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Abstract

Oceanwave climate has a significant impact on near-shore and off-shore human activities, and its characterization can
help in the design of ocean structures such as wave energy converters and sea dikes. Therefore, engineers need long
time series of ocean wave parameters. Numerical models are a valuable source of ocean wave data; however, they are
computationally expensive. Consequently, statistical and data-driven approaches have gained increasing interest in
recent decades. This work investigates the spatiotemporal relationship between North Atlantic wind and significant
wave height (Hs) at an off-shore location in the Bay of Biscay, using a two-stage deep learning model. The first step
uses convolutional neural networks to extract the spatial features that contribute toHs. Then, long short-termmemory
is used to learn the long-term temporal dependencies between wind and waves.

Impact Statement

In the context of climate change, the climate of ocean waves has major socioeconomic and environmental
implications. Since ocean waves are generated by the wind blowing at the ocean surface, understanding the
relationship between wind and waves is critical to assessing the impact of climate change on ocean waves. This
work contributes to understanding the spatiotemporal relationship between wind conditions and ocean waves
using deep learning. We propose a fully data-driven empirical wind-wave model that predicts the significant
wave height at a location in the Bay of Biscay using the North Atlantic wind conditions. The proposed method is
computationally inexpensive and can provide long time series of future significant wave heights or complete
historical data if wind data are available.

1. Introduction

Characterization of wave climate is required for many marine applications, such as the design of coastal
and offshore structures and the planning of ship operations. Wind waves are generated by the surface
wind, with the local wind creating the wind sea and wind from distant areas creating waves that propagate
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and form swells (Young, 1999). Waves in the Bay of Biscay depend on both local and large-scale wind
conditions in the North Atlantic (Charles et al., 2012); however, swells generally dominate the sea state.
Swells travel large distances and take up to 5 days to cross the Atlantic from Cape Hatteras to the Bay of
Biscay (Ardhuin and Orfila, 2018). Consequently, waves observed at a given location depend on wind
conditions over theNorth Atlantic in a timewindow of several days, and it is challenging to reproduce this
complex spatiotemporal relationship using machine learning. The goal of this work is to propose a deep
learning approach that learns this relationship.

The advantage of deep learning methods (Goodfellow et al., 2016) lies in their ability to build
hierarchical representations of predictors. In particular, in the case of spatial data, convolutional neural
networks (CNNs) allow to learn complex spatial features from the data (Gu et al., 2018). Moreover, long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997 has proven to be very successful in
predicting time series and sequence data. In this work, we propose a nonexpensive data-driven approach
that learns the underlying spatiotemporal structure of the relationship between wind and waves using a
two-stage model based on CNNs and LSTM.

This paper is organized as follows. Section 2 presents the problem of downscaling of ocean waves and
related works. Section 3 describes the data used in this work. Section 4 presents the proposed two-stage
model, the architecture, and the training process. Section 5 discusses the results of this work. Finally,
Section 6 presents the conclusions and future work directions.

2. Problem Statement and Related Work

The problem of improving the spatial resolution of climate variables is known under the name of
downscaling (Maraun et al., 2010). Downscaling approaches attempt to construct a link, either numerical
or statistical, between large-scale and local-scale variables. The advantage of statistical downscaling
(SD) over numerical models is primarily in terms of computational efficiency. A rigorous comparison of
the two approaches can be found in Wang et al. (2010) and Laugel et al. (2014).

In the case of oceanwaves, wind (Obakrim et al., 2022) or sea level pressure (SLP) (Camus et al., 2014)
are commonly used to downscale ocean wave parameters. However, in order to establish a link function
between the wind (or SLP) and the local ocean wave parameters, it is necessary to consider a large spatial
and temporal coverage and, consequently, a large number of potential explanatory variables that are
highly correlated. Some methods determine the wave generation area for any ocean location worldwide.
For example, ESTELA (Pérez et al., 2014) is a numerical model that uses spectral information to select the
fraction of energy that travels to the target point from selected source points. The ESTELAmethod can be
used to design SD methods. For instance, Camus et al. (2014) and Hegermiller et al. (2017) used the
ESTELA method to define the predictors used in their SD model.

Obakrim et al. (2022) proposed a data-driven approach that determines the wave generation area by
estimating the travel time of waves, generated in each considered sources point, that reach the target point.
Then, the predictors were defined based on the wave generation area and finally, a SD model based on
weather types was built.

As far as we know, the existing methods for SD of ocean wave parameters define a priori the
spatiotemporal structure of the predictors, and then the SD model is built using these predictors. The
aim of this study is to propose a deep learning approach that automatically learns the spatiotemporal
relationship between wind and waves.

3. Data Preparation

The Climate Forecast SystemReanalysis (CFSR) (Saha et al., 2010) hourly wind data is considered in this
study as a predictor. CFSR is a global reanalysis developed by the National Centers for Environmental
Prediction (NCEP) that covers the period from 1979 to the present with an hourly time step and a spatial
resolution of 0.5° by 0.5°. The historical Hs data is extracted from the hindcast database HOMERE
(Boudière et al., 2013) at the target location with spatial coordinates (45.2°N, 1.6°W) located in the Bay of
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Biscay. The temporal resolution of both wind and Hs data is up-scaled to 3-hourly data. The period from
1994 to 2016 is considered in this study, leading to a dataset with n¼ 67,208 observations.

Instead of using both zonal and meridional components as a predictor, we use the projected wind
(Obakrim et al., 2022) defined, at each location j and time t, as

Wj tð Þ¼Uj tð Þ cos2 1
2

bj�θj tð Þ
� �� �

, (1)

whereWj tð Þ is the projected wind,Uj tð Þ the wind speed, θj tð Þ the wind direction and bj is the great circle
bearing from the source point j to the target point. Under the assumption that waves travel in great circle
paths, grid points whose paths are blocked by land are neglected (Figure 1). Therefore, we define the
global predictor at time t as

X gð Þ tð Þ¼ W2
1 tð Þ,…,W2

p tð Þ
� �

, (2)

where p¼ 5,651 is total number of grid points.
Following Obakrim et al. (2022), in order to capture the wind sea, we also define the local predictor as

X ℓð Þ tð Þ¼ U tð Þ,U2 tð Þ,U3 tð Þ,U2 tð ÞF tð Þ,U t�1ð Þ,U2 t�1ð Þ,U3 t�1ð Þ,U2 t�1ð ÞF t�1ð Þ� 	
, (3)

where U tð Þ is the wind speed at the target point and F tð Þ is the fetch length at time t, calculated as the
minimumof the distance from the target point to shore in the direction fromwhich thewind is blowing and
500km. The fetch has an important effect on wind sea characteristics (Ardhuin and Orfila, 2018);
therefore, it is commonly used to construct empirical wind wave models.

4. Proposed Methodology

As mentioned in the last section, state of the art statistical methods for downscaling wave parameters
usually use a preprocessing step to create features that take into account the wave generation area. In this

Figure 1. The projected wind, defined in (1), in January 1, 1994, 00:00 hr. The black point represents the
target point.
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study, we propose a deep-learning approach that automatically extracts these features. Since waves may
take several days to reach the target point, the history and current wind can be used to predict Hs. An
example of this type of model could have the following form:

Hs tð Þ¼ f X gð Þ t� tmaxð Þ,…,X gð Þ tð Þ
� �

, (4)

where, tmax can be interpreted as the maximum travel time of the waves and will be referred to as such in
the following. However, this approach can be computationally challenging given the dimension of the
predictor (5,651 in our case). Instead, in this study, we propose to use current wind conditions to estimate
current and future Hs.

In order to describe the complex spatiotemporal relationship between wind and Hs, we propose the
following two-stage model:

First stage : Hs tjX gð Þ tð Þ
� �

,…,Hs tþ tmaxjX gð Þ tð Þ
� �h i

¼ f X gð Þ tð Þ
� �

þ ε tð Þ, f :ℝp !ℝtmax

Second stage : Hs tð Þ¼ g X gð Þ tð Þ, f X gð Þ t� tmaxð Þ
� �

,…, f X gð Þ tð Þ
� �� �

þ ε0 tð Þ, g :ℝtmax�tmaxþ8 !ℝ
, (5)

where the notation Hs t1jX gð Þ t2ð Þ� �
represents the contribution of wind conditions at time t2 in Hs at time

t1. ε and ε0 are the errors of the first stage and second stage, respectively. The first stage estimates the
current and future Hs using current wind conditions. The second stage estimates Hs using the past
predictions obtained from the first stage. Alongwith the local predictorX gð Þ, the input for the second stage
is a tmax� tmax matrix of the form

bHs t� tmaxjX gð Þ t� tmaxð Þ� �
… bHs tjX gð Þ t� tmaxð Þ� �

⋮ ⋱ ⋮bHs tjX gð Þ tð Þ� �
… bHs tþ tmaxjX gð Þ tð Þ� �

0
B@

1
CA, (6)

where bHs t1jX gð Þ t2ð Þ� �
represents the prediction, obtained from the first stage, of the contribution of wind

conditions at time t2 in theHs at time t1.When t1 ¼ t2, this prediction represents the wind sea (first column
of the matrix in equation (6)); for t1 > t2, on the other hand, the prediction represents the Hs caused by
swells.

The general structure of the model is shown in Figure 2. The first stage consists of a series of 3 � 3
convolutions followed by the ReLU activation function, 2 � 2 max pooling layer, Batch Normalization,
then a flatten followed by a dense layer. The second stage starts with an LSTM layer that learns the long-
term dependencies of the t� tmax,…, tð Þ outputs of the first stage. The output of the LSTM layer is then
concatenated with the local predictor Xl and fed into two fully connected layers. The dropout layer is used
in both stages to prevent the network from overfitting. The loss function choosed in this study is the mean
squared error (MSE) which is expressed as

MSE First stageð Þ¼ 1
tmax

Xtmax

i¼0

1
n� tmax�1

Xn�tmax

t¼1

Hs tþ ið Þ� bHs tþ ijX gð Þ tð Þ
� �� �2

,

MSE Second stageð Þ¼ 1
n

Xn
t¼1

Hs tð Þ� bHs tð Þ
� �2

,

(7)

where n is the total number of observations and bHs is the prediction of Hs. The Keras framework with
Tensorflow backend (Chollet et al., 2015) is used in this work to train the model, on a Nvidia K80s GPU
using the Adam optimizer (Kingma and Ba, 2017) and mini batches of 64.

5. Results

The period from 1994 to 2011 is used to train the two-stagemodel and the period from 2012 to 2014 serves
as the validation period. The measures chosen in this paper to validate the analysis are the correlation
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coefficient (r), the root mean square error (RMSE), and the bias. Different values for the maximum travel
time of waves tmax are tested, and the results of k-fold cross-validation (with k¼ 5) are shown in Figure 3.
The RMSE stabilizes approximately at tmax ¼ 30�3hr, which corresponds to about 3.3 days, and the gain
is substantial compared to using tmax ¼ 5. This means that wind conditions over a time window of at least
3.3 days must be considered to characterize the wave climate at the target location. In the following, the
value of tmax is chosen equal to 30.

Figure 4 shows the scatter plot of observed versus predicted values ofHs using the two-stagemodel (5).
The RMSE in the validation period is equal to 0:21m for an Hs of mean 1:9m and standard deviation

Figure 2. Architecture of the two-stage model in equation (5).

Figure 3. Results of cross-validation using different values of tmax. The blue line represents the mean of
root mean square error (RMSE) and the red interval represents the minimum and maximum RMSE.
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1:1m. The model performs well in predicting Hs and accounts for both wind and swell. The validation
measures in the calibration and validation periods are almost the same. Thismeans that themodel does not
overfit the training data and generalizes well the relationship between wind and waves. Furthermore, the
seasonality of Hs is well captured by the two-stage model, as can be seen in Figure 5.

A comparison of the two-stage model with two other statistical approaches is done in Table 1. The first
approach, described in Obakrim et al. (2022), is based on weather types (Maraun et al., 2010). As for the
present work, the local and global predictors were considered. However, in order to reduce the dimension
of the predictor a single predictor is extracted at each spatial location j to predictHs at time t. It is defined a
priori as

Figure 4.Observed versus predictedHs in the validation period (left panel) and calibration period (right
panel).

Figure 5. Time series of observed (blue line) and predicted (red line) Hs in 2016.
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X gð Þ
j t; tj,αj
� �¼ 1

2αjþ1

Xt�tjþαj

i¼t�tj�αj
W2

j ið Þ,
tjþαjþ1≤ t≤ tj�αjþn,

(8)

where tj is the travel time ofwaves, αj controls the length of the timewindow, andWj is the projectedwind
at location j. The parameters tj and αj were estimated using the maximum correlation between hs and the
global predictor. The second method proposed by Michel et al., 2022, called H-CNN, uses CNNs to
predict Hs using the same predictors as in Obakrim et al. (2022). Thus, the main difference with the
approach proposed in this work is that the temporal dimension of the global predictor is reduced a priori
using the preprocessing step based on the maximum correlation described above. The numerical results in
Table 1 indicate that the two-stage model significantly outperforms the other two methods in term of the
validation measures.

6. Conclusion

In this study, a two-stage model based on deep learning is proposed to predict Hs using wind conditions.
Themodel is capable of learning automatically the underlying spatiotemporal structure of the relationship
between wind and waves. The model does well in predicting Hs and is computationally inexpensive
(about 5 min using a computer of 30GB RAM, 2 cores CPU, and a 16GB GPU). The proposed
methodology is based on two stages which are trained separately. A natural question that arises for future
work, is whether we can estimate the parameters jointly using back-propagation and eventually speed up
the training process and improving the results. Future work also includes using themethod to predict other
sea state parameters, such as wave direction and period.

The proposedmethod can be used for climate andweather studies at any ocean locationworldwide. For
nearby locations, one can train only the second stage at each location, using the weights of one location as
initialization for the others and leaving the first stage the same. The model can also learn from buoy data
instead of hindcast data and eventually fill in the gaps and complete historical data.
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Table 1. Comparison of the two-stage model, weather types, and H-CNN methods.

Method r RMSE (m) Bias (m)

Two-stage model 0.98 0.21 �0.006

Weather types 0.97 0.27 �0.03

H-CNN 0.97 0.27 �0.04

Abbreviation: RMSE, root mean square error.
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