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1. Introduction

The modified quantum algebra, which is denoted ﬁq(g), was introduced in [1] for
GL,-case and in [5] for general case. In [10], G. Lusztig showed the existence of
canonical (crystal) base of modified quantum algebras for general Lie algebra.

In[6], M. Kashiwara described detailed crystal structure of the modified quan-
tum algebras, in particular, he gave the Peter—Weyl| type decomposition theorem
for the cases that g is finite type and affine type with non-zero level (=central
charge) parts. But, in [6, 7], it is mentioned that the structure of level O part for
affinetypeis still unclear. By the definition of the modified quantum algebra (2.1),
we know that originally U,(g) is neither a highest nor a lowest weight module.
Nevertheless, if g is affine type, we can apply the powerful tool : theory of inte-
grable highest (resp. lowest) weight modules to the positive (resp. negative) level
part Uy(g)+ = 69(c,)\)>0Uq(9)a)\ (resp. Uy(g) - = 69(c,>\)<0Uq(9)a/\) by virtue of
Weyl group actions on crystal bases, where c is a canonical central element of g.
But, in the level O case, there is no such a tool. However, evenin level O case, it
isstill agood way to consider Weyl group actions on crystal bases. Classification
of 'extremal vectors' (Definition 2.3) isacrucia point in this paper. By applying
this classification to ‘path’ realization, we can clarify crystallized structure of the
level O part of the modified quantum algbra for g = sl, case and give an explicit
description of its every connected component as a crystal graph. The Peter—Weyl
type theorem for this case will be given in the forthcoming paper.
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The path realization for the level 0 part of the modified quantum algebra for
g = slp case has an another feature, which is aphysical one. A set of ‘path’ islike
the following thing
o CikeZ,ip=0(k<0)),
{("'7zkazk+la"'7)1 Zk:_zk—i-l(k > O) (11)

Meanwhile, thereis so called ‘ XXZ type chain model’, which isakind of physical
model on the following space:

S:(---®CH'1®CZ+1®CZ+1®---)*,

where C'** has a basis { (i) };=o,...; and the notation (- - -)* implies the condition
that § isspanned by vectors: - - ® (i) ® (ig4+1) ® - - - With iy, +451 = [ for |[k| > 0.
We can see that this condition is similar to the condition in (1.1). It is known that
the space § has a Uq(s/[\g)—module structure. In fact, in [2] and [3], this space is
realized as

5= @D vev(w:,
(NQENNE

where V' (¢) (resp. V(—u)) is an integrable highest (resp. lowest) weight module.
By [10] and Theorem 2.1.2 in [6], we can deduce that U,(g)ay is akind of limit
of  and we know that there exists crystallized structure for modified quantum
algebras. For such alimit, in [11] we gave some related algebra structure and its
representation theory. But in this paper, we do not touch this subject.

Let us see the organization of this paper. In Section 2, we shall introduce
some important notions and results related to the follwoing sections. In Section
3, we study affinization of classical crystal and give a classification of extremal
vectorsin B®", where B = {+} is the two-dimensional crystal, called ‘spin’. In
Section 4, we shall give ‘path realization’ of U,(g)a) with level of A = 0 and
introduce notions of ‘domain’ and ‘wall’, which play a crucial role in this paper.
We also describe the actions of ¢; and f; on a path. In Section 5, we give the
path-spin correspondence, which is a morphism of classical crystal between paths
and spins. In Section 6, first of all, we shall introduce some parametrizationswhich

are necessary to describe connected components in B(U,(g)o). Then we shall
give explicit crystallized structure of U, (g)o by classifying all extremal vectorsin
Uq(G)o-

2. Preliminaries

In this section, we give some important notions for the following sections. All
notations and definitions follow [6, Sect. 1].
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DEFINITION 2.1. Thecrystal graph of crystal B isan oriented and colored graph
given by therule : by ——b, if and only if by = f;b1 (b1,b2 € B).

DEFINITION 2.2. (i) A morphism of crystals([6, Definition 1.5.2.])¢): B1 — B>
is called strict if the associated map from By LI {0} — B> U {0} commutes with
al ¢; and f;. If ¢ isinjective, surjective and strict, ¢ is called an isomor phism.

(ii) A crystal B isanormal, if for any subset J of I such that ((«, )i jes
IS a positive definite symmetric matrix, B is isomorphic to a crystal base of an
integrable U, (g,)-module, where U, (g,) is the quantum algebra generated by e;,
fi (G € Jyandq" (h € P¥).

For crystals, we can define their tensor product asin [6, Sect. 1]. Let C(I, P) be
the category of crystal sdetermined by theindex set of simpleroots I and theweight
lattice P. Then ® isafunctor fromC(Z, P) x C(I, P) toC(I, P) and satisfies the
associativelaw: (B1® B2)® B3 = B1®(B2® B3) by (b1®b2) ®b3 <> b1®(b2®b3).
Therefore, the category of crystalsis endowed with the structure of tensor category.

For anintegral weight A € P, let U,(g)ay betheleft U,(g)-module given by

Ug(g)an : > Uglo)(d" — 4™V, (2.1)
heP*

where a, is the image of the unit by the canonical projection. The direct sum
Uq(g) := P rep Uy(g)ay iscaled modified quantum algebra [6, Sect. 1].

There exists crystallizations for modified quantum algebrain the sense of [10]
and Theorem 2.1.2in [6].

Let B(+o00) be the crystals for the subalgebras U (g) and T\ (A € P) bethe
crystals given in Example 1.5.3 in [6]. The following theorem plays a significant
rolein this paper ([6, Sect. 3]).

THEOREM 2.3. B(Uy(g)ay) = B(oo) @ Th ® B(—o0) asacrystal.
COROLLARY 2.4. B(U,(g)) = ®xepB(00) ® T ® B(—o0) asacrystal.

We can define the Wey!l group actions on normal crystals ([6, Sect. 7]). Let S;
be the simplereflection asin (7.1.1) [6].

DEFINITION 2.5. (i) Let B be a normal crystal. An element b € B is called
i-extremal, if &;b = 0or f;b = 0.

(i) Anelementb € Biscaledextremal if forany! > 0, 5;, ... S; bisi-extremal
foranyi,iy1...49; € I.

The following theorem plays a significant role in Sect.6.

THEOREM 2.6. Any connected component of B(U,(g)) containsan extremal vec-
tor.
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3. Affinecrystals
In the rest of this paper, we fix g = sl,. We follow the notationsin [3], [4].

3.1. AFFINIZATION OF CLASSICAL CRYSTALS

U := U,(sl) is the quantized enveloping algebra associated with P. Let U :=
Ul (slz) be its subalgebra generated by e;, f; and ¢" (h € (Py)*). The algebra
U’ is adso the quantized enveloping algebra associated with Py. Now, we call a
P-weighted crystal an affine crystal and a P.;-weighted crystal aclassical crystal.

Remark. A U-module has a U’-module structure but in general, the opposite
caseisfase.

DEFINITION 3.1. Let B beaclassical crystal. We define the affine crystal Aff (B)
associated with B asfollows

Aff(B) := {z"®b|b€ B, n € Z}, (3.1)

where z is an indeterminate. We call Aff(3) an affinization of B. The actions by
¢; and f;, and the data are given as follows:
&i(" ®b) =20 @eg(b),  filz"®b) =2""%0® f;(0),
gi(2" ®@b) = &(b), @i(2" @ b) = p;(b), (3.2
wt(2" @ b) = nd + af (wt(b)).
By (3.2) we know that if B is acrysta base of U’, Aff(B) is a crystal base of

U. Here, note that even if aclassical crystal B is connected as a crystal graph, its
affinization Aff (B) is not necessarily connected.

EXAMPLE 3.2. Let B = {+, —} bea2-dimensional classical crystal given by

éo(+) = fil+)=—,  e=) = fol-) =+,

éo(—) = fi(=) =0, é(+)=fo(+)=0,

wt(+) = £(A1 — Ao), 3.3
p1(+) = po(—) =eo(+) = c1(—) =1,

p1(—) = wo(+) =eo(—) =e1(+) =0

It is easy to see that B®? is connected. But its affinization

Aff(B®?) 2 2" @ ®e | e =+, neZ} (3.4)
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is not connected. In fact, thisis divided into the following two components

Aff(B®?) = 2 o+ + 2l -9+, M e -0 -,
2@+ ®—,|ne},
Aff(B®)g == {2 ®+®+, 2" ® - @+, 27" ® - ® —,

"o+ ®—,|n ez}

3.2. EXTREMAL VECTORS IN B®n

Let B be the 2-dimensional classical crystal introduced in Example 3.2.

PROPOSITION 3.3. B®" is connected as a crystal graph. Let E be the set of all
extremal vectorsin B®™. Thenwe have E = {(+)%", (—)®"}.

Proof. By thefact that B isaperfect crystal [4, Corollary 4.6.3.], we can easily
obtain the connectedness of B®™.

By [9, Sect. 2], we know that

A @ (H)®) = (-)* e (1)
() @ (1)) = (1) e (+)7* 9
fo(+)%F @ (-)¥) = ()@ (-)*1
fo(H)* @ ()¥) = (H)* o (-)**

where we consider (+)®™ = 0if m < 0. Since B®" isanormal crystal, we get

S1(H)F"=8o(+)7" =(=)"",  Su(=)T"=8(=)*"=(+)"".  (36)
From (3.6) and the fact that &1 (+)%" = éo(—)®" = f1(—)®" = fo(+)®" = 0, we
know that (+)®" and (—)®" are extremal vectors.

Now we shall show that there is no other extremal vector without these two
vectors by using the induction on n.

Forn = 1, thisistrivial. We assumethat « ® + is an extremal vector in B="+1,
Here note that for any b € B®™, ;(b) and £;(b) are given by
0i(b) = max{n; ffb # 0},  &i(b) = max{n; &b # 0},
and then

@i(b) >0, gi(b) > 0. (3.7)
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We have f1(u ® +) # 0 by f1(4) # 0and (1.5.16) in [6]. Then, by the definition
of extremal vectors, we have é1(u ® +) = 0 and then

é1u =0, (3.8
sinceei(+) = 0, p1(u) > 0andthenéi(u ® +) = é1(u) ® + by (1.5.16) in [6].
We shall show

éo(u®+) #0. (3.9)

If po(u) > 1, po(u) > 1= eo(+) and then ép(u ® +) = ép(u) ® + # 0 by (3.8).
Otherwise, po(u) < eo(+) and then ép(u @ +) = u @ éo(+) = u ® — # 0. We
get (3.9) and then by the definition of extremal vector, we have

folu® +) = 0. (3.10)

By (3.8), we havee1(u) = 0. Then we get (h1, wt(u @ +)) = (h1,wt(u)) + 1 =
v1(u) —e1(u) + 1= ¢1(u) + 1 > 0 by (1.5.4) in[6]. Thus we have

Si(u® +) = fi O (4@ 1) = FA Yy @ fi(+) = Si(u) © —.

This Si(u) ® — is extremal and f1(S1(u) ® —) = 0, which corresponds to
(3.10). Therefore, by the similar argument as above, we get é¢pS1(u) = 0 and
So(S1(u) ® —) = SoS1(u) ® +.

By arguing similarly, we get é1(SoS1u) = 0. Repeating these arguments, we
obtain

&1(S0S1...51u) =0,  &(S1S0. .. Su) = 0. (3.11)

Theset {(S051)*u}rez,, isasubset of thefinite set B¥". Thenthereexistl, m €
Z;o such that { > m and (SoSl)lu = (S0S1)™u. Then we have (SoSl)lfmu =y
and then for any p > Othereexistsr € Z- suchthat (I — m)r > p. Thuswe have

(5150)Pu = (SoS1)! =™ Py,
So(S1.50)Pu = S1(SpS1) ™ Py, (3.12)
By (3.11) and (3.12), we obtain
€1(5150...5150)u =0,  &o(SoS1...5150)u = O. (3.13)
Weshall show that fou = 0. Assuming fou # 0, weshall deriveacontradiction.
The assumption implies ¢o(u) > 0. If po(u) > 2, fo(u ® +) = fo(u) ® + # 0

sinceep(+) = 1. Thiscontradicts (3.10). Then we know that ¢o(u) = 1. Now we
writeu = u1 ® u2 ® - - - ® uy, (u; = £). By using (3.8) and o(u) = 1, we get
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up =+, and eo(u) > po(u) =1, (3.14)
because 0 < (h1, wt(u)) = —(ho, wt(u)) = eo(u) — @o(u). Now, by applying
Remark 2.1.2 in [9] and (3.14) to Spu, we obtain that Sou = &, ")y, =
&0~ isin the following form

Sou=+®u, (3.15)

where v/ € B®"1, i.e. the action of Sp never touches u;. A vector in the form
(3.15) does not vanish by the action of ég. This contradicts (3.13) and then we get
wo(u) = 0. Thus, we have

é0_<h0;'Wt(u®+)> (

Solu® +) = u®+) = e W @ )

= & ue ) =" ueéo(+)

The vector S u ® — doesnot vanish by the action of fo since fo(—) # 0. Since
Sou ® — is an extremal vector, this vanishes by the action of . By the similar
argument to obtain (3.9), we have é;(Sou ® —) # 0 and then f1(Sou ® —) = 0.
By exchanging + and —, and arguing similarly to the case fo(u) = 0, we get

f1(Sou) = 0. (3.16)
By repeating the above argument, we obtain
fo(S180...Sou) =0,  f1(SoS1i...Sou) = 0. (3.17)

Furthermore, by the similar argument to get (3.13), we get

fo(S0S1...S1u) =0,  f1(S1S0---S1u) = 0. (3.18)

By (3.11), (3.13), (3.17) and (3.18), we know that the vector « is an extremal vector
in B®™, By the hypothesis of the induction and (3.14), we get

u=(+)®" and then u ® + = (+)*".

By assuming u ® — is an extremal vector in B®"*! and discussing similarly, we
getu = (—)®" andthenu ® — = (—)¥" L. O

4. Path realization for B(Uay) with level of A = 0
4.1. CRYSTAL B(oco) AND B(—00)

Now, we define the following sl>-classical crystal
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DEFINITION 4.1. We set
By :={(n)lne€Z},  (wt(n) =2n(Ao— A1),

ein) =(n—1,  filn) =(n+1),

er(n) =n,  @1(n)=-n, eo(n)=-n,  o(n)=n.
By the above data, B, is equipped with aclassical crystal structure.
We introduce the following remarkable result (see [8]).

PROPOSITION 4.2. Let B, be as above. We get the following isomorphism of
classical crystal:

B(00)—=B(0) ® By (resp.B(—00)—+ By ® B(—0)),

Uoo M Uso @ (0)  (resp.ti_oo — (0) @ u—_wo). 4.1)

By applying this proposition repeatedly, we get for any k£ > 0,

Y, : B(co)—5B(00) @ BLF (resp.B(—o00)—3BEF @ B(—c0)),
Uoo = oo ® (0)%F (resp.u_oo — (0)F @ u_ o). (4.2)

LEMMA 4.3. For any b € B(o0) (resp. B(—0)), there exists & > 0 such that

Y1 (b) € oo @ B2F  (resp.B2F @ u_ ). (4.3)
We set
P(00) = { (o) iy ki1, oy i1) | ik € Boo
(00) == {( k k41 1) | ik @4
and if [k| > 0,7, = (0)},
P(—OO) = {(io, ..,ik,ik+1, ) | Zk; € Boo (45)

andif |k| > 0,4, = (0)}.
Now, we consider formally us, = -+ ® (0) ® (0) = (..., (0), (0)) (resp. u_o =
(0)®(0)®--- = ((0), (0),...)). Thenby (4.2) and Lemma4.3, we get thefollowing
isomorphism between B(co) (resp. B(—o0)) and P(oco) (resp. P(—o0)).
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PROPOSITION 4.4. The crystal B(oco) (resp.B(—o0)) is isomorphic to P(oo)
(resp.P(—o0)) given by B(oco) 2 b +— p € P(oo) (resp. B(—o0) 2 b — p €
P(—o0)) whereyy(b) = o ® i @ Qi_2Qi_1 (resp.yy(b) =i @11 Q-+ ®
ik ® u_oo) for [k| > 0.

4.2. PATH

Let T beasin[6, Example 1.5.3 (2)]. The following lemma is derived easily by
Example 1.5.3 (2) and (1.5.16) in [6].

LEMMA 4.5. We'set A = m(Ag — A1) € Py (m € Z). Then the map

©: T\ ® Boo—>Boo @ T_),

tAa®(n)— (m+n)®t_y, (46)
is an isomor phism between classical crystals.
Applying
T AT T\ 2Ty, and BeTh2XTo® B X B, 4.7)
to (4.6), we get isomorphisms
0+ Boo——T1) ® Boo @ Ty, 48)
(n) = ta ® (nFm) @tiy.

By applying (4.8) to (4.1), we get the following isomorphisms of crystal
B(—00)—=T_)\ ® Boo @ T_) ® B(—00), 4.9)
Uroo P T 2@ (M) @T_\ @ U—_oo,

B(—00)—>T\ ® Bso @ T @ B(—00), (4.10)

Uoo  EA® (=) D) ® U_oo.

By combining (4.9) and (4.10), and using (4.7) again, we obtain an isomorphism
of crystal,

T\ ® B(—00)—3Bog @ Boo @ Ty ® B(—0)

411
A ®U_oo = (M) @ (—m) @ty ® U—_co- (4.11)
Now, we set

P (—00) = {p = (i0, 91, .-, i, ") |ik € Boo
and if k| > 0, iz, = (m)and g1 = (—m)}.

By using (4.11) repeatedly and arguing similarly asin 4.1, we get
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PROPOSITION 4.6. Thefollowing is an isomor phism of crystal
T\ @ B(—0) = Py (—00). (4.12)
Herenotethatt\ @ u_oo — (M) @ (—m) @ (M) @ (—m) @ - - -
We set
P = {p = ( e 7ik7ik+17' ey -1,10,01, - - 7il7il+l7 e )|Zk € Boo
if k<0, = (0) andif I>>0,iy = (m) (4.13)
andiz 1 = (—m)}.

Now let us call an element of P,,, m-path or simply, path.
By applying (4.4) and (4.12) to Theorem 2.1, we can easily obtain the following
result:

THEOREM 4.7. For A = m(Ag — A1) € Py(m € Z), wehave B(U'ay) & Pp,.

Here note that this is an isomorphism of classical crystals.

4.3. WALL AND DOMAIN

For thissubsection, seee.g. [2], [3]. Intherest of this paper, weidentify B, with Z.
Thus, for (i) € By, We denote: and then for 7, j € B, we can formally consider
the summation and subtraction i + 7, and the absolute value ||.

Wefix aninteger m € Z and let p € P,,, be am-path.

DEFINITION 4.8. (i) A pathp = (..., 4ix_1,%,...) hasl walls at position k(I €
Zoo,k € 2),if |ig_1 +ix| = L.

(i) Suppose that there are walls at position k. The type of walls at position & is
+(resp. —) if ig_1 + ik > O(resp. ix—1 + ix < 0).

We also defineafunctionn: P, — Z0 by

n(p) =Y lix1+ ikl

kez

and we call this the total number of wallsin p.
Here note that for any p € P,,,, n(p) isfinite by the definition of P,,,.

DEFINITION 4.9. A segment d = j,%11,-.-,% INp € Py, isafinite domain
with lengthl — j + 1in p if there arewalls at the position j and [ + 1 and there is
nowall at positionsj + 1,5 + 2,...,[. Wedenotel(d) := [ — j + 1 for thelength
of domain d.
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Remark.

(i) Inthis definition, we can consider a domain with length 0. This occursin the
following case. If there are more than one walls at the same position, thereis
adomain with length 0 between a pair of neighboring two walls.

(if) By the definition of P,,,, we know that any path has two infinite sequencesin
theforms...0,0,0and +m, Fm, .... We call these infinite domains.

(iii) By the definition of finite domain, any finite domain with positive lengthisin
the following form;

k,—k,k,—k, ..., +k Fk. (4.14)

EXAMPLE 4.10. Forp = (...,0,0,1,-1,3,-3,3,...), we visualize walls and
domains

...00[1—1|[3—33.... (4.15)

In (4.15), we know that there are three walls, two finite domains: 1 — 1 and a
zero-length domain and two infinite domains: ...00and 3 — 33.. ..

Now, for n € Z-o we set

P (n) :=A{p € Pmln(p) = n}.
Itistrivial that P, = ®,>0Pm (n). By smple calculations, we get
PROPOSITION 4.11. (i) If m isodd (resp. even), then P,,,(2n) = 0 (resp. Py, (2n—

1) = 0).
(i) Ifn < |m

, then P, (n) = 0.
We shall see the stability of P, (n) by the actions of ¢; and f;.
PROPOSITION 4.12. For apathp € P,,(n), supposethat f;p # 0 (resp. &;p # 0),

then we have n(f;p) = n(p)(resp. n(émp) = n(p)).
Proof. Forapathp = (..., ik, ik1...) andi = 0,1, we set

af) =3 @iliy) — eilij4a). (4.16)
i<k

Remark. If £ < Otheni; = 0, thuswe haveagf) = Ofor k < Oand by the fact
that p; () = &;(Fm) wehavea)) = '), for k > 0.

In order to prove the proposition, we shall see the following lemma.
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LEMMA 4.13. (i) Forapathp = (..., ik, %kt1- . .), if thereexistsk € Z suchthat

a?) >d(w<k) and o) >a (v > k), (4.17)

v

then fip = (..., ik—1, fi(ir), ix41. . .) and otherwise fip = O.
(i) For apathp = (..., ik, 9k11.-.) € Pp, ifthereexistsk € Z such that

a? > a?(l/ <k) and ol > a?(l/ > k), (4.18)
then €;p = ( ey lE1, él(lk), ik+1 .. .), and otherwise €;ip = 0.

Proof of Lemma 4.13. For any p = (..., ik, 0k+1,-.-) € Pm(n) there exist
7,1 € Z>oSlJChthaI’ik =0ifk —3 and iy, = mandi2k+l =—mifk >1.Then
p isidentified with

U ® 1 j Q1 j11® - Ry Qi1 QN QU 0. (4.19)
Therefore, by theformulay; (ue) = €i(ux) = i(i—;) = €;(i—;) = 0and Propo-
sition 2.1.1 (i) in [9] we obtain the desired result. O

Here note that originally Proposition 2.1.1 (i) in [9] can be applied to ‘crystal
base’, but we have (1.5.15) and (1.5.16) in [6] and then we can apply Proposition
2.1.1 (i) in [9] to general crystals.

Now, let us show Proposition 4.12 (i). We shall consider i = 1 case. Suppose
that for p = (..., 4k—1, %k, tk+1...) we have fip = (... k-1, f1(ik), k1. - ).
Weknow that f1(ix) = ix + 1. Thus,weget fip = (..., ig_1,ix +1,ig41...) and

by Lemma4.13, we have aél_) 12 a,(y and a,(elll > a,(y. By using this, we obtain,

0<al?; —al = —(palin-1) — e1(ir)) = i1+ ir, (4.20)

0 < af)y —a) = pulix) — exlips1) = —ix — ips1. (4.21)
By (4.20) and (4.21), we get i1 + i > Oand iy + i1 < 0, and then

lik—1 + f1(ik)| = lie—1 + ix + 1| = |ip—1 +ix| + 1,

|F1(ig) +iksa] = lig +ipgr + 1) = [ig +ipga] — 1.

Then n(flp) = n(p). By arguing similarly we can prove other cases. O

5. Path-spin correspondence

The purpose of this Section is to give a strict morphism of Py-weighted crystals
Pp(n) — B®". (cf. 2.2)
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Now, we shall define a map from P,,,(n) to B®™ asfollows: For p € P, (n),
let (¢1,¢2,. .., t,) bethe sequence of wall types (ordered from theleft to the right).
Themap +): P,,(n) — B®"™ isgiven by

Pp(p) = (1) @ (—12) © - @ (=), (5.1)

forany p € P, (n).

THEOREM 5.1. The map ¢ is a strict morphism of Py-weighted crystals from
Ppn(n) to B,
Proof. In order to prove the theorem, we shall seethat 1) satisfies

wt(p) = wi(y(p)), (5.2)
ei(p) = €i(¥(p)), »ilp) = @i(Y(p)), (5.3)
i (p) = (fip), (5.4)
ey (p) = (éip), (5.5

forany p € P,,(n) andi =0, 1.

An m-path g = (gk)rez Satisfying g = O for & < 0, gz = m and go1 =
—m for k > 0 is called m-ground-state path. ¢ = (gx)xecz just corresponds to
Uoo @\ U_oo INB(00) Ty ® B(—00). Thenwt(g) = m(Ao— A1). Therefore,
for p = (ix)kez the following formulais obtained easily

wt(p) = m(Ao— A1) + D (wi(ix) — wt(gy))
kez

= (m +2) (ip— Qk)) (Ao — Az). (5.6)

keZ

By the definition of path, we know that the summation in (5.6) isfinite. Therefore,
by thefact gx_1 + gx = 0 (k # 0) and g_1 + go = m, we have

wt(p) = (m + ) (ik—1+ ik — ge-1— gk)> (Ao — Aq)

kez
= (H{(+)wallsin p} —f{(—)wallsin p})(Ao — A1) = wi(y(p)).
Here note that wt(+) = £(A1 — Ao). Now we get (5.2).
Letusshow (5.3). Forp = (..., ik, ik+1, - --) € Pm(n),letaandb besufficient-

ly large integers such that i_; = 0, ip, = m and i1 = —m forany j > a« and
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k > b. Therefore, sincep isidentified With us, @i ® - - - @i @41 QA QU_oo
and p;(u_) = €i(u—_oo) = 0, by (1.5.15) in [6] we have
0i(P) = Pi(Uoo ®i_j ®@ -+ ®lgx ®izp11 ® ty), (5.7)
for j > a and k > b. By the formula ¢;(t,) = —oo, Proposition 2.1.1 (0) in [9]
and (1.5.15) in [6], we get
_ : (i) '
0i(p) = (hi, A + @i(izk+1) + 7j<r;12>2(k+1(a22k+1 —al)). (5.8)

We shall consider i = 1 case. Then (5.8) can be written explicitly as follows

¢1(p) =  max (_ Z ls—1+ is) ) (5.9

—1<p<
JSPREEAL\ ikt

by using @1 (izk+1) = —izky1 = m = —(hg, A).

Let k1, ko, ..., ks (s < n) be the sequence of positions of wallsin p such that
k;j < kjy1 andthereisnowall inj # ky, ..., k. Here note that since more than
one walls can occupy the same position, s < n. Let ¢; be the position of ith wall
(thenecy < 2 < -+ < ¢) and y; bethetype of ith wall. We set

N ::]j{LT:i|crE{kj,...,ks}}, G=12...,s).

Sincei,_1+i. = 0if ¢ & {k1,..., k- }, Theformula(5.9) can bewritten asfollows
_ Nt
p1(p) = l<]<s { Zlk, 1+ Zk,} = E%S{N N;}, (5.120)

where max*{z1,...,2zp} := max{z1,...,z,,0} > 0. Note that if thereisno (—)
wall in p, p1(p) = 0and p1((p)) = p1((—)®") = 0. Then we may assume that
there exists (—) wall in p.

We shall investigate @1 (1(p)). By Proposition 2.1.1 (0) in [9], we can get the
following

P1(4(p) = p1((=1) @ - @ (=tn))

= maX{ PORZICTY N 61(—%)}- (5.11)

j<k<n j<k<n

Since p1(+) = L= e1(—) and p1(—) = 0 = e1(+) by (3.3), Xjchcnpr(—tr) =
e =—1 7 <k <npandZjcpener(—u) = f{tk = +; 7 <k < n}. Thenwe
have
e1(¥(p))
= 1r<n]a<x {M{ue=—7<k<n}—t{uw=+;7<k<n}} (5.12)

Therefore, if ¢ (1 < t < n) givesthe maximum in (5.12), there are two cases
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(i) y=—andy_1=+ (t > 1)
(iit=21and iy = —.
Sinceinbothcasese(—u) = e1(+) = 0and -, e €1(—tk) > 3 jchcn €1(—tk),
we can rewrite (5.12) to
e1(¢(p))
= max {f{vy = —;j <k <n} —Hu =+;J <k <n}} (5.13)

1<j<n

Since we have (5.10), (5.13) and the following by the definition of Nji

{Nj_ - N;_}lgjgs
Ci{t{u=—1 <k <n}—#Hu=+:7 <k <n}higicn
we get ¢1(p) < p1((p)). We set

:{3

The cases (i) and (ii) as above mean that if ¢ gives the maximum of (5.13), ¢ € S.
Here note that if s € S, Nf = #{i, = +;s < k < n}. Therefore, we get
¢1(p) > p1(¥(p)). Now, we have p1(p) = p1(4(p)). Asfor po-case and e;-case
arguing similarly, we obtain (5.3).

Let us show (5.4) fori = 1. Forp = (...,ij_1,%,%j41...) We assume that
there exists k satisfying (4.17) fori = 1,i.e. fip = (..., ix—1, f1(0k), iksts - - .).
Weknow that af” isgivenby a(”) = — 3o, i;j +i;+1. Since k satisfies (4.17) for

i =1, we have aél) < a,(elll and aél_) 12 a;”. Then we get

1< s<n, sthwalinpisa(—) wal and
the left-most wall among walls at the same position

} . (5.14)

i+ ikl = a,(cl) — al(cjil <0, Th—1+ 1 = a](cjil — a](cl) > 0. (5.15)

Therefore, by (5.15) we obtain
| frlin) + iksa] = lie + L+ dpra] = Jik + igpa] — 1, (5.16)
lig—1+ filin)| = lig—1+ig + 1| = |ig_1 +ix| + 1. (5.17)

Let jth wall in p be the left-most wall among walls at position & + 1 (the existence
isdueto (5.15)). Then j belongsto S. The formula(5.15), (5.16) and (5.17) imply
that the jth wall and other walls at position £ + 1 are (—) walls and the jth wall is
changed by the action of f; to (+) wall at position k.
Thatis, let (¢1,¢2,...,t,) and (¢, 5, - . ., ¢],) bethe sequences of wall types of
p and f; p respectively, we have
J J

<l,1,...,—,...,[,n>i)(bl,---,—l-,...,bn) = (th,eey ) (5.18)
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By (5.18), we know that

$(p) = (~11)® - ® + ® - ® (—tn),

: (5.19)
P(fip) = (—1) ® - ® L @ ® (—tn).
By (5.19), it is sufficient to show the following
fa ((—L1)®---®4j—®---®(—bn)>
c) @B L@ @ (—in). (5.20)

For p with ¢)(p) = (—t1) ® - - - ® (—¢,,) we shall define the function @y, asfollows
(thisjust coincides with a;, in Proposition 2.1.1 (0) in [9] up to the first term.).

a = —e1(—u) + Y pr(—u) —er(—up)- (5.21)
1<i<k

It is easy to trangdlate (5.21) to the following form by (3.3)
ap =fu=—|1<li<k}-Hu=+|1<I<k} (5.22)

By Proposition 2.1.1 (i) in [9], we know that if there exists j satisfying

a,>a; forv<j ad @, >a; forj<v, (5.23)

fil(=) @ - @ (—15) @ - ® (—tn))

= (—Ll) RD--- R fl(—bj) R (—Ln). (5.24)

Then we shall show that 5 asin (5.18) and (5.19) satisfies (5.23). Sincethe position
of the jth wall isk + 1 and thereisno (+) wall at position £ + 1 by the argument
above, we get

Hu=-11<i<gt = > lir—atinl
r<k
iT—1+ir<o

=~ Y iatin (5.25)
r<k
ir—1+ir<o
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Hlu=+1<I<i} = D lirm1+i

r<k+1
ir—1+ir >0

= > i1+t (5.26)
r<k
ir—1+ir >0

The following is obtained by (5.22), (5.25) and (5.26),

@ == i1 tis =3 ealis) —ealir1) = ap, (527)

r<k r<k

By the form of (5.22), weknow that if £ ¢ S and v, = +, @y, > axr1 andif k ¢ S
and 1, = —, ax_1 < ag. Therefore, in order to show that j satisfies (5.23) it is
enough to show that j satisfies

a,>a; forv<j(j,vesS) anda,>a; forj<v,(jveS). (5.28)

By the same argument as for obtaining (5.27), we can seethat for any v < 5 (resp.
v > j)(v,j € S)thereexistst¢ such that

t<k(resp.t>k) anda, = a,El). (5.29)

By (4.17) fori = 1, (5.27) and (5.29), we get that j satisfies (5.28) and then (5.23).
Now, we get (5.24). 5 : :

Next, we shall show that if f1p = 0, f11(p) = 0. We assumethat f1p = 0 and
set & = max{v |i,_1+ 1, # 0}. By Lemma4.13 we know that ¢ satisfies

all > agl) forv <¢ and aél) = qV)

v v

for ¢ < v. (5.30)

Now, we set F' := agl). Let us assume that agl

)1 = aél). Then we have

0= ag];)l — aél) = —(,01(2'5_1) + 61('i§) =g 1+ i

Thiscontradictsthedefinition of £. Thus, we get agljl > aél) andthenigc_y+i¢ > 0.
Furthermore, by the fact that ic_1 + i¢ > 0 we have.,, = +. Here note that

o) = F =7, (5.31)

Since f1(—) = 0, it is sufficient to show that

F() = fr(—11) @ -+ @ (—tn)) = (—t) @ -+ ® f1(—tn), (5.32)
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By Proposition 2.1.1. (1) in [9], in order to show (5.32), we shall prove

ay > ap, forv<n. (5.33)

We assume that there exists j such that ;7 # n and satisfies (5.23). Let ¢ be the
position of the jth wall. Itiseasy to seethat .; = — by (5.22). Thus, since ¢, = +,
wehavet < .

By simliar argument to the onefor obtaining (5.29), wegeta; = a§1> . Therefore,
by (5.30) and (5.31) we have@; > F = @,, which contradicts the definition of j

satisfying (5.23). Now we get (5.32) and then f13)(p) = Oif fip = 0.

By arguing similarly, we obtain foys(p) = 4 (fop) and &:4s(p) = 1(&p). Then,
we have completed the proof of Theorem 5.1. O

6. Classification of path

In this section, we shall describe every connected component in B(U,(g)).

6.1. DOMAIN TYPE AND DOMAIN PARAMETER

Forapathp € P, (n) (n > 0, m € Z), let do,ds,...,d,_1,d, bethe sequence
of domainsin p. The domains dg and d,, are infinite domains.

DEFINITION 6.1. For adomain d; with non-zero length, fixing some entry i, in
d; and its position v/, the domain type ¢(d;) of d; is given by

t(d;) == (—1)"d,. (6.1)

Remark. (i) By (4.14), this definition is well-defined, i.e., a domain type is
uniquely determined.

(ii) Domain type of domain dy is always 0 and one of domain d,, is dways m
by the definition of P,,,(n).

LEMMA 6.2. For apathp leti;_; and iy, beentriesin p with |i;_1 + ix| # O and
let d; and d;(j < 1) be domainsincluding i;_1 and i;, respectively. Then we have

[t(d) — t(d))| — L= #{dy | U(dy) =0, j <k <1I}.

Proof. |t(d;) — t(d;)| = |ik—1 + ix| = § {walls at position k}. O
By this lemma, the following definition is well-defined.
DEFINITION 6.3. Let d, be the ith zero-length domain between d; and d; asin

Lemma6.2. Domain type ¢(d,.) isgiven by ¢(d,.) = t(d;) + i if t(d;) < t(d;) and
t(dy) = t(dj) — i if t(d;) > t(dp).
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poston —2 -1 0 1 2 3 4 . .
EXAMPLE6.4. For p = < ----- ,0,0,2,—-1,3 -3, 3,---), we shall visualize
walls and domains as follows

dody dp d3 ds ds
OO| |2|—1| |3 33.

There are five walls and four finite domainsin p. Let di, do, dz and d4 be the four
finite domains. The domains d; and d4 are zero-length domains. The domain type
of these four domains are 1, 2, 1, 2 respectively. For both infinite domains dy and
ds, weknow t(dp) = 0 and ¢(ds) = 3.

Remark. Note that for any pathp € P,,(n)andj =0,1,...,n — 1

H(dj+) — 1(d))] = 1. (6.2

DEFINITION 6.5. For an integer m, a sequence of integers t1,t2, -+, t,_1 iSin
m-domain configuration if |¢t; —t;_1| = 1for j = 1,---,n, where ¢ = 0 and
th, =m

Thefollowing lemmaiistrivial.

LEMMA 6.6. There exists a sequence t1, . .., t,—1 in m-domain configuration if
andonly if n — |m| € 2Z 0.

By the above remark, we get

LEMMA 6.7. A sequence of domain types for any path in P,, is in m-domain
configuration.

DEFINITION 6.8. (i) Let £ = (t1,%2,- - -, t,_1) bein am-domain configuration,

(a) gisregular ayj if tj,]_ — tj = tj — tjj:l'

(b) ¢ is up (resp. down)-regular at j if ¢ isregular at j and ¢;_1 < t; < tj41
gesp. tj 1>t > tj+1).

(c) tiscritical at jift;_1 —t; = —t; +tj11.

(d) tismaximal (resp. minimal) at j if Ziscritical at j andtj_1+1=t; =tj11+1
(resp. tj_1— 1= tj =1tj41— 1)
Hereto =0andt, = m B
(i) For apath p € P, (n), let dy, ..., d,—1 be its finite domains and ¢(d) =

(t(d1),...,t(d,—1)) bethe sequence of their domain types.

(a) d; isaregular domainif ¢(d 1) isregular at ;.

(b) d; is up-regular (resp. down-regular) if #(d) is
do is up (resp. down) if t(do) < t(d1) (resp. t(do)
down) if t(d,,—1) < t(dy) (resp. t(dp_1) > t(dp)).

up-regular at j, in particular,
> t(dy) and d,, isup (resp.
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(c) d; isacritical domain if F(J) iscritica at j.
(d) dj ismaximal (resp. minimal) if F(cf) ismaximal (resp. minimal) at ;.
Remark. (i) By Definition 6.3, any zero-length domain is aregular domain.
(i) If £ = (t1...,t, 1) isinm-domain configuration, at any position, Zisin the
cases of Definition 6.8 (i) (b),(d) and then any domain isin the cases of Definition
6.8 (ii) (b),(d).

EXAMPLE 6.9. In Example 6.4, the infinite domains dp and ds are up. d1 and d4
are up-regular, d, is maximal and d3 is minimal.

DEFINITION 6.10. For p € P,,(n), let d1,do, . .., d,—1 beitsfinite domains and
l(d1),1(d2), . ..,l(d,—1) betheir lengths. Domain parameter c(d;) is given by

9.

if d; isaregular domain, c(d;) := H 5

2
where [[n]] = the maximum integer which isless than or equal to n.

if d; isacritical domain, c(d;) 1= Hl(dj) - 1” |

Let £ = (t1,t2,...,t,_1) be in a m-domain configuration and ¢ =
(c1,¢2, ..., ¢, 1) beasequence of non-negative integers. For £ and &, we set
,Pm(n;t—’; E)

t(d;) =tjandc(dj) =cjforany j =1,2,...,n—1,
wheredy, ..., d,_1 aredomainsin p ’

= {p € Pm(n)

PROPOSITION 6.11. Supposethat n — |m| € 2Zo. For any# = (t1,...,t, 1)in
m-domain configuration and any sequence of non-negative integers ¢ =

(Cl7 b 7CTL71)1
Pon(n; T, 6) £ 0. (6.3
Proof. By Lemma 6.6, if n — |m| € 2Z, there exists ¢ = (t1,...,t,—1) in

m-domain configuration. Let pl(i) be pathsgiven asfollows: forj = 1,...,n — 1
(+tj, Ftj,...,+t;,Ft; if fisup-regular at j,

-

2c;

Ftj,+t;, -+, Ft;,£t; if tisdown-regular at 7,

"

2c;
g i L _ . 6.4
J +t;, Ftj,- -, Ftj, £t; if tismaximal at j, ©4

2¢;+1
Ftj, £y, -, Et;, Ft; if tisminimal at j,

\ 20]' +1
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+m,Fm,... ift,_1=m—1,

dn = { Fm,+m,... ift,_1=m+1 (6.5)

Now, we order these domains by setting the position of the left most m (resp. —m)
ind, being 2[ (resp. 2/ — 1). For example,

2
pit) = (...00|d1|dy| ... |dn_1| 0 —m...) oF

2l
(...00|da|da] . .. |dp_1| — m i ...).

For pl(+>, by using induction on the index of domains we shall show the claim that
the position of any entry ¢; in d; is even and the one of —t; in d; is odd. Now
we assume that d,, isup. Then d,,_; must be up-regular or minimal by Definition
6.8. Itistrivial that in both cases by (6.4) the position of ¢,,_1 is even and the one
of —t,_1 is odd. Now, we assume that for i = j + 1 the claim is valid. If ¢ is
up-regular or maximal at j + 1, by Definition 6.8, £ must be up-regular or minimal
at j. Then by (6.4) we have

(.odj|djgr...) = (..t —t; | tjs1, —tjg1,...). (6.6)

Thisimplies that the statement is valid for i = j. If ¢'is down-regular or minimal
at j + 1, by Definition 6.8,  must be down-regular or maximal at ;. Then by (6.4)
we have

This implies that the statement is valid for ¢« = j. Therefore, we have t; =
t(d;) andthen ¢; = c(d;). We obtain that p{*) € P, (n; : ). We can also show
for pf). 0

6.2. STABILITY OF Py, (n;t, &)
We shall show the stability of P, (n; £; €) by the actions of ¢; and fi.
PROPOSITION 6.12. For any i € I, we have
EiPm(n;t,6) C Pr(n;t;¢) U {0} and
fiPm(n::6) C Pon(ni £:6) U {0}, (6.8)
In order to show this proposition, we shall prepare several lemmas.
LEMMA 6.13. For p = (..., i1, ik, iks1,--.) € Pm(n), suppose that fip =

(' N fl(zk)v ik-l—la . ) (resp eip = ( oy Up—1, éz(zk)v ik-i—l? . )) and let d]
be the domain including 7;. Then we have
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(i) Theentry i;, istheright-most entry (resp. left-most entry) ind;.
(if) Supposethat d; is afinite domain. The length I(d;) is odd if and only if d; is
regular and the length [(d;) isevenif and only if d; is critical.
(iif) Supposethat d; 1 isafinitedomain. Thelengthi(d;;1) (resp.l(d;_1)) iseven
ifandonlyif d;, 1 (resp. d;_1) isregular andthelength(d; 1) (resp.l(d;_1))
isodd if and only if d;;1 (resp. d;_1) iscritical.

Remark. The statement (i) means that there is a domain on the right (resp. left)
side of d;. Then, the statement (iii) makes sense.

Proof. Since the proof for the é; caseis similar to the one for f;, we shall show
only for the f; case. B .

(i) By Lemma4.13(i), thehypothesis fip = (..., ik 1, fi(ik), ik+1, - - -) iImplies
that o}’ < a{'), and then we have

i +ig1<0 ifi=1 andig+ix1 >0 ifi=0. (6.9

Thenwe get |iy, + ix41| > 0. This givesthe desired result.

(i) We shall show the fi-case. Let i, be the left-most entry in d;. (by (i) the
right-most entry is i, thenr < k.). Wesett := ¢(d;), then, i, = £t and i), = +t.
Let us recall a\”) in (4.16). Owing to (4.14) and ;(z) = e;(—z) (& € Bay), We
havea!? = a,(cl). Then by Lemma4.13, we get o\ = a,(cl) < af}) 1 and then

0< a,(nl_)l - CL?(al) = _901(2.1"71) + 61('l'7‘) =t 1+ i (610)
The definition of i, that i, isthe left-most entry in d; implies that there are walls
at position r and then i, _1 + i, # 0. Thus, dueto (6.10) we get

ir 141, > 0. (6.11)

There are the following cases (a)—(d):

@ i, =i =t. (i.e.randk areeven).
(b) i, =4 = —t. (i.e.r and k are odd).
(©) i, = —tandip =t. (i.e.risoddandk iseven).
(d) i, =tandi, = —¢t. (i.e.risevenandk isodd).

In fact, the condition (a) or (b) is equivalent to that [(d;) = k — r + 1is odd and
the condition (c) or (d) isequivalent to that i(d;) = k — r + 1iseven. Since these
(a)—(d) cover al possibilities for d, it is enough to show that if (a) or (b) holds,
d; isregular and if (c) or (d) holds, d; is critical. Let d, and d), be the domains
including i,_1 and i1 respectively (s < j < p).

In the case (a) (resp. (b)), by (6.9) for i = 1 and (6.11), we get i1 < —t
(resp. i1 < t) and i1 > —t (resp. 4,1 > t). Sincek + 1 and r — 1 are odd
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(resp. even), the domain types t(d,) = —ip4+1 > t (resp. t(d,) = ix+1 < t) and
t(ds) = —ir—1 < t(resp. t(ds) = i,_1 > t). Thisimplies

t(djt1) =t +1, t(dj—1) =t -1
(resp. t(dj+1) =t—1 t(dj,]_) =t+ 1) (612)
Furthermore, this (6.12) implies that the domain d; is regular.

Inthe case(c) (resp. (d)), by (6.9) and (6.11), weget iy 11 < —t (resp. ixr1 < t)
andi,_q >t (resp. i,—1 > —t). Sincek + 1isodd (resp. even) and » — 1 is even
(resp. odd), the domain types t(d,) = —ir+1 > t (resp. t(dy) = ix41 < t) and
t(ds) =ir—1 >t (resp. t(ds) = —i,—1 < t). Thisimpliesthat

t(djt1) =t +1, t(dj—1) =t+1
(resp. t(dj11) =t — 1, t(dj—1) =t —1). (6.13)

Furthermore, this(6.13) meansthat thedomaind; iscritical. The fo caseisobtained
similarly. Now, we have completed the proof of (ii)

(iii) We shall show the f1-case. Since iy, + ix+1 < 0 by (6.9), we shall consider

the following two cases
(1) ik + g1 < —2.
(@) ik +igy1=—1.

(1) The assumption ij, + i1 < —2 implies that the domain d;, is adomain
with zero-length. By Remark under Definition 6.8, d; 1 isaregular domain.

(2) The assumption iy, + i1 = —1 meansthat i1 = +t — 1(t = t(d;)) and
thereisonly onewall at position k& + 1. Then we know that 51 isincluded in the
domain d;;1 and i; 1 istheleft-most entry of d;1. Let i; be the right-most entry
of dj+1 (k +1< l)

By the definition of o\, we have

(1) (1) (1)

a1 = ol + o1(ix) — e1(ips1) = al — (ig +ips1) = al? + 1. (6.14)

By Lemma4.13if v > k, then ol > a{". Then by (6.14) we have

ad > a,(clll(l/ >k+1). (6.15)

Owing to (4.14), we can easily get

ag_li_)l = a](j:?_l - (il + il+1). (6.16)

Theformula (6.15) and (6.16) imply i; + ;41 < 0. Since 7, is the right-most entry
ind;1, there exist walls at position/ 4- 1. Then, by i; + i;11 < 0, we have

i+ 441 < 0. (6.17)

Asin (ii), there are the following four cases (a)—(d) since i, 1 = +t — 1
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@ igr1=9u=t—1. (i.e.ip = —t,k+ 1and/ areeven).

(b) igy1 =19 =—-t—1. (i.e.ix =t, k+1and( areodd).

© ikt1=t—1 andi;=—-t+1 (i.e.iy =—t,k+ lisevenand/ isodd).
(d) igy1=—t—1 andiyy=t+1. (i.eir =t k+ 1lisoddand!/ iseven).

The condition (a) or (b) is equivalent to that /(d;1) is odd and the condition (c)
or (d) isequivalent to that I(d;11) iseven. Thus, it is enough to show that if (a) or
(0), dj 41 iscritical and if (c) or (d), dj41 isregular.

Let d, be the domain including ¢;1.1. Applying (6.17) to these cases, we get

(@) t(dg) = =41 >4 =t —1=1(d;j41). Thisimpliesthat t(d;;») = ¢t and then
d;1isacritical domain.

(b) t(dq) =g <-4y =t+1= t(dj+1). Thisimpliesthat t(dj+2) = t and then
d;1isacritical domain.

(© t(dq) =< -—-4y=t—1= t(dj-i-l)- Thisimplies that t(dj+2) =t¢t—2and
then d; 1 isaregular domain.

(d) t(dq) =—fg>y=t+1= t(dj-i-l)- Thisimplies that t(dj+2) =t+2and
then d;1 isaregular domain.

Since the cases (a)—d) cover al possibilities for d;.1, we obtain the desired
results. O

Now, we set that for domains d = iy, ---4(k < [) in apathp and d' =
Jsor o je(s <t)inapathp,d Ccd if s <k <l <t ;
Wesetd = d' ifandonlyif d C d andd’ C d.

LEMMA 6.14. Suppose that for p = (..., 05 1,0k, i511,---) € Pm(n) fip =
(- ik—1, filik),ikta, ) (resp. ép = (..., dk—1,€(ix), ik+1,...)) and let
di,...,d,—1anddy,...,d, 4 bethefinitedomalnsmp and f;p (resp. é;p) respec-
tively. In particular, let d; be the domain including 4. Then, we get

(i) 1 #y4,5 + Lresp.l #j —1,5), thend; = dj.
(ii) If the domain d; is finite, we have d; C d; and d; \ d; = {ix} and then
I(d) =1(dj) — 1.
(iii) If the domain djy1 (resp. d;_1) isfinite, we have d; 1 C d;-+l (resp. dj_1 C
Dandd g\ djy1 = {fi(ix)} (resp. dj_; \ dj—1 = {&(ix)}) and then
z(dﬁl = U(dyi1) + 1 (respd(d] 4) = I(d;_1) +1).

Proof. We shall see only the f; case since other cases can be shown similarly.
By (6.9), we know that ij, + i1 < 0. We can also get i1 + i > 0. By the fact
that f1(i) = ix + 1, we have

|f1(zk) + 'ik+l| = |’Lk + ’ik+1| -1 and

lig—1 + f1(ig)| = |in—1 + ix| + 1. (6.18)
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This means that one wall at position & + 1 shifts to position k and the entry at the
position £ istransferred from d; to d;-+l by the action of f,. The shifted wall isthe
J + 1th wall since it is on the right boundary of the domain d;. Here note that a
domain dj, is surrounded by kth wall and & + 1th wall. Thus we obtain the desired
results. |

Proof of Proposition 6.12. For p € Pp(n; t.c), suppose that fip =
(. .. ,’ik_l, fZ(Zk), ’ik+1, .. ) 75 0. Let d()7 dl, - ,dn,]_, dn and d6, g_, ceey ;1_1, ;L
be domains of p and f1p respectively, in particular d; be the domain including
(do, dy,, dy and d;, areinfinite domains.). First let us show

t(d)) =t(d;) foranyl=1,2,...,n—1 (6.19)

By Lemma 6.14(i), we know that for [ # j,j + 1 such that d; = d} is non-zero
length domain, ¢(d;) = ¢(d;). We shall consider thetypeof d’; ;. If d; 1 and d}
areinfinite domains, j + 1 = 0 or n then there is nothing to prove. Then we may
assume that d; 1 and d;-+l are finite domains. If I(d;11) > 1, thereexistsa € Z
such that i, isincluded in both d;, and d;-+l by Lemma 6.14(iii). Then, in this
casewegett(d; ) = t(d;+1). Inthecasel(d;+1) = Oif weassumethat ¢(d;) = ¢
andt(dj4+1) =t + 1, by the proof of Lemma6.13 related to (a) and (c), we get that
ir, =t and k iseven. Then f1(i) = ¢ + 1. Thisentry isincluded in d;.1 and then
t(dj 1) = (—DF falix) = (~1)F(t + 1) = t + 1. We can also easily see the case
t(dj+1) =t — 1. Thusweget t(d}, 1) = t(djt1).

We shall consider the type of d;. As same as above, we may assume that d;
and d’; arefinite domains. If I(d;) > 2, there exists b € Z such that 4;, is included
in both d; and d’; by Lemma 6.14(ii). Then, in this case we get ¢(d;) = t(d;).
If I(dj) = 1, by Lemma 6.13(ii) and Lemma 6.14(ii), we get that d; is a regular
domain and [(d’;) = 0. Since by the previous arguments we have aready obtained
that ¢(d;) = t(d;) for [ # j suchthat d; or d; is anon-zero length domain and that
d; is aregular domain by the remark under Definition 6.8, we get t(d}) = t(d;).
Thusweget ¢(d;) = t(d;) for al other zero-length domains. Then we obtain (6.19).

Next, let us show

c(d)) =c(d)) foranyl=1,2,...,n— 1 (6.20)

By (6.19), d; isaregular (resp. critical) domain if and only if dj isaregular (resp.
critical) domain. Therefore, by Lemma6.14 (i) we have

co(d) = c(dy) for 1 #4,5+1. (6.21)

We shall consider the domain parameter c(d;). We may assume that d; and d’; are
finite domains asin the previous arguments. If d; isaregular, d; isalso regular and
by Lemma 6.13(ii) and Lemma 6.14(ii) we have

l(dj) =2¢; +1 and I(d}) = 2c;. (6.22)
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Since d; and d;; are regular domains, the formula (6.22) implies

c(d;) = ¢j = c(dj). (6.23)

If d; isacritical domain, d;- is aso critical and by Lemma 6.13(ii) and Lemma
6.14(ii) we have

I(dj) =2c;+2 and I(d;) = 2c; + 1. (6.24)
Since d; and d;; are critical domains, the formula (6.24) implies

c(d;) = ¢; = c(dy). (6.25)
As for d;-+l, by using Lemma 6.13(iii) and Lemma 6.14(iii) we can also easily
obtain

c(dji1) = cjr1 = c(dj+1). (6.26)
Thus by (6.21), (6.23) (6.25) and (6.26) we get (6.20). Now, we have completed
the proof of Proposition 6.12. O

6.3. EXTREMAL VECTORSIN P,,(n; £; €)
In this subsection, we shall describe all extremal vectorsin P,,(n; t; €) explicitly.

LEMMA 6.15. Let B, and B, be normal crystalsand ¢ : By — By be a strict
mor phism of crystal and we assume that ¢(b) # O for b # 0. We havethat b isan
extremal vector in B if and only if ¢(b) is an extremal vector in Bs.

Proof. We assumethat b isnot an extremal vector in B and ¢(b) isan extremal
vector in By. Thenthereexist i, 41, ..., 4, € I suchthat

&Siy...S;b#A0 and f;S; ...S; b#0.
By the assumption that ¢(b) # O for b # O, we get $(é;S;, - .. S;,b) # 0 and
é(fiSiy - - - Sib) # 0. Since ¢ is amorphism of crystal, we have

&iSiy - Si, (D) #0 and  fiS;,...S; ¢(b) #O.

This contradicts the fact that ¢(b) is an extremal vector. If b is an extremal vector
in By and ¢(b) isnot an extremal vector in B», by arguing similarly we can obtain
acontradiction. O

Let & = (t1,...,t,—1) be a m-domain configuration(m € Z) and ¢
(c1,...,cn—1) be asequence of non-negative integers. For p € P,,,(n;t;¢) # 0,
let d1, ..., d,_1 beitsfinite domains. For adomain d; we set

bin(ds) = 2¢; if d; isregular,
M 26+ 1 if d; iscritical.
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THEOREM 6.16. For p € Pp,(n) let v1(p), ...,y (p) be its types of walls and

pl(i) be paths given in the proof of Proposition 6.11 and set E' the set of extremal

vectorsin Py, (n;t. &), E' = {pfi)}zez,

A (n;1:6) == {p € Pr(n; £: A)]ua(p) = --- = 1a(p)}- (6.28)

Enm(n;1,0) = {p € Pu(n; £ O)|1(d;) = Imin(d;) for anyi.}. (6.29)
Then we get

E =FE' = A,(n;t.¢) = E,(n; 7). (6.30)

Proof. For p € E,(n; ;&) suppose that a domain d; in p is aregular domain
with non-zero length and set t(d;) = t. Let i, and 4, be the left-most entry and the
right-most entry in d; respectively. By (6.27), [(d;) = b—a + 1= 2¢; > 0. Thus,
if a iseven (resp. odd), b is odd (resp. even). Now we assumethat « iseven and b
isodd. Then we have

t(d;) = ia = —ip. (6.31)
Let d, and ds be the domainsincluding i,—1 and i, 1 respectively. We have

t(dr) = —%g_1 and t(ds) = ’ib+1, (632)
sincea — lisoddand b + 1iseven. Becaused; isregular,

t(d,) < t(dj) < t(ds) ort(d,) > t(dj) > t(ds). (6.33)

Applying (6.31) and (6.32) to (6.33) we obtain

ta—1+1%q >0,y + 941 >0 Orig_1+iq <0, i+ 4541 <O.

This means that all wallsin ¢ and in b + 1 have the same type. We can get the
same result for the casethat « is odd and b is even, and the case that d; is critical.
Repeating this for all domains with non-zero length, we know that all walls have
sametypein p. Thus, we have

Epn(n;t;@) C A (1. 0). (6.34)

Let p bean element of A,,(n;t; ) and al wallsin p be +. For aregular domain

with non-zero length d; in p let i, and ¢, beleft-most entry and right-most entry in
d; respectively. Then we get

ta—1+1q, >0, andiy+ip1 > 0. (6.35)
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Letd, andd, beasabove. Sinced; isregular, wehave (6.33). If aiseven, t(d;) = i,
andt(d,) = —i,—1. By (6.35), we get t(d,) < t(d;). Thus, by the assumption that
d; isregular, we have

t(d,) < t(dj) < t(ds). (6.36)

Furthermore, if b is even, t(d;) = i, and t(ds) = —ip11. Then this and (6.36)
imply that i, + 41 < 0. But this contradicts (6.35). Then b is odd and then
I(dj) = b—a + liseven. Since d; isregular, this means

l(d]) = ZCj = lmin(dj).

By arguing similarly for other non-zero length domains, we obtain /(d;) =
Imin(d;) for any i. Therefore, we get

A (n; 5 6) C B (1, 0). (6.37)

By (6.34) and (6.37), we get the third equality in (6.30).
By the definition of the map + given in (5.1), we know that ¢(p) # O for
p € P (n). Therefore, by Proposition 3.3, Theorem 5.1 and Lemma 6.15, we get

An(n;t0) = E. (6.38)
By the definiton of pgi) in the proof of Proposition 6.11, we know that E' C
Epn(n; T; ) easly. Forpff) (e=+,1eZ)letks’,... k' bethepositionsof walls

in pl(6>. By (6.4), (6.5) and the way of ordering, we get

kit kDY = kM40, kb4 1),

n

(ky'yo kD = (kP P+ 1, kD4 D),

n

(6.39)

Let p be an element in E,,(n; £, &) and (k1, ..., k,) be the positions of walls in
p. By the definiton of E,,(n;; ), we know that for any e and 1, kjfrl - k;’l =
Imin(dj) = (2cj or 2c; +1) = kj1— k;. Therefore, by (6.39), thereexiste € {£}
and[ € Z suchthat (k1,...,k,) = (ki’l, ..., k&Y. Now, since the domain types
are fixed, the entries in p are automatically determined and it coincides with the
onesin pl(6>. This means that p = p§f> and then E,,(n;t;&) C E'. Now, we have
completed the proof. |

Remark. By Lemma6.14, we know that a (—)(resp. (+)) wall in apathisshifted

by one to the left direction by the action of f; (resp. fo) and by the definition of

pl(:t>, (ki,...,kb) = (lq+1,...,k,;+1),where(k1i,...,kﬁ) are sequences of

the positions of wallsin pl(:t>. Therefore, we have

fipl™ =pit) and fopit) =pi). (6.40)
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Thus, we have

S, )= fip ) =pi"] and Sop{” = fopi" =p). (6.41)

By these (6.40) and (6.41), we get

Swi ) =] Sop” =p7), ST =pll) and Sop; ) =p{").(6.42)

Thus, we obtain the following result.

COROLLARY 6.17. P,,(n;t; &) is a connected component in P,,,.

Proof. By the remark as above, we know that E’ is connected and then any
extremal vector in P,,(n; t; €) is connected to each other. Therefore, by Theorem
2.4 and Proposition 6.12, we know that P, (n; £; &) is connected. O

EXAMPLE 6.18.
+ + +
-0 0O O] 1 -1]2 -2|]3-3...
So

&% .00 0] -1 1| -2 2| -3 3-3..
- - +
S0l -1]2 -2[3 -3 3-3..

6.4. AFFINIZATION OF THE PATH-SPIN CORRESPONDENCE
In Section 5 we introduced the path-spin correspondence. In this subsection, we
shall affinize it, that is, the path-spin correspondence in Section 5, which is a
morphism of classical crystal, is lifted to a morphism of affine crystals.
Let B = {+, —} bethe classical crystal asin Example 3.2.
LEMMA 6.19. The set of all extremal vectorsin Aff(B®") is given by
{zF ® (+)%", 2" @ (=) }rez- (6.43)
Proof. By (3.2), (3.3) and (3.6), we have
S1(zF @ (£)®") =2 @ (F)®", and  So(zF ® (£)¥") = 2" @ (F)%".

By (3.3) and (3.5), we get for any &

a1( ® (1)) = folek & (+)°")
= Go(# ® (-)®") = fi(sF ® (-)®") = 0. (6.44)
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Thus, we get the desired result. O

Now we shall consider the affinization of the morphism . For a level 0 affine
weight A = m(Ag — A1) + 16 € P (I,m € Z) by Remark (ii) in 3.1, we have that
Uay has a U'-module structure and its crystal B(Ua,) is described by P, as a
classical crystal (that is, B(Uay) = B(U'a,y)) asaclassica crystal). Originally,
the crystal B(Ua)) holds an affine crystal structure. We shall recover its affine
crystal structure in terms of path. For this purpose we shall consider the energy
function (See [3, 4, 8]). For the case of B = B, by [8] Theorem 5.1, we can
describe the energy function explicitly as follows.

PROPOSITION 6.20. We set
H((m) @ (n)) := max{m, —n}.
This H isan energy function on B.

By applying Proposition 6.20to Theorem 4.9in[8] and the sametypeof formula
for B(—o0), we get the following proposition easily.

PROPOSITION 6.21. Let (g;)icz be a m-ground-state path. For a level O affine
weight A = m(Ag — A1) + 16 € P and b € B(Uay) which corresponds to the
m-path p = (ix)rez € Py, asaclassical crystal, we have the following formula

wt(b) = wt(p) = (Z i1+ zk> (Ao — A1)

kezZ

+ (l + Y k(max{ig_1, —ir} — max{ge_1, —gk})> 6. (6.45)

kezZ

For alevel 0 weight A = m (Ao — A1) + 16, we denote P,,,; for a set of path
corresponding to an element of B(Ua,), i.e. asaset Py, isequal to P, and a
weight is given by (6.45).

By using this formula, we get the affinization of ¢ as follows: For p € P,,; a

map 1) is given by
b Py — AFf(BE)

(6.46)
P — Z<d7UJt(p)> 4] 1/)(p)7

Let us denote also ¢/ for the restriction of 1) to P,,, ;(n; : &), where P,,, ;(n; £ &) is
equal to P, (n; ; ¢) asaset and aweight is given by (6.45).
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THEOREM 6.22. (i) The map ¢ and ¢ are strict morphisms of affine crystals.

(if) The map 1 isan injective morphismof affinecrystal.

Proof. (i) It is sufficient to show that for p € Py, (d, wt(fo(p)) — wt(p)) =
—1 (resp. {d, wt(éo(p)) — wt(p)) = 1) since we have (3.2), Theorem 5.1 and
Proposition 6.12. Supposethat fop = (..., ik—1,ik — 1, ik41...) fOrp = (i)z €
Pyn,i- Herenotethat fo(iy) = i —1. Arguing similarly to (5.15), weget iy, +ij.+1 >
Oandig_1+i; < 0,andthen max{z'k, —’ik+1} =i, max{zk -1 —ik+1} =i, —1,
max{i_1, —ir} = —ir and max{i,_1, —ix + 1} = —i; + 1. By applying these to
(6.45) we get the desired result for the fo case. The ¢ caseis shown similarly.

(ii) In order to show (ii) we shall see the following lemmas.

LEMMA 6.23. Let E be the set of all extremal vectorsin Py, ;(n; £; ). If the map
| isinjective, the map ¢ isinjective.

Proof. We assume that ¢ is not injective. Then there exist p1, p» € Py, SUCh
that p1 # p2 and 1(p1) = ¢ (p2). We set b* = b(p1) = 1(p2) € Aff(B“"). Due
to the connectednessof B*", for thisb* thereexist z;,, . . ., i, € {€;, fi}i—01 and
an extremal vector v € Aff(B®") suchthat v = Z;, ... &, (b*).

Since v # 0 is an extremal vector, by Theorem 6.22 (i) and Lemma 6.15, we
have that both z;, ... Z;p1 # 0 and z;,...Z;,p2 # O are elements in E. The
injectivity of 1| g means(&;, . .. Z;,p1) # Y(&i, . .. i, p2) SiNCep1 # pp and then
iy ... &ip1 # Fiy ... %, p2. But this contradicts the fact that &;, ... &;,9%(p1) =
V=T ... fili/;(pg). We have completed the proof of Lemma 6.23. O

Proof of Theorem6.22. (ii) For apathp € Py, leti1(p), . .., t,(p) beasequence
of the types of thewallsin p. We set

Ei:={pEE=E,ntd|ulp)==%,i=1,...,n}.

These E coincides with {pgi)}lez respectively. By (6.41) and (6.42), we have
the following.

LEMMA 6.24. For any p\ # p{*)(e1, e, = + and k,1 € Z) we have
wt(p V) # wi(p\?). (6.47)

Proof. If €1 # ez,vvt(p,(jl)) # wt(pl(Q)) since wt(p(_>) = n(Ao — A1) + D16
and wt(p§+)) = n(A1 — Ag) + D26 where D1 and D, are some integers. Then
we may assumethat e; = e2. Weset e = e = + and k < [. By (6.42), we have
S1Sop\T) = p{t). This means (S1.50)"*p{™ = pi"). Since $15, = frfu for

P\, we get

(d, wt(p{™)) — (d, wt(p\P)) = (I — k)n > 0. (6.48)
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Now, we have completed the proof of Lemma 6.24. O

This lemma implies that any extremal vector in E has different weight each
other. Since the morphism of affine crystal 1 preserves weight, now we obtain the
injectivity of the map z/)|E Therefore, by Lemma 6.23, we get the injectivity of ).
We have completed the proof of Theorem 6.22. O

By the formula S1p{ ) = p{*) and Sip{™) = p{,) in (6.42), we get (d,p| ) =

(d, pl(fb. By this and (6.48), for any extremal vectors p1,p> € Py (n; . €), we
have

(d, wt(p1)) = (d,Wt(pz)) (mod n).
By this formula, we aobtain the following

COROLLARY 6.25. (i) SetI,, := {0,1,...,n— 1} and et E,, ;(n; #; ¢) bethe set
of all extremal vectorsin Py, ;(n; £; ¢). Then there exists unique € I, such that

P(Bpg(n;6,8) = {2 @ (£)*" Jrez.

(ii) Let usdenote Aff (B™); for aconnected component of Aff (B™) generated
by extremal vectors {2/ t#" ® (£)®"},z. Then asa morphismof affine crystals,

P 2 Py (n; T, 8) A (BE"),.

Now, we shall summarize the classification of pathsin P,,; = B(U,(g)ay)
(A =m(Ao— A1) +10). By Corollary 6.25 (ii), if wefix one connected component
in Pp,(n), each element in the component is classified by Aff(B%");. Since
Aff(B®"); is generated by {77 ® (£)®"}1cz, any element in Aff (B®™); isin
the following form:

Zibl*""bnfl,l+kn ® ([/1) ® . ® (L’n,—l)a (649)

where £ is an integer called depth parameter and ¢,, ., .,; € I,, is determined
onlyby t1,... 1,0 (if (ta,-.-stn—1) = (£, 00, E)slpg, 1 = 0)-
Therefore for givenm,l € Z, by the following parameters
n € Zso Withn — |m| € 2Z¢ (the total number of walls),
(t1,---,tn—1) in m-domain configuration (domain types),

(c1,-++,cn—1) € Z%, (domain parameters),

(1, tn-1) (1 = £) (types of walls),
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k € Z (depth parameter),

every pathin P, ; is uniquely classified.
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