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Abstract

Higher-order constructs enable more expressive and concise code by allowing procedures to be
parameterized by other procedures. Assertions allow expressing partial program specifications,
which can be verified either at compile time (statically) or run time (dynamically). In higher-
order programs, assertions can also describe higher-order arguments. While in the context of
(constraint) logic programming ((C)LP), run-time verification of higher-order assertions has
received some attention, compile-time verification remains relatively unexplored. We propose a
novel approach for statically verifying higher-order (C)LP programs with higher-order assertions.
Although we use the Ciao assertion language for illustration, our approach is quite general,
and we believe is applicable to similar contexts. Higher-order arguments are described using
predicate properties – a special kind of property which exploits the (Ciao) assertion language.
We refine the syntax and semantics of these properties and introduce an abstract criterion to
determine conformance to a predicate property at compile time, based on a semantic order
relation comparing the predicate property with the predicate assertions. We then show how
to handle these properties using an abstract interpretation-based static analyzer for programs
with first-order assertions by reducing predicate properties to first-order properties. Finally, we
report on a prototype implementation and evaluate it through various examples within the Ciao
system.
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1 Introduction

Abstraction is a fundamental principle in computer science often used for managing com-

plexity. Higher-order constructs are a form of abstraction that enables writing code that is

more concise and expressive by allowing procedures to be parameterized by other proce-

dures, resulting in more modular and maintainable code. (Constraint) logic programming

languages like Prolog (Körner et al. 2022) and functional programming languages like

Haskell (Marlow 2010) have included different forms of higher-order since their early

days, and languages from other programming paradigms like Java or C++ have adopted

them later on. In particular, Prolog systems allow defining higher-order predicates and

making higher-order calls. For example, the query: ?- filter(even,[7,4,9],L), passes

the term even as an argument to the higher-order predicate filter/3, which applies the

even/1 predicate to each element of the input list, selecting those that succeed, yielding

L = [4]. Assertions are linguistic constructs for writing partial program specifications,

which can then be verified or used to detect deviations in program behavior w.r.t. such

specifications. The assertion-based approach to program verification (Hermenegildo et al.

1999; Puebla et al. 2000b; Sanchez-Ordaz et al. 2021) differs from other approaches such

as strong type systems (Cardelli 1989) in that assertions are optional and can include

properties that are undecidable at compile time, and thus some checking may need to

be relegated to run time. Hence, the assertion-based approach is closer to gradual typing

in functional languages (Siek and Taha 2006). The combination of higher-order predi-

cates and assertions in the (C)LP context was already explored by Stulova et al. (2014).

This work introduced the notion of predicate properties, a special kind of properties that

allow using the full power of the (Ciao) assertion language for describing the higher-

order arguments of procedures. This work also proposed an operational semantics for

dynamically checking higher-order (C)LP programs annotated with such higher-order

assertions. However, the static verification of programs with higher-order assertions was

not addressed in that work, and remains relatively unexplored since other related work

in (C)LP that supports higher order (e.g. Miller (1991); Hill and Lloyd (1994); Somogyi

et al. (1996)) generally adheres to the strong typing model. In this work we propose

a novel approach for the compile-time verification of higher-order (C)LP programs with

assertions describing higher-order arguments. We present a refinement of both the syntax

and the semantics of predicate properties (§3). Next, we define an abstract criterion to

determine whether a predicate conforms to a predicate property at compile time, based

on a semantic order relation between the definition of a predicate property and the par-

tial specification of a predicate (§4.1). Then, we introduce an approach for “casting”

predicate usage in a program analysis-friendly manner that enhances and complements

the proposed abstract criterion (§4.2). We also propose a technique for dealing with these

properties using an abstract interpretation-based static analyzer for programs with first-

order assertions, by representing predicate properties as first-order properties that are

natively understood by such an analyzer (§4.3). Finally, we present a prototype imple-

mentation of these techniques and study its application to a number of examples (§5).
For concreteness, we use in our presentation the Ciao (Hermenegildo et al. 2012) assertion

language, and make use of its CiaoPP preprocessor (Hermenegildo et al. 2005), that com-

bines both static and dynamic analysis. However, we believe the approach is quite general

and flexible, and can be applied, at least conceptually, to similar gradual approaches.
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2 Preliminaries and notation

Variables start with a capital letter. The set of terms is inductively defined as follows:

(1) variables are terms (2) if f is an n-ary function symbol and t1, . . . , tn are terms,

then f(t1, . . . , tn) is a term. We use the overbar notation (̄·) to denote a finite sequence

of elements (e.g. t̄≡ t1, . . . , tn), and write |(̄·)| for representing its length. An atom has

the form p(t̄) where p is an n-ary predicate symbol, and t̄ are terms. The function ar(p)

denotes the arity of a predicate p. A higher-order atom has the form X(t̄) where X is

a variable and t̄ are terms. (Note that variables are not allowed in the function symbol

position of terms, only in literals). A constraint is a conjunction of expressions built

from predefined predicates whose arguments are constructed using predefined functions

and variables, for example, X − Y > abs(Z). A literal is either an atom, a higher-order

atom, or a constraint. Negation is encoded as finite failure, supported through a program

expansion. A goal is a finite sequence of literals. A rule has the form H :-B where H,

the head , is an atom and B, the body , is a possibly empty finite sequence of literals. A

higher-order constraint logic program, or higher-order program P is a finite set of rules.

We use σ to represent a variable renaming, and σ(L) or Lσ to represent the result of

applying σ to a syntactic object L. The definition of an atom L in a program, defn(L),

is the set of renamed program rules s.t. each renamed rule has L as its head. We assume

that all rule heads are normalized , that is , H is an atom of the form p(v̄) where v̄ are

distinct variables. Let ∃̄Lθ denote the projection of the constraint θ onto the variables of

L. We denote constraint entailment by θ1 |= θ2.

2.1 Operational semantics of higher-order programs

The operational semantics of a higher-order program P is given in terms of its derivations ,

which are sequences of reductions between states . A state 〈G | θ〉 consists of a goal G,

and a constraint store (or store) θ. We denote sequence concatenation by (::). We assume

for simplicity that the underlying constraint solver is complete and projection exists. We

use S� S′ to indicate that a reduction step can be applied to state S to obtain state S′.
Naturally, S�∗ S′ indicates that there is a sequence of reduction steps from S to S′. A
state S = 〈L ::G | θ〉 where L is a literal, is reduced to a state S′ as follows:

1. If L is a constraint and θ ∧L is satisfiable, then S′ = 〈G | θ ∧L〉.
2. If L is an atom and ∃(L :-B)∈ defn(L), then S′ = 〈B ::G | θ〉.
3. If L is a higher-order atom of the form X(t̄), then S′ = 〈p(t̄) ::G | θ〉 given that

∃p∈ P . θ |= (X = p)∧ ar(p) = |t̄|.
Let L be an atom, S = 〈L ::G | θ〉, S′ = 〈G | θ′〉, and suppose S�∗ S′. We refer to S

as a call state for L, and S′ as a success state for L. A query Q is a pair (L, θ), where

L is a literal and θ a store for which the (C)LP system starts a computation from state

〈L | θ〉. The set of all derivations of P from a query Q is denoted derivs(P, Q), and this

notation is naturally extended to a set of queries Q. Let D[−1] denote the last state of

any derivation D. A finite derivation from a query Q is finished if the last state in the

derivation cannot be reduced. A finished derivation from a query Q is successful if the

last state is of the form 〈� | θ′〉, where � denotes the empty goal sequence. In that case,
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the constraint ∃̄Lθ′ is an answer to Q. We denote by answers(P, Q) the set of answers of

P to a query Q. A finished derivation is failed if the last state is not of the form 〈� | θ〉.
A query Q finitely fails if all derivations in derivs(P, Q) are finished and have failed.

2.2 Property formulas

Conditions on the constraint store are stated as property formulas . A property formula

is a DNF formula of property literals . A property literal is a literal corresponding to

a special kind of predicates called properties . Properties are typically defined in the

source language, in the same way as ordinary predicates but marked accordingly, and

are required to meet certain conditions (Hermenegildo et al. 1999; Puebla et al . 2000b).

In particular, they are normally required to be checkable at run time but not necessarily

decidable at compile time, where they are safely approximated.1

Example 2.1 (Properties).

The following program defines the properties list/1 (“being a list”) and prefix/2 (“being

a prefix of a list”):

1 :- prop list/1. list([]).

2 list([_|Xs]) :- list(Xs).

3 :- prop prefix/2. prefix([],Ys) :- list(Ys).

4 prefix([X|Xs],[X|Ys]) :- prefix(Xs,Ys).

The property formula (list(Xs),list(Ys),prefix(Xs,Ys)) states that Xs and Ys should

be lists, and that Xs should be a prefix of Ys. This formula contains three property literals

corresponding to the list/1 and prefix/2 properties.

We now recall an instrumental definition about properties from Puebla et al. (2000b):

Definition 2.1 (Succeeds trivially).

A property literal L succeeds trivially for θ in a program P , denoted θ⇒P L, iff ∃θ′ ∈
answers(P, (L, θ)). θ |= θ′. A property formula succeeds trivially for θ if all of the property

literals of at least one conjunct of the formula succeeds trivially.

Intuitively, a property literal (or formula) succeeds trivially if it succeeds for θ in P

without adding new “relevant” constraints to θ. For example, list(X) checks “X being a

list.”

2.3 Traditional assertions

Assertions are syntactic objects for expressing properties of programs that must be sat-

isfied at program execution. We recall the herein relevant parts of the assertion schema

of Puebla et al. (2000a). Traditional (or first-order) predicate (or pred) assertions have

the following syntax: “:- pred Pred : Pre => Post.,” where Pred is a normalized atom

representing a predicate, and Pre and Post are property formulas. They express that all

calls to Pred must satisfy the precondition Pre, and, if such calls succeed, the postcon-

dition Post must be satisfied. If there are several pred assertions, the Pre field of at least

one of them must be satisfied.

1 Ciao assertions can also include global properties, which may not always be checkable at run time (e.g.
termination), but we focus for brevity on the described types of assertions and properties.
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Example 2.2 (Assertions).

The following assertions for the take/3 predicate relating a list and its prefix:

1 :- pred take(N,Xs,Ys) : (int(N), list(Xs)) => prefix(Ys,Xs).

2 :- pred take(N,Xs,Ys) : (list(Xs), prefix(Ys,Xs)) => int(N).

restrict the meaning of take/3 as follows:

• take(N,Xs,Ys) must be called with Xs bound to a list, and either N bound to an

integer or Ys bound to a prefix of Xs.

• If take(N,Xs,Ys) succeeds when called with N bound to an integer and Xs bound to

a list, then Ys must be bound to a prefix of Xs.

• If take(N,Xs,Ys) succeeds when called with Xs bound to a list and Ys bound to a

prefix of Xs, then N must be bound to an integer.

We represent checks on the store by a set of assertions with a set of assertion conditions .

Definition 2.2 (Assertion conditions).

Given a predicate represented by a normalized atom Pred , and its corresponding set of

assertions {A1, . . . , An} with Ai =“:- pred Pred : Prei => Post i.,” the set of assertion

conditions for Pred is {C0, C1, . . . , Cn} with

Ci =

{
calls(Pred ,

∨n
j=1 Prej ) i= 0

success(Pred ,Prei ,Posti) i∈ 1..n

Condition C0 encodes the checks that ensure that all calls to the predicate represented by

Pred are within those admissible by the set of assertions; we refer to it as the calls asser-

tion condition. Conditions C1, . . . , Cn encode the checks for compliance of the successes

for particular sets of calls, and we call them the success assertion conditions.

From this point on, we denote by A both the set of assertions of the program and,

interchangeably, its associated set of assertion conditions. Also, for a normalized atom

Pred , A(Pred) denotes only the assertions of A associated to the predicate Pred .

Example 2.3 (Assertion conditions).

The set of assertion conditions for the set of pred assertions in Example 2.2 is:

calls(take(N,Xs,Ys), (int(N), list(Xs)) ∨ (list(Xs), prefix(Ys,Xs)))
success(take(N,Xs,Ys), (int(N), list(Xs)), prefix(Ys,Xs))
success(take(N,Xs,Ys), (list(Xs), prefix(Ys,Xs)), int(N))

2.4 Operational semantics of higher-order programs with traditional
assertions

This operational semantics checks whether assertion conditions hold or not while comput-

ing the derivations from a query, halting the derivation as soon as an assertion condition

is violated. For identifying a possible assertion condition violation, every assertion condi-

tion C is related to a unique label � via a mapping label(C) = �. States of derivations are
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now of the form 〈G | θ | E〉, where E denotes the set of labels for falsified assertion con-

ditions (with |E|� 1); while such set is unnecessary if execution halts upon an assertion

condition violation, we include it to keep the semantics presented in this paper close to

that of previous work. A finished derivation from a query Q= (L, θ) is now successful if

the last state is of the form 〈� | θ′ |∅〉, failed if the last state is of the form 〈L′ | θ′ |∅〉,
and erroneous if the last state is of the form 〈L′ | θ′ | {�}〉. We also extend the set of liter-

als with syntactic objects of the form check(L, �) where L is a literal and � is a label for

an assertion condition, which we call check literals . Thus, a literal is now a constraint, an

atom, a higher-order atom, or a check literal. We now recall the notion of Semantics with

Assertions from Stulova et al. (2018), which we adapt to support higher-order atoms. A

state S = 〈L ::G | θ |∅〉, can be reduced to a state S′, denoted S�A S′, as follows:

1. If L is a constraint or a higher-order atom, then S′ = 〈G′ | θ′ |∅〉, with G′ and θ′

obtained as in the operational semantics without assertions: 〈L ::G | θ〉� 〈G′ | θ′〉.
2. If L is an atom and ∃(L :-B)∈ defn(L), then

S′ =

⎧⎨
⎩
〈G | θ | {�}〉 if ∃C = calls(L,Pre)∈A. label(C) = �∧ θ 
⇒PPre

〈B ::PostC ::G | θ |∅〉 otherwise

where PostC = check(L, �1) :: . . . :: check(L, �n) includes all the checks check(L, �i)

such that �i = label(Ci), with Ci = success(L,Prei,Post i)∈A∧ θ⇒P Prei.

3. If L is a check literal check(L′, �), then

S′ =

{
〈G | θ | {�}〉 if ∃C = success(L, ,Post)∈A. label(C) = �∧ θ 
⇒PPost

〈G | θ |∅〉 otherwise

The set of derivations for a program P with assertions A from a set of queries Q using

the semantics with assertions is denoted derivsA(P,Q). Given a predicate represented by

a normalized atom L, a store θ, and a set of queries Q, we define the success context

SA(L, θ, P,Q) of L and θ for P and Q as {∃̄Lθ′ | ∃D ∈ derivsA(P,Q). ∃G. 〈L ::G | θ〉 ∈
D.D[−1] = 〈G | θ′〉}. Intuitively, the success context of a predicate p with its assertions is

the set of stores of the success states of p obtained using the semantics above.

2.5 Static program analysis by abstract interpretation

Abstract interpretation (Cousot and Cousot 1977) is a mathematical framework for con-

structing sound, static program analysis tools. These tools extract properties about a

program by interpreting it over a special abstract domain (D�), whose elements are finite

representations of (possibly infinite) sets of actual constraints in the concrete domain (D).

Elements of the concrete and abstract domains are related by two functions: abstraction

(α :D→D�) and concretization (γ :D� →D). Provided certain conditions on D�, α, and

γ, abstract interpretation guarantees soundness and termination of the analysis.

2.6 Goal-dependent abstract interpretation

We use, for concreteness, goal-dependent abstract interpretation, in particular the PLAI

algorithm (Muthukumar and Hermenegildo 1992). This technique takes a program P ,
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an abstract domain D�, and a set of initial abstract queries Q�, describing all the pos-

sible initial concrete queries to P . An abstract query Q� is a pair (L, λ), where L is

an atom and λ∈D� an abstraction of a set of concrete initial program states (e.g.

constraint stores). A set of abstract queries Q� represents a set of concrete queries

defined as γ(Q�) = {(L, θ) | (L, λ)∈Q� ∧ θ ∈ γ(λ)}. The algorithm computes a set of

triples {〈L1, λ
c
1, λ

s
1〉, . . . , 〈Ln, λ

c
n, λ

s
n〉} where Li is an atom, and λc

i and λs
i are abstrac-

tions approximating the set of all call and success states for Li, respectively, for all

occurrences of literal Li in all possible derivations of P from γ(Q�). Higher-order atoms

are supported by reducing them to first-order calls when the called predicate can be

determined by the analysis, or making conservative assumptions otherwise. For the rest

of the paper, we assume that the abstract interpretation of a program P for the set of

initial abstract queries Q�, denoted by [[P ]]�Q� , works with an implicit abstract domain

D�, which safely approximates the concrete values and operations. Although not strictly

required, D� has a lattice structure with a bottom-most element ⊥, meet (
), join (�),
and less than (�) operators. As usual, ⊥ denotes the abstraction s.t. γ(⊥) =∅.

2.7 Compile-time verification of (first-order) assertions

In addition to generating the results mentioned above, the analyzer also checks any

(first-order) assertions in the program by safely approximating the property formulas

of such assertions, and comparing them against the analysis results ([[P ]]�Q�) using the

abstract operators.2 The verification result is reported as changes in the status and

transformations of the assertions: checked if the properties are satisfied; false if some

property is proved not to hold; or check if neither of the first two can be determined, in

which case run-time checks will be inserted into the program to ensure run-time safety.

The verification process yields an assignment of a value checked, false, or check to each

assertion in A, denoted acheck(A, [[P ]]�Q�).

3 Specifying higher-order programs: predicate properties

In higher-order (C)LP, variables can be bound to predicate symbols that are later invoked.

This naturally gives rise to the need for expressing conditions on these predicates that

must hold during program execution. To this end, predicate properties were introduced

in Stulova et al. (2014), which we revise and refine here.3 A predicate property is defined

as a set of anonymous assertions . Anonymous assertions generalize traditional assertions

by allowing the predicate symbol in the Pred field to act as a placeholder.

Definition 3.1 (Anonymous assertion).

An anonymous assertion ◦A is an assertion whose Pred field is of the form (v̄), where v̄

are free, distinct variables, and is a placeholder for a predicate symbol.4 Instantiating

2 We refer the reader to Puebla et al. (2000b); Sanchez-Ordaz et al. (2021) for the technical details on
this subject.

3 We propose a more compact syntax here that avoids having to use a named variable for the anonymous
predicate symbol (as in Stulova et al. (2014)) and takes advantage of functional notation (:=).

4 We also use for compactness “ ” as anonymous functor, a syntactic extension from the Ciao hiord
package (Cabeza et al. 2004), but double quotes ‘’ can also be used to stay within ISO-Prolog syntax.
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M. Ciccalè et al.8

with a specific predicate symbol p produces a traditional assertion for p derived from the

anonymous assertion ◦A, denoted ◦A|p.
Example 3.1 (Anonymous assertion).

Let ◦A be the anonymous assertion: “:- pred _(X,Y) : int(X) => int(Y)..” Then,
◦A|p is the traditional assertion: “:- pred p(X,Y) : int(X) => int(Y).” obtained by

instantiating the anonymous assertion ◦A with the predicate symbol p.

Definition 3.2 (Predicate property).

A predicate property Π is a set of anonymous assertions {◦A1, . . . ,
◦An}. Its syntax is: “Π

:= { :- pred (v̄) : Pre1 => Post1 . . . . :- pred (v̄) : Pren => Postn. }.”. The func-

tion ar(Π) denotes the arity of the predicates for which all of the anonymous assertions

in Π express a property. Instantiating Π with a specific predicate symbol p produces a set

of traditional assertions for p, denoted Π|p = {◦A1|p, . . . , ◦An|p}.
We use Π to refer to both a set of anonymous assertions and, interchangeably, the cor-

responding set of anonymous assertion conditions; extending instantiation accordingly.

Example 3.2 (Predicate property).

The following program defines the predicate property int_op (“being a predicate that

behaves as an integer nondeterministic binary operator”), and a higher-order assertion:

1 int_op := { :- pred _(X,Y,Z) : (int(X), int(Y)) => int(Z). }.

2 :- pred eval(A,B,Op,R) : (int(A), int(B), int_op(Op)) => int(R).

The predicate property literal int_op (Op) states that Op should be a 3-ary predicate s.t.,

if called with its first two arguments bound to integers, then its third argument should

be bound to an integer upon success. The higher-order assertion for the eval/4 predicate

states that it must be called with its first two arguments bound to integers and its third

argument bound to a predicate that conforms to property int_op, and that if any such

call succeeds, then its fourth argument should be bound to an integer.

4 Verifying higher-order programs

Once established how to specify higher-order programs using predicate properties, we now

concentrate on how to verify such programs. We first recall some instrumental definitions

from Puebla et al. (2000b) for reasoning about abstractions of property formulas. For

the rest of the discussion, let P be a program and F a property formula defined in P .

Definition 4.1 (Trivial success set).

We define the trivial success set of F as F � = {∃̄F θ | θ⇒P F}.
Example 4.1 (Trivial success set).

Let F = list(L), both θ1 = {L = [1,2]} and θ2 = {L = [1,X]} are in F �, but θ3 = {L
= [1|_]} is not, since a call to (L = [1|_], list(L)) would further instantiate the second

argument of [1|_]. The trivial success set F � of F captures the notion that the list(L)

property formula requires L to be instantiated to (the structure of) a list.

Definition 4.2 (Abstract trivial success subset).

An abstraction is an abstract trivial success subset of F , denoted F �−, iff γ(F �−)⊆ F �.
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Definition 4.3 (Abstract trivial success superset).

An abstraction is an abstract trivial success superset of F , denoted F �+, iff γ(F �+)⊇ F �.

Intuitively, F �− and F �+ are, respectively, a safe under- and over-approximation of the

trivial success set F � of the property formula F , and they can always be computed at

compile-time by choosing the closest element in the abstract domain.

4.1 Conformance to a predicate property

When we provide a partial specification for a higher-order argument X of a higher-order

predicate using a predicate property Π, we are describing requirements that the predicates

that X may be bound to must meet. We refer to a predicate p behaving correctly w.r.t.

Π as: p conforming to Π. We will now formalize this notion, with the goal of being able

to safely approximate the set of predicates that X can be bound to without violating Π.

Definition 4.4 (Covered predicate).

Given C = calls( (v̄), ◦Pre)∈Π and ◦C = calls(p(v̄),Pre)∈A, we say that p can be covered

with Π iff ◦Pre� ⊆Pre�.

Intuitively, p can be covered with Π if the set of admissible calls to p is a superset of

the set of admissible calls described by Π.

Definition 4.5 (Redundance).

Under the same conditions as in Definition 4.4, given that p can be covered with Π, we

define the set of assertion conditions A′ as follows:

A′ = {calls(p(v̄),Pre ∧ ◦Pre)} ∪ (A \ {C})∪ (Π \ {◦C})|p
Given a sequence of literals G, let U(G) denote the result of removing all check literals

from G. We extend U to derivations so that U(D) denotes the derivation resulting from

transforming any (extended) state 〈G | θ | E〉 in D into the state 〈G′ | θ〉, where G′ = U(G).

Let Qp be a query to p. We say that Π is redundant for p under Qp iff

∀D′ ∈ derivsA′(P, Qp). D
′
[−1] = 〈G′ | θ | {�′}〉,

and

∀D ∈ derivsA(P, Qp). U(D) = U(D′),

it holds that D[−1]�∗
A 〈G | θ | {�}〉 through a derivation that reduces only check literals

(if any at all),5 where � (resp., �′) is the label for a calls or success assertion condition

in A(p(v̄)) (resp., A′(p(v̄))).

Intuitively, a predicate property Π is redundant for a predicate p under a query Qp to

p iff augmenting the original set of assertion conditions (A) with that of Π (A′) does not
introduce new run-time check errors in any derivation starting from Qp.

6

5 Note that this implies U(G) = U(G′).
6 Note that, for the purposes of determining conformance, the assertions for the predicates in the program
can be provided by the user, inferred by analysis, or a combination of both.
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Definition 4.6 (Conformance).

Let Qp be the set of all possible queries to p. A predicate p conforms to Π, denoted

p≺Π, iff ∀Qp ∈Qp.Π is redundant for p under Qp. Conversely, p does not conform to

Π, denoted p⊀Π, iff ∃Qp ∈Qp.Π is not redundant for p under Qp.

To prove that a predicate conforms to a predicate property, all possible derivations from

all possible queries to that predicate have to be considered, which is often not feasible

in practice. To this end, we introduce the notion of abstract conformance as a compile-

time conformance criterion. Abstract conformance safely approximates the notion of

conformance by comparing the assertion conditions of a predicate and those of a predicate

property under the order relation of an abstract domain. We denote by (≺�−) the notion
of strong abstract conformance, and by (≺�+) that of weak abstract conformance. That

is , an under- and over-approximation of abstract conformance, respectively. Intuitively,

strong abstract conformance captures only predicates known to conform, while weak

abstract conformance also includes those for which conformance is unknown. Thus, the

negation of weak abstract conformance captures the predicates that are known not to

conform.

Definition 4.7 (Abstract conformance on “calls”).

Let Pre be the precondition of the calls assertion condition for p in A, and ◦C be an

anonymous calls assertion condition calls( (v̄), ◦Pre). Then:

p≺�−◦C ⇔ (Pre�+ � ◦Pre�−)∧ (Pre�− � ◦Pre�+)

p⊀�+◦C ⇔Pre�+ 
 ◦Pre�+ =⊥
Definition 4.8 (Abstract conformance on “success”).

Let A be the set of assertion conditions for p, and ◦C be an anonymous success assertion

condition success( (v̄), ◦Pre, ◦Post). Then:

p≺�−◦C ⇔∃S ⊂A, (Pre�−� � ◦Pre�+)∧ (Post�+� � ◦Post�−),

where

{
Pre�−� =�{Pre�− | success(p(v̄),Pre, ) ∈ S}
Post�+� =�{Post�+ | success(p(v̄), ,Post) ∈ S}

p⊀�+◦C ⇔∃ success(p(v̄),Pre,Post)∈A, (Pre�+ � ◦Pre�−)∧
∧ (Post�+ 
 ◦Post�+ =⊥)∧ ∃θ ∈Pre�. SA(p(v̄), θ, P, γ(Q�

p)) 
=∅

where Q�
p is the set of abstract queries s.t. γ(Q�

p) is a superset of the set of all valid

queries to p described by the calls assertion condition of p in A.

Definition 4.9 (Abstract conformance).

We define abstract conformance to a predicate property as follows:

p≺�−Π⇔∀ ◦C ∈ΠC . p≺�−◦C

p⊀�+Π⇔∃ ◦C ∈ΠC . p⊀
�+◦C

Note that abstract conformance is computed by first computing the abstract trivial

success subsets or supersets of the involved property formulas, and then applying the
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1 p_nat_nat := { :- pred _(X,Y) : nat(X) => nat(Y). }.

Predicate property.

(a)

(b)
(c)

2 :- pred n2n(X,Y) : nat(X) => nat(Y). % A1

3 :- pred a2n(X,Y) : atm(X) => nat(Y). % A2

4 :- pred i2z(X,Y) : int(X) => zero(Y). % A3

5 :- pred z2i(X,Y) : zero(X) => int(Y). % A4

6 :- pred nz2n(X,Y) : negz(X) => nat(Y). % A5

Assertions.

�
int

negz nat atm

zero

⊥
Abstract domain lattice.

Fig. 1. Example case analysis on a predicate property and assertions.

operators of the abstract domain. For abstract domains which may lose precision with

their (�) abstract operator, more advanced techniques for leveraging multiple abstrac-

tions become necessary, for example, covering (Debray et al. 1997). We now relate the

notions of conformance and abstract conformance.

Theorem 4.1.

Let p be a predicate, Π be a predicate property: p≺�−Π⇒ p≺Π, and p⊀�+Π⇒ p⊀Π.

Proof.

The proofs proceed by contradiction and direct proof, respectively, using Defs. 4.2 to 4.8

and some basic set manipulation. Detailed proofs can be found in Appendix A.

Example 4.2 (Abstract conformance).

Consider determining conformance to the predicate property in Figure 1a – which, for

simplicity, we will interchangeably refer to as Π for the rest of the example – given the

assertions A= {A1, . . . , A5} in Figure 1b. (Notice that the property formulas of both Π

and A include elements of the abstract domain represented by the lattice in Figure 1c).

Their corresponding sets of assertion conditions are:

Π = {calls(_(X,Y), nat(X)), success(_(X,Y), nat(X), nat(Y))}
A = {calls(Pred i,Prei), success(Pred i,Prei,Post i) |Ai ∈ A}

We aim to determine which predicates partially specified by A abstractly conform to

the predicate property Π. For each predicate Pred i and its associated calls and success

assertion conditions, we: (1) determine abstract conformance to the anonymous calls

condition of Π; (2) determine abstract conformance to the anonymous success condition

of Π; and (3) determine abstract conformance to Π:

Tables 1 and 2 summarize the abstract conformance analysis between the calls and

success assertion conditions of each predicate and those of Π, respectively. Specifically,

for calls (in Table 1), we compare the preconditions and apply Definition 4.7; for success

(in Table 2), we compare both pre- and post-conditions and apply Definition 4.8.

As a summary, the only predicate that definitely conforms to p_nat_nat is n2n/2, since

both of its assertion conditions conform to Π.
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Table 1. Abs. conf. on “calls” example with ◦Pre = nat(X)

Predi Predi Relation w. ◦Pre Abs. Conf.

n2n(X,Y) nat(X) nat(X) = nat(X) yes
a2n(X,Y) atm(X) atm(X) � nat(X) =⊥ no
i2z(X,Y) int(X) int(X) � nat(X) maybe
z2i(X,Y) zero(X) zero(X) � nat(X) maybe
nz2n(X,Y) negz(X) negz(X) � nat(X) �=⊥ maybe

∧negz(X) �� nat(X)
∧negz(X) �� nat(X)

Table 2. Abs. conf. on “success” example with ◦Pre = nat(X) and ◦Post = nat(Y)

Predi Predi Relation w. ◦Pre Posti Relation w. ◦Post Abs. Conf.

n2n(X,Y) nat(X) nat(X) = nat(X) nat(Y) nat(Y) = nat(Y) yes
a2n(X,Y) atm(X) atm(X) � nat(X) =⊥ nat(Y) nat(Y) = nat(Y) maybe
i2z(X,Y) int(X) int(X) � nat(X) zero(Y) zero(Y) � nat(Y) yes
z2i(X,Y) zero(X) zero(X) � nat(X) int(Y) int(Y) � nat(Y) maybe
nz2n(X,Y) negz(X) negz(X) � nat(X) �=⊥ nat(Y) nat(Y) = nat(Y) maybe

∧negz(X) �� nat(X)
∧negz(X) �� nat(X)

4.2 Wrappers

Consider a predicate p and a predicate property Π s.t. p can be covered by Π. From

Definition 4.4 we know that given their respective preconditions Pre and ◦Pre, Pre� ⊇
◦Pre�. Thus, according to Definition 4.7, p may abstractly conform to Π (p≺�+Π), since

Pre may describe more admissible call states for p than ◦Pre, which can lead to omitting

some run-time check errors that would be raised by ◦Pre.

Example 4.3 (Weak abstract conformance).

Consider a query ?- foo(even) to the following program.

1 p_nat := { :- pred _(N) : nat(N). }. % 1-ary predicates for naturals.

2

3 :- pred even(N) : int(N). :- pred foo(P) : p_nat(P).

4 even(N) :- foo(P) :- P(10). % (1)
5 integer(N), 0 is N mod 2. foo(P) :- P(-10). % (2)

Take a derivation of such query that starts by reducing to the body of the first clause

(1): no calls assertion condition violation is expected since all predicates that conform to

p_nat must accept all natural numbers on calls. Now, take a derivation that reduces to

the body of the second clause (2): a calls assertion condition violation is expected since

all predicates that conform to p_nat must raise an error for any input different from a

natural number. However, in this particular case, no error is raised, since the predicate

even/1 accepts any integer on calls. Moreover, if we had:
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6 p_neg := { :- pred _(N) : neg(N). }. % 1-ary predicates for negatives.

7

8 :- pred bar(P) : p_neg(P).

9 bar(P) :- P(-4).

then a clause like foo(P) :- bar(P). would be problematic. For this clause, looking at the

assertion of foo(P), the predicate in P is required to conform to p_nat, which would be

an error when calling bar(P) since p_neg is disjoint from p_nat. However, if we consider

the particular case in which P = even, it may not. So, according to Definition 4.7, we

could only conclude that even/1 ≺�+ p_nat, that is, even/1 may abstractly conform.

In the example above, we motivate the need for such a restrictive condition for abstract

conformance on calls (see Definition 4.7). However, we may want to use predicates whose

set of admissible calls is greater than that of a predicate property, but without unexpected

behavior. To this end, we propose a technique to restrict the set of admissible calls of

a predicate p described by Pre to match that of ◦Pre in a program analysis-friendly

manner. This restriction is implemented using wrappers . A wrapper for p with Π is

simply a new predicate w(v̄) :- p(v̄) with an assertion “:- pred w(v̄) : ◦Pre.” (note

that fields of pred assertions, in this case the postcondition, can be omitted, equivalently

to true). A wrapper for p with Π also makes explicit the intention of creating a Π-

tailored version of p. Additionally, wrappers can also be used to alleviate the process of

determining abstract conformance on calls (particularly useful in the implementation),

since the wrapper would syntactically (and thus, semantically) match the precondition

of the predicate property.

Example 4.4 (Wrapper).

As a follow-up of the previous example, consider wrapping even/1 with p_nat:

10 :- pred even_nat(N) : nat(N).

11 even_nat(N) :- even(N).

Intuitively, even_nat/1 conforms to p_nat, and the analyzer can now infer that the clause

foo(P) :- bar(P). should raise an error since even_nat/1 only accepts naturals.

4.2.1 Rationale for explicit wrappers

The design of Hiord� follows the philosophy behind the Ciao system (Hermenegildo et al.

2012), which extends Prolog with static and dynamic assertion checking (among other

modular extensions) without altering its untyped nature. We also considered some alter-

native solutions to the problem at hand, such as tainting each predicate passed as an

argument annotated with a predicate property , and restricting its future use in all inter-

nal (recursive) calls. However, this approach would have required modifying the standard

Prolog semantics regarding higher-order calls. The use of wrappers allows us to simulate

this behavior without altering the underlying semantics.

4.3 First-order representation of predicate properties

As mentioned in §2, the abstract interpretation-based static analyzer can infer properties

about higher-order programs, and also verify first-order assertions. However, here we
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Algorithm 1 [Hiord �]: Verify a higher-order program with higher-order assertions

Input: Program: P , assertions: A, abstract queries: Q�

Output: Verified status (checked/false/check) for the assertions A of P : V
1: R ← ∅

2: repeat start fixpoint computation
3: R′ ← R save state to check fixpoint convergence
4: for all predicate property Π ∈ P do
5: R ← R ∪ {π−(p) | p ∈ P ∧ p≺�− Π} ∪ {π+(p) | p ∈ P ∧ p≺�+ Π} regtypes
6: end for
7: until R = R′ fixpoint reached
8: V ← acheck(A, P ∪R �

Q�) first-order assertion checking process

obviously need to deal with predicate properties in assertions. Usually, for a new type of

property, a new abstract domain is needed. As an alternative approach, we herein propose

representing predicate properties as first-order properties of a kind which can be natively

supported by the analyzer, thus allowing us to leverage existing and mature abstract

domains. More concretely, we propose representing predicate properties as regular types ,

a special kind of properties (and thus defined as predicates) that are used to describe the

shape of a term. Intuitively, such types will capture sets of predicate names. For example,

given the predicate property pp, we can represent that the predicates p, and q strongly,

and r weakly conforms to pp as the following regular types: pp−/1 = {pp−(p), pp−(q)}
and pp+/1 = {pp+(p), pp+(q), pp+(r)}.7 Formally, given a predicate property Π, we

define two associated regular types: π− /1 and π+ /1, that capture the set of predicates

that strongly and weakly abstractly conform to Π as follows: π−/1= {π−(p) | p∈ P ∧
p≺�−Π}, and π+/1= {π+(p) | p∈ P ∧ p≺�+Π}. By definition, π− /1 is a subtype of π+

/1. These regular types reduce the compile-time checking of higher-order assertions to

that of first-order assertions. Regular types can be abstracted and inferred by several

abstract domains; for concreteness we use eterms (Vaucheret and Bueno 2002).

4.4 Hiord� algorithm

We now present Hiord�, the core algorithm for the compile-time verification of a higher-

order program P with higher-order assertions A (Algorithm 1). First, it initializes a set

of rules R, and it computes the regular type representations of each predicate property

Π in P , that is , the π− and π+ predicates respectively (lines 4 to 6). This computation is

performed by directly applying Definitions 4.7 to 4.9 using the operators of the abstract

domain, and (implicitly) extending the program P with R. Since predicate properties can

include predicate property literals from other predicate properties – that is , dependencies

among predicate properties – lines 4 to 6 are repeated until a fixpoint is reached (lines 2

and 7). Next, it computes the abstract interpretation of P , augmented with the regular

7 Or, using Ciao’s functional notation: “:- regtype pp+/1. pp+ := p | q | r. .”
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type representations of every predicate property, for the set of abstract queriesQ� (line 8).

Finally, it performs the compile-time verification of the set of (now first-order) assertions

A w.r.t. the static analysis results, where predicate properties are now treated as standard

regular types (line 8). As the result of the algorithm, we obtain the verified status of each

assertion of A, where each assertion can be discharged (checked), disproved (false) and

an error flagged, or left in check status, and subject to run-time checks, as in Stulova

et al. (2014). We argue that, despite the inherent complexity of the verification problem in

hand, the proposed concepts make the compile-time checking algorithm clear and concise;

and, more importantly, easily implementable using a first-order assertion checker.

5 Implementation and experiments

To demonstrate the potential of our approach, we have implemented a prototype of the

Hiord� technique as part of the Ciao system. It implements Algorithm 1 and uses CiaoPP,

the Ciao program preprocessor, with the eterms abstract domain. We ran experiments on

a set of small but representative higher-order programs that were not possible to verify

until this point. We illustrate below our experiments with a selection of these programs.

5.1 A synthetic benchmark

We started by defining a test case comprising a predicate property using an anonymous

pred assertion and 25 predicates, each with a pred assertion, designed to exhaustively

cover all possible orderings between the pre- and post-conditions of the predicate property

and of each predicate. We then ran Hiord�, obtaining the correct results that 2 predicates

definitely did conform and 7 predicates definitely did not conform, with 16 predicates left

where no definite conclusion could be reached.

5.2 Higher-order list utilities

We defined various partially specified higher-order utility predicates specialized for work-

ing with lists of a particular type t, for example, t(X) :- num(X). For example, consider

the t_cmp predicate property defined below:

1 t_cmp := { :- pred _(X,Y) : (t(X), t(Y)). }.

which describes comparator predicates of elements of type t, that we then use in the

higher-order assertion for a comparator-parameterizable quicksort implementation:

2 :- pred qsort(Xs,P,Ys) : (list(t,Xs), t_cmp(P)) => list(t,Ys).

and where the partition/4 predicate includes a call P(X,Y). The analysis is able to

propagate the t_cmp property on P to that point, and if in P(X,Y), X is inferred to be

bound to, for example, a, an error is statically captured by Hiord�. Consider the following

comparators:

3 :- pred lex(X,Y) : (term(X), term(Y)).
4 lex(X,Y) :- X @< Y.

5 :- pred lex_t(X,Y) : (t(X), t(Y)).
6 lex_t(X,Y) :- lex(X,Y).
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For a query ?-qsort(Xs,lex,Ys), Hiord
� reports a warning on calls since lex/2 ≺�+

t_cmp (it weakly abstractly conforms). Intuitively, lex/2 is not definitely conformant

since it will not raise a run-time check error when called with a term that is not of type

t, introducing unexpected behavior. For a query ?-qsort(Xs,lex_t,Ys) Hiord� proves

that it behaves correctly w.r.t. its higher-order assertion, since lex_t/2 ≺�− t_cmp.

Additionally, consider a predicate property which represents a parameterizable sorter

of lists of elements of type t, defined “in terms of” the t_cmp predicate property:

7 t_sort := { :- pred _(Xs,C,Ys) : (list(t,Xs), t_cmp(C)) => list(t,Ys). }.

For determining that qsort/3 ≺�− t_sort, Hiord� would need to perform an additional

iteration of the fixpoint computation after the one above, that is, after computing the

predicates that weakly or strongly abstractly conform to the t_cmp predicate property.

5.3. HTTP server

Consider the following schematic HTTP server, parameterized by a predicate that must

be able to handle four REST operations. We use regular types for representing requests

and responses, and a predicate property for representing handlers:

1 handler := { :- pred _(Rq,Rs) : req(Rq) => res(Rs). }.
2

3 :- regtype req/1. req := ’DELETE’ | ’GET’ | ’POST’ | ’PUT’.
4 :- regtype res/1. res := ’OK’ | ’CREATED’ | ’BAD_REQUEST’ | ’NOT_FOUND’.

and we add the following higher-order assertion to the server predicate:

5 :- pred server(H,Rq,Rs) : (handler(H), req(Rq)) => res(Rs).

Hiord� detects that the predicate h/2 does not definitely conform to handler (h/2 ≺�+

handler) due to one its clauses:

6 h(’PUT’, Rs) :- ..., Rs = ’BAD_REQ’. % Bug, should be ’BAD_REQUEST’

5.4. Dutch national flag

This problem involves sorting a list of red, white, or blue elements, such that elements

of the same color are grouped together in a specified order (typically red, then white,

then blue). However, we want to generalize the solution by allowing the user to provide

a comparator that, given two elements, yields their comparison. We first define regular

types to represent colored elements and the result of their comparison:

1 :- regtype rwb/1. rwb := r | w | b. 2 :- regtype lge/1. lge := < | > | = .

Next, we define a dutch_cmp predicate property describing comparators between rwb

elements; and provide a higher-order assertion to the dutch_flag/3 higher-order

predicate:

3 dutch_cmp := { :- pred _(X,R,Y) : (rwb(X), rwb(Y)) => lge(R). }.
4 :- pred dutch_flag(C,Xs,Ys) : (dutch_cmp(C), list(rwb,Xs)) => list(rwb,Ys).
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Assume that we are given the implementation of dutch_flag/3 and we need to pro-

vide a comparator cmp/3 which conforms to dutch_cmp. Consider a first implementation

attempt:

6 cmp(red,=, red). cmp(white,=,white). cmp(blue,=, blue).
7 cmp(red,<,white). cmp(white,>, red). cmp(blue,>, red).
8 cmp(red,<, blue). cmp(white,<, blue). cmp(blue,>,white).

1 :- regtype rt1/1.
2 rt1 := red | blue
3 | white.

When determining its conformance to dutch_cmp, Hiord� finds that cmp/3 ⊀�+ dutch_cmp,

since CiaoPP infers the regular type rt1 for the elements to compare, and rt1 
 rwb =⊥ in

eterms. We proceed by correcting it, but we accidentally mistype some of the r elements

for o elements in lines 7 and 8; and CiaoPP infers the following assertion and regular

type:

6 :- pred cmp(X,R,Y) : (rt2(X), rwb(Y)) => lge(R).
7 cmp(o,=,r). cmp(w,=,w). cmp(b,=,b).
8 cmp(o,<,w). cmp(w,>,r). cmp(b,>,r).
9 cmp(r,<,b). cmp(w,<,b). cmp(b,>,w).

1 :- regtype rt2/1.
2 rt2 := r | b
3 | w | o.

However, Hiord� now reports that cmp/3 ≺�+ dutch_cmp, since it would not raise a run-

time check error when called with an o on its first argument. Formally, (rt2(X), rwb(Y))

� (rwb(X), rwb(Y)) in eterms. In an attempt at improving the precision of the ordering,

we refine cmp/3 to yield more informative results on the order relation between elements:

6 :- pred cmp(X,R,Y) : (rwb(X), rwb(Y)) => lgLGe(R).
7 cmp(r, =,r). cmp(w,=,w). cmp(b, =,b).
8 cmp(r, <,w). cmp(w,>,r). cmp(b,>>,r).
9 cmp(r,<<,b). cmp(w,<,b). cmp(b, >,w).

10 :- regtype lgLGe/1.
11 lgLGe := < | >
12 | << | >>
13 | = .

In particular, we introduce << and >> to reflect that X is “much lower” than Y, and vice-

versa; and define a new regular type and assertion. However, Hiord� still reports that

cmp/3 ≺�+ dutch_cmp, since cmp/3 may yield comparison results that are not reflected in

lge. Formally lgLGe(R)� lge(R) in eterms. Finally, we develop the following comparator:

6 :- pred cmp(X, R, Y) : (rwb(X), rwb(Y)) => lge(R).
7 cmp(r,=,r). cmp(w,=,w). cmp(b,=,b).
8 cmp(r,<,w). cmp(w,>,r). cmp(b,>,r).
9 cmp(r,<,b). cmp(w,<,b). cmp(b,>,w).

And Hiord� proves that cmp/3 ≺�− dutch_cmp, since it behaves exactly as expected.

6 Conclusions

We have presented Hiord�, a novel approach for the compile-time verification of higher-

order (C)LP programs with higher-order assertions. We started by refining both the

syntax and semantics of predicate properties. Then, we introduced an abstract criterion

to determine whether a predicate conforms with a predicate property at compile time. We

also motivated and explained a wrapper -based technique for “casting” predicate usage

in a program analysis-friendly manner that enhances and complements the proposed

abstract criterion. We then proposed a technique for dealing with these properties using

an abstract interpretation-based static analyzer for programs with first-order assertions.

Finally, we reported on a prototype implementation and studied the effectiveness of

the approach with various examples within the Ciao system. We believe our proposal
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constitutes a practical approach to closing the existing gap in the verification at compile

time of higher-order assertions; and that it is quite general and flexible, and can be

applied, at least conceptually, to other similar gradual approaches.
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