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Anti-uniform semilattices

J. M. Howie and B. M. Schein

An inverse semigroup which is a union of groups is called

Cliffordian. A semilattice E is called universally Cliffordian

if every inverse semigroup having E as semilattice of idempotents

is Cliffordian. It is shown that E is universally Cliffordian

if and only if it is anti-uniform, that is, if and only if no two

distinct principal ideals of E are isomorphic.

A semilattice E satisfying the minimum condition is anti-uniform

if and only if it is a well-ordered chain. Examples are given of

anti-uniform semilattices of more complicated types.

A.H. Clifford [2] has given a complete description (in terms of groups

and semilattices) of the structure of inverse semigroups that are unions of

groups, and for this reason we shall (as in [7]) refer to such inverse

semigroups as Cliffordian. If E is a given semilattice, there do of

course exist Cliffordian inverse semigroups having E as semilattice of

idempotents, the simplest such being E itself. Let us temporarily call

a semilattice E universally Cliffordian if every inverse semigroup having

E as semilattice of idempotents is Cliffordian. The content of Theorem 7-5

in [3] is that E is universally Cliffordian if it is finite and forms a

chain under its natural ordering. More generally, one of us [7] has shown

that E is universally Cliffordian if it is a well-ordered chain (under its

natural ordering).

It was conjectured in [7] that the converse also holds: E is

universally Cliffordian only if it is a well-ordered chain. The purpose of

this note is to show that this conjecture is correct provided we restrict

attention to semilattices with minimum condition. In general the conjecture
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is false.

We are indebted to Professor W.D. Munn for the illustrated example in

§2 and for a number of other helpful suggestions.

1. Anti-uniformity

Various basic definitions and results of semigroup theory, all to be

found in Clifford and Preston [3], will be used without comment.

If E is a semilattice, we define an equivalence relation U on E

by

(e,f) e U if and only if Ee = Ef .

If U is the identical relation on E we shall say that E is

anti-uniform (a term suggested by Munn's use of 'uniform' for semilattices

in which U is the universal relation [6]).

If. 5 is an inverse semigroup having E as its semilattice of

idempotents, and if V denotes Green's equivalence, then

(ejf) £ V n (E x E) if and only if there exists a in S such that

aa = e and a a = f . (See, for example, the proof given of Lemma 8.3^

in [3].) In this case, as remarked in [4], there is an isomorphism

aa : Ee -+ Ef defined by

x a = a~ x a (x e Ee) .

Thus

V n (E x E) c. U .

Now, an inverse semigroup is Cliffordian if and only if aa = a a for

every a , that is, if and only if

V n (E x E) = LE ,

the identical relation on E . Thus we have established half of the

following theorem, which reduces our problem to one purely in the theory of

partially ordered sets.

THEOREM 1. A semilattice E is universally Cliffordian if and only

if it is anti-uniform.
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Proof. To establish the remaining half, we shall show that if E is

not anti-uniform then there exists a non-Cliffordian inverse semigroup

having E as its semilattice of idempotents. To do this, we use a

construction due to Munn [6]. For each (e,f) in U , let T „ be the

set of all isomorphisms from Ee onto Ef , and let

TE = WTetf : (*,f) 6 10 .

Munn has shown [6, Lemma 2.2] that, under the usual multiplication of

one-one partial mappings, T_ is an inverse semigroup. Moreover, the set

of idempotents of 2"_ is E* = {e : e € 2? , where e is the identical

mapping of Ee onto itself. Since e e~ = e » it is possible to identify
e j ej

e with e and to say that ff is the semilattice of idempotents of T-, .

If £ is not anti-uniform, there exists a e T , C J1 with e | / .

Clearly aoT = e , a" a = f , and so 2V, is not Cliff ordian. This

completes the proof.

We can now prove the conjecture in [7] in the case where E has the

minimum condition (by which we mean that every non-empty subset of E has

at least one minimal element).

THEOREM 2. If a semilattice has the minimum condition and is

anti-uniform, then it is a well-ordered chain.

Proof. We show (what is clearly sufficient) that if E is not

totally ordered, then it is not anti-uniform.

Let us define a subset K of E by saying that x € K if there exist

elements of E that are incomparable with x . Clearly K \ <j> if E is

not totally ordered; let e be a minimal element of K , and let f be a

minimal member of the non-empty set of elements of E that are incomparable

with e . Then ef < e and ef < f , since otherwise e and f would be

comparable. In fact e covers ef , for if g is such that ef < g < e ,

then fef < fg < fe and so fg = ef . But g must be comparable with f ,

and so fg = f or fg - g . The former alternative leads to f = ef , a

contradiction; the latter alternative leads to g = ef • Thus e covers

ef , and similarly / covers ef • It follows that
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Ee = E ef u {e} 3 Ef = E ef u {/} J

and so (e,/,) 6 (J , an obvious isomorphism from Ee onto Ef being that

which associates e with / and every other element with itself. This

completes the proof.

2. Examples

We describe first a countable totally ordered set E which is

anti-uniform but not well-ordered. The set in question has been described

by Anne C. Morel [5, p.70] and is quoted by Chang and Ehrenfeucht [/, p.

the property of interest there being not dissimilar to the property of

anti-uniformity. *

Consider the set Q of rational numbers, and let e be any injection

of Q into N = {0, 1, 2> .. . } . Let

E = U ({q} x {o, 1, ..., z(q)}) ,

and define an order relation < on E lexicographically:

(q3m) < (r,n)

if and only if either q < r or q = r and m < n .

Note that the set of elements of E having no immediate predecessors

is {(qjO) : q S Q} , and the set of elements having no immediate

successors is {(q,z(q)) : q G Q) .

To show that E is anti-uniform, suppose, by way of contradiction,

that there exist distinct elements (q,m) , (r,n) in E for which there is

an isomorphism <j> : E(q,m) -*• E(r,n) . We distinguish two cases:

(i) m =f n ;

(ii) m = n and q \ r .

In case (i), certainly

= (r,n) , (q,m-l)$ = (r,n-l) ,

If, without essential loss of generality, we suppose that m > n , we

eventually find that

are indebted to Dr J.N. Cross Iey for these references.

https://doi.org/10.1017/S0004972700041502 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700041502


Anti-uniform semi lattices 267

= (r,0) ,

a contradiction, since (q,m-n) has an immediate predecessor and (r,0)

does not.

In case (ii) we may suppose without loss of generality that q > r .

If s is such that r < s < q , then (s, 0) e E(q,m) , and has no immediate

predecessor; hence (s,0)§ e E(r3n) , and has no immediate predecessor:

that is, (s,Q)$ = (t30) , where t < r . Certainly

t 4 s and so z(t) 4 z(s) . We shall consider only

the case in which e(s) > z(t) , since the other case

is similar. Now

(8,2)$ = (t,2)

and finally (s,e(t))$ = (t,z(t)) , a contradiction,

since (s,z(t)) has an immediate successor and

does not.

The set E is of course not well-ordered, since

for each q in Q the non-empty subset

{x € E : x > (q,e(q))} does not have a least element.

An anti-uniform semilattice need not "be totally

ordered. If, for example, we take the union of the

semilattice E described above with the semilattice

N = {Oj 1, 23 3, ...} under the natural ordering, and

define en = 0 for all e in E and n in N , we

obtain an anti-uniform semilattice. The diagram

illustrates an example of an anti-uniform semilattice

satisfying the maximum condition, suggested to us by

Munn.

We are unable to give a complete classification

of anti-uniform semilattices.

etc.
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