.5)
under conditions f'(1) = f’(0) implies the sharpness of the same inequality under
conditions f (1) = f'(0) = 0).

COROLLARY 3.6. Ler f : [0, 1] — R be given. If f" is L-Lipschitzian on [0, 1],
then for each x € [0, 1/2 — 1/2\/ﬂ
- x3 x? 1 L
~\6 8  192)
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Joreachx € [1/2 —1/24/3, 1/4]

! z(x)
Vo f@®dt— D)+ ——I[f'(1) - f(O)]‘
X xr 1 1 s 1\*
s[g——+1—92+6(—_3x +3x—§>]L,
foreach x € [1/4,1/2/3]
1
ff(t)dt-—D(x)+
0
2

x> x 1
<|l-—+=-—= —1 12x)*| L
[ 6 "8 1927 % ¢ )]

BZ(")U M —~f (0)1|

and for each x € [1/2f 1/2]
x> x? 1
ff(t)dt—D()+ B ey - S(——6—+§—E)L
PROOF. Using (2.7) for each x € [0, 1/2 — 1/2+/3] we get
1 1/2 172 1 172
/ ]F;(r)ldt=2/ |FE(t)|dt = -2/ Fi(tydt = -2 (-Z :(:)| )
0 0 0 0

1 1\ - 1 /1
-3[%(3) 2] =37 5)
foreach x € [1/2 — 1/2/3,1/4]
1 172  -3x243x-1/2
/ |F3‘(t)|dt=—2/ F;(t)dt+4/ F{(t)dt
0 0 0
i .
=5 [G" (1/2) - 2G: (J—3x2 ¥ 3% - 1/2) + B4(x)]
1
=3 [F‘ (1/2) — 2F; (J-3x2 Fax— 1/2)] ,
for each x € [1/4, 1/2+/3]

1 172 1-VT-1ZZ)2
f|F;(t)| dt=—2/ F;(r)d:+4/ Fy(t)dt
0 0
1| (1 1 VT=12a7) -
=5[G (3) - (—5——)”40‘)]
1 (1 f1-VT—12x7
[ () - ()
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and for eachx € [1/2~/§, 1/2] we get

1 12 1 - 1
f |FF (D dt = 2/ F(dt =3 [G: (1/2) — B4(x)] = —5F (/D).
0 0
Thereforé, applying (3.1) with n = 3 and p = 00, we get the above inequalities.

REMARK 6. Let f : [0, 1] = R be such that f ®=V is an L-Lipschitzian function
on [0, 1] for some n > 3. Then for eachx € [0, 1/2—1/2+/3) U (1/2/3, 1/2], from
Corollary 2.5 we get

2
K2k —1,00,x) = @0t [Bx(1/2 — x) — Bu(x)l,

1 2
K % (2k,00,x) = ool [By(x)| and K2k, 00,x)= @0 [ By (x)].
If in the first inequality in Corollary 3.6 we put k = 2 we get the same inequalities as
in Corollary 3.6 when x is from the intervals [0, 1/2 — 1/2+/3) and (1/2V/3, 1/2].

REMARK 7, If in Corollaries 3.3-3.6 and Remark 6 we choose x =0, 1/2, 1/3 we
get inequalities related to the trapezoid (see [3, 6, 12]), the midpoint (see [4, 8,11])
and the two-point Newton-Cotes formulae (see [17]), respectively. Forx = 1/4 in
Corollaries 3.3-3.6 we get inequalities related to the two-point Maclaurin formulae
(see [10D).

COROLLARY 3.7. Let f : [0,1] — R be a given function. If f is a continuous
Sfunction of bounded variation on [0, 1], then for x € [0, 1/2]

1+ |4x — 1)

< —— V(). (3.11)

1
ﬁfmm—Dm -

PROOF. From the explicit expressions (2.4) we have
rr}gyl(] |F{ ()] = max{2x, —2x + 1} = max{A, B},
tell,

where A = 2x, B = —2x + 1. Also, max{A, B} = (A 4+ B + |A — B|)/2, so using
this formula and applying (3.1) with n = 1 and p = 1 we get the above inequality.

REMARK 8. The inequality (3.11) has been proved by Dragomir in [9].

~ COROLLARY 3.8. Let f : [0,1] — R be a given function. If ' is a continuous
function of bounded variation on [0, 1], then for each x € [0, 1/4]

4x2 —4x + 1 4 |[4x* +4x — 1
X X + -;—6|x + 4x lVol(f') (3.12)

<

1
[fmm—om
(4]
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and for each x € [1/4,1/2)

x2
=S WO (3.13)

1
f f@)dt—D(x)
0

PROOF. From the explicit expressions (2.6) and for each x € [0, 1/4] we have

max |Fy ()] = max{2x?, —=2x + 1/2}

tel0,

and for each x € [1/4, 1/2], max e | F5 ()] = 2x%. So using these two formulae
and applying (3.1) with n = 2 and p = 1 we get inequalities (3.12) and (3.13).

COROLLARY 3.9. Let f : [0,1] — R be given. If f' is a continuous function of
bounded variation on [0, 1], then for each x € [0, 1/2]
(x - =+ — ) V .

2( )
max 1G5 ()] = max{|G2(0)], | G2 ()1, |G2(1/2)1}.

1
/O f@®dt— D)+ ——[f'(1) -

PROOF. Using (2.5) for each x € [0, 1/2] we get

Therefore, applying (3.2) with n = 2 and p = 1, we get the above inequality.

REMARK 9. We mention here that comparing the best possible constant from
Guessab and Schmeisser in [14] in the case p = 1 and our constant, we conclude
that inequality (3.5) is not generally best possible. Namely, our constant for boundary
conditions f'(1) = f'(0), n = 2and x = 0is 1/12, while they have 1/16.

COROLLARY 3.10. Let f : [0,1] — R be given. If f" is a continuous function of
bounded variation on [0, 1], then for each x € [0, 1/4]

! 2(x) 1 2,3
_ l 1 —12x /ZVI "
_/Of(t)dt D)+ 221 () — O] < = PRV
and for each x € [1/4, 1/2]
1\32
/ f@®dt—D(x )+ [f aM-r (0)]l <z (—x +x - g) Vi (f").

PROOF. Using (2.7) for each x € [0, 1/2 — 1/2+/3] we get
1 1—12x2
2 243
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F. —x2+x—l
3 s
1 1—-12x 1
Fl=- —x?hx =
(355 = 5 (e 6)”
and for each x € [1/2+/3, 1/2] we get

max |F ()] = |F3 (m)l

t€l0.1]

foreach x € [1/2 — 1/24/3,1/4]
- (1 JI= 12x2)
= —

rel?(:)i)l(llF (t)[_max[ 5 ——ZfT

for each x € [1/4, 1/24/3]

rr}g)l(] [Fy ()] = max [

Therefore, applying (3.1) with n = 3 and p = 1, we get the above inequalities.

REMARK 10. Let f : [0, 1] — R be such that f #~P is a continuous function of
bounded variation on [0, 1] for some n > 3. Then for each x € [0, 1/2 — 1/24/3) U
(1/2«/5, 1/2], from Corollary 2.4 we get

KQ2k—1,1,x) = mg}% |F5_ ()],
K*(2k,1,x) = (2k)'| By (1/2 — x) — Bu(x)| and
KQk—-1,1,x)= max{| By (x)|, | Bu(1/2 — x)I}.

2k)!
If in the first inequality in Corollary 3.10 we put k = 2 we get the same inequalities as
in Corollary 3.10 when x is from the intervals [0, 1/2 — 1/2+/3) and (1/2+/3, 1/2].

REMARK 11. If in Corollaries 3.7-3.10 and Remark 10 we choose x =0, 1/2, 1/3
we get inequalities related to the trapezoid (see [3, 6, 12]), the midpoint (see [4, 8, 11])
and the two-point Newton-Cotes formulae (see [17]), respectively. For x = 1/4 in
Corollaries 3.7-3.10 we get inequalities related to the two-point Maclaurin formulae
(see [9]).

Now, we calculate the optimal constant for p = 2.

COROLLARY 3.11. Let |[f™|* : [0,1] = R be a R-integrable function for some
n > 1. Then for each x € (0, 1/2], we have

1
f f@)dt — D(x) + o1 (x)
0

2= 1! 4 172
< 2[ ((2 ))' [Bz2n + Ba(1 — 2x)] + (n!)zB:(x)] If @,
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and

2(—1)! v’
2[ @)1 [Ban + B2 (1 —Zx)]] 1f .

PROOF. Using integration by parts and also using [S, Lemma 1] we have

'f f@®dt— D)+ T,(x)| <

1 1
x2 — (_1\n—1 n(n—l)2 _l_f x X ]
,/0 G 0de= (=1 m+D@n+2)---2n-1) [2n 0 G2, (1 4G (1)
2 1
( )n— ((;l ))'[ / G;n(l)dt'*'G (X)+G (l—X)]
2(n!)?

= (=D [B2s + Baa(1 — 2x)].

(2n)!

Now,

1 1
/ F,fz(t)dt=f [G;(z)—l_?;,,(x)]2 dt
0 0

1
= / [G:z(t) — 2G5 (1) Ba(x) + Bj(x)] dt
0
] ~
=[ G2 (t)dt + BX(x)
0
1 2(n!)?
(2n)!
REMARK 12. For n = 2 we have the boundary conditions f'(1) = f’(0). For

x = 0 our constant frqm Theorem 3.2 is 1/ (12+4/3). Guessab and Schmeisser in [14]
also have 1/(124/3) which confirms the sharpness of our inequality in this case.

= (=" [Ban + Ban(l — 2x)] + 4BX(x).

Finally, we give the values of the optimal constant for n = 1 and arbitrary p from
Theorem 3.1.

REMARK 13. Note that K*(1, p,x) = K(1,p,x),for1 < p < 00, since G} () =
F(1). Also, for 1 < p < 00 we can easily calculate K(1, p, x). We get

1 _ +171/9
K(l,p,X)=%|:(2x)q+ :Sl )" ] , l<p<od (3.149)

REMARK 14. Equality (3.14) has been proved by Dragomir on the interval [a, b] in
[10].

REMARK 15. If in Remark 13 we choose x = 0, 1/2, 1/3, 1/4 we get inequalities
related to the trapezoid (see [6]), the midpoint (see [8]), the two-point Newton-Cotes
(see [17]) and the two-point Maclaurin formulae (see [10]), respectively.
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In the following theorem we use (2.2) and a technical result from the recent paper
[16] to obtain a Griiss-type inequality related to the general Euler two-point formula
(see [16]).

THEOREM 3.12. Suppose that f : [0,1] = R is such that f™ exists and is

integrable on [0, 1], for some n > 1. Assume thatm, < f ®(t) < M,, 0 <t < 1, for
some constants m,, and M,. Then for x € [0, 1/2]

1
/ f(®dt — D(x) + T,(x)| < Cu(M, — m,), (3.15)
0

where C, = (1/4(n!)) fol [GE(D)|de.

REMARK 16. If in Theorem 3.12 we choose x = 0, 1/2, 1/3 we get inequalities
related to the trapezoid, the midpoint and the two-point Newton-Cotes formulae (see
[16]). For x = 1/4 we get inequalities related to the two-point Maclaurin formulae.

Our final results are connected with the series expansion of a function in Bernoulli
polynomials.

THEOREM 3.13. If f : [0, 1] — R is such that f ® is a continuous function on
[0, 1), then for some k > 2 there exists a point n € [0, 1] such that

RL() = ﬁ;k,f;,;f‘“’(n) for x € [0,1/2 — 1/24/3) (3.16)
and

- B

RL() = - é"k(;;f‘z’"(n) for x € (17243, 1/2]. (3.17)

PROOF. We can rewrite R2,(f) forx € [0, 1/2 — 1/2+/3) as

52 LY
. Ry (f)=(-1 2[(2k)']
where

1
Jk=f (—D*FLG)f @ (s) ds.
[}

From Corollary 2.4 it follows that (—l)"F{k(s) > 0,0 < s < 1 and the claim follows
from the mean value theorem for integrals and Corollary 2.5. The proof on the interval

(1/2+/3, 1/2] is similar.
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REMARK 17. For k = 2 formulae (3.16) and (3.17) reduce to

~ By(x) = By(x)
R == and R(F)=-——=F ),
respectively, which are formulae proved for x = 0 in [6], for x = 1/2 in [8] and for

x=1/3in[17].

COROLLARY 3.14. Let f € C*®[0,1) and » € R be such that 0 < A < 27
and |f ®(t)| < A* for t € [0,1] and k > ko for some ky > 2. Then for x €
[0, 1/2 — 1/24/3) U (1/24/3, 1/2] we have

/lf(:) dt = D(x) — li By ) [f@ D) - f@-©)]. (3.18)
o 24 @)

PROOF. From Theorem 3.13 when k > ky we have that

' 2%k
1Bu)l o _ 1Bul o 1, (20! A"’*:z( A) ,

(2k)! - (2k)! ~ (2k)!  Q2m)* i3

IRL(F)l <

50 (3.18) follows.
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