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MINIMAL LINKAGE AND THE GORENSTEIN
LOCUS OF AN IDEAL

CRAIG HUNEKE* anp BERND ULRICH*

Introduction

Let I be a Cohen-Macaulay ideal of grade g > 0 in a local Gorenstein
ring (R, m) with residue class field k. An R-ideal J is said to be linked
to I with respect to the regular sequence ¢ =aqay, - -, 0, CINJ if J=
(@): I and I = (a): J ([6]). In this paper we are concerned with the fol-
lowing question: how big is dim, ((a, mdJ)/mJ)? Obviously this dimension
is at most g, but it could be as small as 0. If it is g then the link from
J to I is called a minimal link, which is in most respects the desired
type of link. The only general result known in this direction is that if
I is Gorenstein, then dim, ((a, mJ)/mJ) = g unless both I and J are com-
plete intersections (see [1], Proposition 5.2). We are able to generalize
this fact to the case where (R/I), is Gorenstein for all prime ideals p in
R/I with dim (R/I), < 4; however we have to assume that I is generically
a complete intersection ideal, and that R is a complete intersection
(Theorem 2.3). Without the assumption on R we prove that if I is ge-
nerically a complete intersection, and if for a fixed integer r the type of
(R/I), is at most r for all prime ideals p in R/I with dim (R/I), < (r + 1)},
then dim, (o, mJ/md)) > g — r (Proposition 2.1). If r =1, ie. if R/I is
Gorenstein in codimension 4, then this estimate shows the dimension is
at least g — 1. Theorem 2.3 can also be interpreted to yield a strong
upper bound for the codimension of the non-Gorenstein-locus of certain
perfect ideals: Let R be a regular local ring. Let I be an R-ideal which
is generically a complete intersection, and assume that I is in the even
linkage class of a Gorenstein ideal (i.e., there exists a sequence of links
I~I1 ~I ~ ... ~1I, with I,, a Gorenstein ideal); then I is a Gorenstein
ideal provided that (R/I), is Gorenstein for all prime ideals p of R/I with
dim (R/I), < 4 (Corollary 3.1).
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§1. General facts about linkage

In this section, we fix the notations we will be using throughout the
paper and review some definitions and results from [4].

Let (R, m) be a local Noetherian ring, let I be an R-ideal, and M a
finitely generated R-module. By v(M) we denote the minimal number of
generators of M, ht (I) is the height of I and r(R) = dimy,, (Ext% (R/m, R))
stands for the type of R (if R is Cohen-Macaulay of dimension d). We
say that I is Cohen-Macaulay or Gorenstein if the ring R/I has any of
these properties. The ideal I is a complete intersection if I is generated
by a regular sequence, I is called generically a complete intersection if
I is unmixed and I, is a complete intersection for all p € Ass (R/I), and I
is an almost complete intersection if v(I) < grade (I) + 1. We say that
R is a complete intersection if Risa regular local ring modulo a com-
plete intersection ideal. For an integer k, R satisfies (R,) if R, is regular
for all p e Spec (R) with dim R, < k, R is (G,) if R, is Gorenstein for all
p € Spec (R) with dim R, < k, and I satisfies (CIL,) if I, is a complete in-
tersection for all p € Spec (R/I) with dim (R/I), < k. For a matrix A with
entries in R, I,(A) is the R-ideal generated by all #X¢ minors of A, and
for a set of elements f=f, -..,f, C R we will denote by (f) the R-ideal
generated by f;, - - -, f, whereas (f)’ stands for the transpose of the matrix
(fi - f). If X is a finite set of indeterminates we set R(X) = R[X1,zrx3

DeriniTION 1.1 ([4]). Let (R, I) and (S, J) be pairs of Noetherian local
rings R, S, and ideals IC R, J C S.

a) (S,dJ) is a deformation of (R, I) (with respect to g) if there is a
sequence ¢ C S which is regular on S and S/J such that (S/(a), (J, a)/(a))
= (R, I).

b) (S,J) and (R, I) are equivalent if there are finite sets of variables
X over S, and Z over R, and an isomorphism ¢: S[X] —> R[Z] such that
o(JS[X]) = IR[Z].

DerFiNiTION 1.2 ([6]). Let R be a local Cohen-Macaulay ring, and let
I and J be two (proper) R-ideals, then I and JJ are said to be (algebraically)
linked (with respect to a) (written I ~ J), if there exists a regular sequence
a=a, -,a, CINJ such that J = (@): I and I = (a): J.

It is known that if R is a local Gorenstein ring, I an unmixed R-
ideal of grade g, and @ = «@,, - -+, ¢, C I a regular sequence with (@) = I,
then J = (@): I is linked to I ([6]). If moreover I is Cohen-Macaulay,
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then J is Cohen-Macaulay, and J/(a) is the canonical module of R/I ([6]).
Hence v(J/(a)) = r(R/I), and in particular, v(J) = r(R/I) + g if and only
if ¢ =a, --- a, form part of a minimal generating set of J. In this case,
we say that the link from J to I is minimal. Two R-ideals I and J are
said to be in the same linkage class if there is a sequence of n links
I=I,~1 ~---~1,=4dJ. If in addition n can be chosen to be even,
then I and J are in the same even linkage class.

DerFinITION 1.3 ([3], [4]). Let R be a local Gorenstein ring, let I be
an unmixed R-ideal of grade g, fix a generating sequence f=/f, ---,f, of

&y fi
I, let X = (X,,) be a generic g X n matrix, let S = R[X], ( ) = X( )
(24
Then a¢ =a,, ---,a, C IS is an S-regular sequence, and Weg call Ll(_ff)":
(@)S: IS C S a first generic link of I
In [4], 2.11, it is shown that up to equivalence in the sense of Defini-
tion 1.1b, the pair (S, L(f)) only depends on I, but not on the chosen
generating sequence /. Hence we write L(I) instead of L(f). In [4], 2.13,
we also remarked that if L(I) C R[X] is a first generic link of I, and
peSpec(R), I C p, then L(I)R,[X] is a first generic link of I, We will
use the following property of generic links.

ProrositioN 1.4 ([4]). Let (R, m) be a local Gorenstein ring, let I be
a Cohen-Macaulay R-ideal, and let J be linked to I with respect to the
regular sequence a = «a, ---,a,. Fix a generating sequence f=Ff, ---,f,
of I and a g X n matrix C = (C,;) with entries in R such that (@) = C(f)".
Let L(f) C R[X] be a first generic link as defined in 1.3, and consider p =
(m, X,; — C,;))R[X] € Spec (R[X]).

Then (R[X],, L(f)R[X],) is a deformation of (R, J).

§2. Minimal linkage

For the proof of the main result (Theorem 2.3) we need two proposi-
tions which might also be of independent interest.

ProrositioN 2.1. Let (R, m) be a local Gorenstein ring with residue
class field k, let I be a Cohen-Macaulay R-ideal of grade g which is ge-
nerically a complete intersection, and assume that there is an integer r
such that r((R/I),) <r for all peSpec(R/I) with dim(R/I), < (r + 1)~
Let J be an R-ideal linked to I with respect to the regular sequence

A= Oy + 00y Uge
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Then dim, ((a, mJ)md) > g — r.

Proof. Let L(I) C R[X] be a generic link of I, then by Proposition
1.4, there exists p € Spec (R[X]) such that (R[X],, L,(I),) is a deformation
of (R,J). Set (R, J)= (R[X],, L(I),) and let @ =&, ---, &, be the R-
regular sequence defining the link IR ~ J. The R-ideal IR has the same
properties as I, y(J) = u(J), but since I is generically a complete inter-
section, and J is the localization of a first generic link of I we also
know that &, - --, &, generate J generically ([3], 2.5). Moreover let m be
the maximal ideal of R, then

dim, (& md)md) = v(J) — uJ/(@))
=u(J) - r(R/IR)
=(J) — r(R/T)
= u(J) — u(J/(@))
= dim, (o, mJ)/mdJ) .

Hence we do not change the assumptions or conclusions in the proposi-
tion if we replace I, a,J by IR, & J. However we may now assume that
J is generically generated by «, - - -, @,.

Now let ¢t = dim, ((a, mJ)/mJ). After extending the residue class field
if needed and changing «,, - - -, @, by elementary transformations, we may
assume that «,, - - -, @, form part of a minimal generating set of J and of J,
for all p e Ass (R/J). After factoring out «y, ---, @, we are in the follow-
ing situation: (R, m) is a local Gorenstein ring, I is a Cohen-Macaulay
R-ideal, r((R/I),) < r for all p with dim (R/I), < (r + 1)}, J is linked to I
with respect to «, J is generically a complete intersection, but moreover
a C md, and grade J = g — t. We need to prove that grade J < r, since
then t > g — r. From now on we write again grade J = g, and we will
show g < r. We may assume g > 0.

Let f=f, ---,f, be a generating set of J. Since ¢ C mdJ, there exists
a g X n matrix A with entries in m such that (a)* = A(f)". Let X be a
generic g X n matrix, set (@) = X(f)’, consider the first generic link L,(J)
= L(f) = (®R[X]: JR[X], and write T = R[X], x. Because the entries
of A are in m, it follows from Proposition 1.4 that (7, L(f)T) is a defor-
mation of (R,I). Since R/I has the property that r((R/I),) < r for all
prime ideals p with dim (R/I), < (r + 1)}, any deformation of R/I, in par-
ticular 7/L,(f)T, has the same property (cf. [4], 2.3). But because the
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locus {p|peSpec (RIXD, r(RIXIL(f),) =r+ 1} = {p|p e Spec (RIX]),
wWJR[X])/(&),) > r + 1} is defined by a homogeneous ideal in R[X], it
even follows that r((R[X]/L(f)),) <r for all peSpec(R[X]/L(f)) with
dim (R[X]/L(f)), < (r + 1)

For ge Ass(R/J) let h = h,, ---, h, be a minimal generating set of
J,, let Y be a generic g X g matrix, set (§)° = Y(h)’, and consider L,(J,) =
L(h) € R[Y]. Then by [4], 2.13.b, (R,[Y], L,(h)) is equivalent to the pair
(R [X], L(f)R,[X]), and hence also R/[Y]/L(h) has the property that
r((R[Y]/L(k)),) <r for all prime ideals p with dim (RJ[Y]/L,(h)), <
(r + 1% Instead of J, and R, we write again J and R. We have to
show that g < r.

Suppose that g >r. Then p = (m, I, (Y))e Spec (R[Y]), with p D
(B, det (Y)) = L,(h), and dim (R[Y]/L,(h)), = (r + 1)*. However, r(R[Y]/
L,(h)), = v((JR[Y]/(B)),) = r + 1, which is impossible by our assumptions.
Therefore, g < r. O

ProposiTION 2.2. Let R be a Noetherian local ring which is a com-
plete intersection, let I be an unmixed R-ideal of height one, and assume
that I, is principal for all p € Spec (R) with dim R, < 3.

Then I is a principal ideal.

Proof. By [2], Theorem 3.13, Exp. XI, any complete intersection of
dimension at least 4 is parafactorial, i.e., the Picard group of its punctured
spectrum 1is trivial.

Now assume I is not principal and localize at a minimal prime p such
that I, is not princiral. Then R, is a complete intersection of dimension
> 4 (by assumption) and I, represents an element in Pic (U) where U =
Spec (R,) — {p,}. Since R, is parafactorial this element is trivial. Hence
there is an element of ae R such that (a), = I, for all g, # p,. This
implies that (a@),: I, is p-primary which is impossible or else I, = (a),
since [ is unmixed. Od

TueoreM 2.3. Let R be a Noetherian local ring which is a complete
intersection, let 1 be a Cohen-Macaulay R-ideal of grade g, and assume
that (R, I) has a deformation (R, I) where I is generically a complete
intersection and ﬁ/f satisfies (G,). Let a =a,, --+,a, C I be a regular
sequence with (@) #= I, and set J = (a): L

Then either a form part of a minimal generating set of J, or both I
and J are complete intersections.
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Proof. By [4], 2.16, there exists an R-ideal J linked to I with respect
to a regular sequence & such that (R,J) is a deformation of (R,J). As
in the proof of Proposition 2.1 one sees that « is part of a minimal gen-
erating set of J if and only if & is part of a minimal generating set of
J. Hence we may replace I, a,J, by f, g?,j and thus assume that I is
generically a complete intersection, and R/I satisfies (G,).

Then we may apply Proposition 2.1 with r =1, and we obtain
dim, ((a, mJ)/mJ) > g — 1. After extending the residue class field of R
if needed we may assume that «,, - - -, @, , form part of a minimal gener-
ating set of J. Hence by factoring out (e, ---, @, ;) we do not change
the assumptions and conclusion of the theorem (except possibly the as-
sumption that I is generically a complete intersection, which is irrelevant
for the remainder of this proof).

Hence from now on g =1, and o, = . Let m be the maximal ideal
of R. Assuming that « C mJ we will show that J is principal. Then
also I is principal since g =1. Let f=/f, ---,f, be a generating set of
J, then « = > 7., C,f, with C,e m. For variables X = X, -.-, X, set @ =

»_1 X.f, € R[X] and consider the first generic link L(J) = L(f) = aR[X]:
JR[X]. Since C,em, (R[X] x), L(f)R[X],,x) is a deformation of (R, I),
and it follows as in the proof of Proposition 2.1 that R[X]/L,(f) satisfies
(G).

Suppose that J is not principal, then by Proposition 2.2 there exists
a prime ideal p D J with dim R, < 3 such that J, is not principal. On
the other hand, R/I being (G,) it follows that I, is either Gorenstein or
the unit ideal, and hence v(J,) < g+ 1 = 2. Thus v(J,) = 2, since J, is
not principal. Moreover, any generic link of J, is equivalent (in the sense
of Definition 1.1b) to a localization of a generic link of J, and hence also
satisfies (G,). Therefore localizing at p we may assume that dim R < 3,
and u(J) = 2. LetJ = (hy, hy), B = Yh, + YLh,e R[Y,, Y,] = S, and L,(J) =
L(h,, hy) = BS: JS. Then dim S/L(J) < 4, and since S/L(J) is (G), it
follows that S/L,(J) is Gorenstein. Therefore

V(IS/BS) i, r1vw) = T((SIL{))m,v1,r0) = 1

which is impossible, since fe (Y, Y;)J and therefore

W(JSIBS) o, vrr) = v(J) = 2. a
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§3. Applications

The following corollary generalizes a result from [4] which states that
if I is an ideal in a regular local ring R such that I is in the linkage
class of a complete intersection and R/I satisfies (G,), then I is Gorenstein.

CoRrOLLARY 3.1. Let R be a regular local ring, let I be a perfect R-
ideal which is generically a complete intersection, and assume that R/I
satisfies (G,).

Then for any R-ideal J in the even linkage class of I, r(R|J) > r(R/I).
In particular if I is in the even linkage class of a Gorenstein ideal, then
I is Gorenstein.

Proof. Assume that there is a sequence of links I =1, ~ I, ~... ~
I,, =J. We will prove by induction on n that r(R/J) > r(R/I). Let
n =1 We may suppose that I is not a complete intersection. Let a =

a, -+, a, be the regular sequence defining the link I ~ I,. By Theorem
2.3, « is part of a minimal generating set of I, and hence v(I)) = v(I,/(a))
+g=r(R/I)+ g Let §=24, -, B, be the regular sequence giving the

link I, ~ J. Then »(I)) < »(I,/(B)) + g = r(R/J) + g. The above inequations
now imply r(R/J) > r(R/I). Now let n > 2. In [4], 2.17 we showed that
in some local ring S = R(X), which is obtained from R by a purely trans-
cendental extension of the residue class field, one can find a sequence
of links IS = J, ~ J, ~-- -~ ,, such that S/J,,_, is generically a com-
plete intersection and satisfies (G,) (since R/I has these properties), and
moreover r(S/J;,) < r(R/J). Then by induction hypothesis, applied to IS
and o, ., r(R/I) = r(S/IS) < r(S/d,,_,) and r(S/d,,_,) < r(S/J,,). Com-
bining the above inequalities we obtain r(R/I) < r(R/[J). O

Let R be a regular local ring with residue class field &, and let I be
an R-ideal. Consider the graded algebra A, = Tor® (R/I, k). We are in-
terested in the condition 4? = 0, which means that in a minimal free R-
resolution of R/I, none of the Koszul relations on I can occur among
the minimal generators of the first syzygy module of I. It is well-known
that A2 =0 if I is a Gorenstein ideal of grade 3, but not a complete in-
tersection ([1]). The next corollary generalizes this result:

CoroLLARY 3.2. Let R be a regular local ring, let I be a perfect R-
ideal of grade 3, which is not a complete intersection, and assume that 1
is generically a complete intersection and R|I satisfies (G,).

Then A = 0.
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Proof. Let m be the maximal ideal of R, and let F: 0 — F, 2> F,

ﬁ)Flﬂ)Fo—)R/I —0 be a minimal free R-resolution of R/I. We

choose bases F, = @ Rd,, F, = @ Re,, and set f, = ¢,(e)).

Suppose that A} 0. Then we may assume that ¢,(d,) = fie, — fies.
It is clear that ht (f,R + f,R) = 2, since otherwise f, = ab, and f, = ab,
with 0 = aem, b, e R, b,c R, and hence ¢,(d,) = a(b,e, — b,e;) with be, —
be, e ker o, which is a contradiction to the minimality of F,. Because
ht (f,R + f.R) = 2, we may complete f,, f, to a regular sequence f = f, f,, f;
c I. Let K, = K(f, R) = A(Rg, ® Rg, ® Rg;) be the Koszul complex, and
u: K — F, a morphism of complexes with u, =1id;. We may choose

ug N &) = —d,.

0——)F3 §03)F2 ;Fl Fo

o e, ]

0—> K, 2> K, "> K,—>K,

Set J = (f): I. Since the R-dual (denoted by —*) of the mapping cone of
u, yields a resolution of R/J ([6]), we obtain the following presentation

of J:
v 0
-
Ki®Ff — S Kf@QFf—J—0

Since u,(g, N g) = —d, and hence uX(d¥) ez mK¥, it follows that v(J) <
rank (K @ F}) = 3 + r(R/I). Thus f,, [, f; cannot be part of a minimal
generating set of J. This is a contradiction to Theorem 2.3. O
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