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Abstract
To investigate dislocation densities of deformed polycrystalline ice themodifiedWarren-Averbach
and modified Williamson-Hall plots of X-ray line broadening have been applied to artificial ice
with and without silica particles, which model microparticles in ice sheets. This also provides us
with the dislocation velocity during creep. Creep tests were conducted at −20ºC and 2 MPa by
altering the strains using the artificial ice. In the primary creep region the ice with microparticles
is remarkably deformed, and the strain rate is suppressed because of high dislocation densities. At
10% strain the dislocation density shows the maximum value due to the continuous dislocation
pile-ups in the silica-containing ice: the dislocation density in the pure ice remains almost constant
within themaximum strain used in this study. As the strains continuously decrease, microparticles
pin the grain boundaries, leading to small grain sizes. Such small grain sizes provide sinks for
dislocation annihilations, resulting in decrease in the dislocation densities in the silica-containing
ice.

1. Introduction

The global mean sea level has risen faster with acceleration in recent decades. It has been
reported that the sea-level changes occur due to ice loss particularly in the Greenland ice sheet.
However, it has also been reported that the acceleration inmass loss between 2006 and 2015 was
at an average rate of 278 ± 11 Gt yr−1 from Greenland and 155 ± 19 Gt yr−1 from Antarctica
(IPCC, 2019: Summary for Policymakers). One of the reasons for mass loss is believed to be
related to the ice sheet flows from Greenland and Antarctica. As mentioned above the ice sheet
mass loss is particularly significant in Greenland. Such flows can occur due to basal slip on
the soil surface and deformation of ice (Cuffey and Paterson, 2010). The latter is related to the
creep phenomenon with the assistance of dislocation motions under applied stress and tem-
perature. The concept of creep of ice is well established for natural ice sheets and experimental
artificial ice, although it is known that a universal constitutive law for ice does not exist. For
example well-known Glen’s flow law explains how ice plastically deforms (Glen, 1955). During
creep deformation particularly in a tertiary creep regime dynamic recrystallisation usually takes
place (Duval, 1981; Duval and others, 1983) with fabric development. Budd and Jacka (Budd
and Jacka, 1989) summarised different creep behaviours between ice sheets and artificial ice
due to different stress fields and crystal orientations. Although anisotropic ice deformation was
common in the ice sheet, it was ill-considered in the flow-law model. Azuma investigated the
deformation behaviours of anisotropic polycrystalline ice and then constructed a power-law
creep equation with a steady-state creep rate, including the mean Schmid factor in the pre-
exponential factor (Azuma, 1995), and then extended it to the Cartesian coordinate system
(Azuma, 1994; Azuma and Goto-Azuma, 1996).

One of the important factors affecting deformation behaviour in ice is the existence of
microparticles. The reasons for the presence of such impurities in ice could be related to
minerals of continental origins, sea salts, biological origins and so on. In an earlier study
ultrafine amorphous silica was artificially dispersed in ice (Nayar and others, 1971). To
model the base of an ice sheet which usually includes a layer of dirty ice several meters in
thickness, sand was included in artificial ice (Hooke and others, 1972). These creep experi-
ments show strengthening effects due to the existence of sands in ice on creep deformation.
On the other hand the presence of particles in ice also affects dynamic recrystallisation or
grain boundary migration during creep (Humphreys and Hathery, 2004), depending on the
stress level (Song and others, 2004, 2008), resulting in softening of the ice. This discrep-
ancy between the effects of particles on hardening or softening of creep deformation of ice
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Table 1. Experimental conditions of creep deformation using artificial ice

Type Impurities
Impurity
content

Impurity
diameter

Applied
stress
MPa

Test
temperature

ºC

Sample
diameter

cm

Sample
hight or

gauge length
cm

Grain
diameter
of ice References

Tension ultrafine
amorphous
silica

0.5 or 1
vol. %

150 Å 0.5 ∼ 1.8 −22 ∼ −2 1.3 5.7 0.25 ∼ 0.5 mm
4 − 8 cm long

Nayar and
others, 1971

Compression sand 0.013 ∼ 0.347
vol. %

64 mm 0.53 ∼ 0.64 −9.2 ∼ −7.4 1.95 10 300 ∼ 500 mm Hooke and
others, 1972

Compression silt 0.1 ∼ 4
mass %

0.05 mm 1.45 −12 5.0 12.7 3 ∼ 5 mm Song and
others, 2004

Compression silt 0.43 vol. % 50 mm 0.4 ∼ 1.45 −10 ∼ −5 5.0 12.7 5 mm Song and
others, 2008

Compression silica 0.01 or 0.1
mass%

0.3 mm 0.2 ∼ 1.0 −50 ∼ −5 1.5 3 30 ∼ 107 μm Saruya and
others, 2019

could be related to the average grain size of the ice and parti-
cles. We then tested making a fine-grained ice with a few tens of
micrometres in diameter, containing micro- particles with 300 nm
indiameter and found that the addition ofmicroparticle softens the
ice during creep, and the corresponding strain rate-strain curves
do not show clear appearance of a steady state, irrespective of the
microparticle additions. Thus, it is concluded that the recovery of
dislocation pile-ups due to lattice diffusion based on a dislocation
creepmechanism is the rate-controlling process, and themicropar-
ticles insignificantly influence the deformation of the fine-grained
ice, except for their effect on grain boundary pinning (Saruya and
others, 2019).The details of the creep conditions mentioned above
are given in Table 1.

When considering a dislocation glide or climb during creep
deformation, the creep rate .𝜀 in both cases can be described by the
well-known Orowan equation,

.𝜀 = 𝜌bv (1)

where 𝜌 is dislocation density, b the Burgers vector and v the aver-
age velocity of dislocations (Poirier, 1976; Cuffey and Paterson,
2010). In the case of steady-state creep under a constant-stress
condition the steady-state creep rate is expressed as .𝜀 ∝ 𝜎m,
according to Weertman (Weertman, 1973). Here m is a stress
exponent. More details will be discussed later. Based on these
equations we understand that the dislocation density is one
of the important factors in determining the steady-state creep
rate. The parameters used in equations are shown in Table 2.

First systematic deformation experiments of water-frozen
‘single-crystal’ ice were conducted by Glen (Glen, 1952). He
observed that slips appear after a tensile test. Nakaya was the first
to report plastic deformation behaviours in single crystalline ice
from theMendenhall Glacier in Alaska with the aid of dislocations,
showing slip lines during a bending test, which were observed
by Foucault’s method of shadow photography (Nakaya, 1956). He
then found that gliding planes appeared after bending the sin-
gle crystalline ice. He attributed this to the occurrence of slips
related to the dislocations. In the early stage of the research the
existence of dislocations was indirectly confirmed using an etch-pit
method and electron microscopy for lake ice (Muguruma, 1961).
However the observations of the dislocations in ice were success-
fully made using X-ray photographs (X-ray diffraction topogra-
phy) as reported by Hayer and Webb (Hayes and Webb, 1965)
and were then extensively analysed by Higashi et al. using the X-
ray diffraction topography (Fukuda and Higashi, 1969; Higashi,

Table 2. Symbols and definitions in equations

Symbol Definition Symbol Definition
.𝜀 creep rate ΔK 2cos𝜃 (Δ𝜃) /𝜆
𝜌 dislocation

density
Δ𝜃 measured Bragg

angles of line profile
b Burgers vector D volume averaged

grain size
v average dis-

location
velocity

H constant

An Fourier series ̄C average dislocation
contrast factor

n an index ranging
from −∞ to ∞
including zero

H′ constant

AP
n particle size coef-

ficient of Fourier
series

U correlation factor

AD
n distortion coeffi-

cient of Fourier
series

̄Chk.l average dislocation
contrast factor

hkl Miller index q1, q2 fitting parameters
𝛿 spectral integral

line breadth
x (2/3)(c/a)2

𝜆 X-ray wavelength a lattice parameter of
hexagonal material

t mean linear
dimension of
grain

c lattice parameter of
hexagonal material

𝜃 Bragg angle 𝛼 0.9/D
𝜉 strain distribution 𝜅 (H2b2/2)1/2𝜌1/2

Ig diffracted intensity L Fourier length
Ag Fourier transform

of Ig
𝜃1, 𝜃2 measured Bragg

angles of line profile
𝜃0 Bragg angle of

undistorted lattice
R1, R2 auxiliary constants

g reciprocal lattice
vector

B constant

𝜀n strain 𝜎 applied stress
W elastic strain

energy of dislo-
cations per unit
length

m stress exponent

C dislocation
contrast factor

Q activation energy

𝜇 shear modulus k Boltzmann’s constant
Re outer cutoff radius

of dislocation
T absolute temperature

r0 inner cutoff radius
of dislocation

𝛽 constant

E Young’s modulus 𝛾 constant
K sin𝜃/𝜆
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1988) based on the Lang method (Lang, 1959). Nevertheless,
while the X-ray diffraction topography was a powerful tool
to directly reveal dislocations in the single crystals, the mea-
surable dislocation densities were limited to around 102 cm−2

(106 m−2). Instead of measuring dislocation densities by X-ray
diffraction topography Hori et al. applied an X-ray diffraction
method to obtain dislocation densities in the Vostok ice core from
the rocking-curvemeasurements withCu-K𝛼 radiations (Hori and
others, 2004). The instrument was installed in a cold room kept
at −20ºC, and a (10 ̄12) reflection in each crystal was analysed. It
was found that the measured dislocation densities ranged from
1.9 × 108 to 2.4 × 1010 m−2, and large numbers of dislocations were
detected in the glacier ice extracted from a depth of around 3286m.

The measurements of dislocation densities were significantly
developed by Krivoglaz and Wilkens and Ungár (Krivoglaz, 1969;
Wilkens, 1969; Ungár and others, 1998). It is well known that
both contributions from grain sizes of thematrix of polycrystalline
materials and strains are involved in the diffracted-peak intensi-
ties. As described by Hori and others (Hori and others, 2004), they
only chose the (10 ̄12) reflections for the diffracted intensities of
the ice cores. In their appendix, they considered the effect of the
dot product of g and b, where g and b are reciprocal lattice and
Burgers vectors, respectively, in order to have contrast. Krivoglaz
andWilkens included the dislocation contrast factor as an effect of
the strains, which will be discussed in more detail in the exper-
imental methods section of this paper. This method, known as
themodifiedWarren-Averbach andmodifiedWilliamson-Hall plots,
can obtain more precise dislocation densities in strained materials,
even in deformed ice. Nevertheless, such an approach has never
been applied to ice.

In order to evaluate the dislocation densities in deformed
ice samples using the modified Warren-Averbach and modified
Williamson-Hall plots of X-ray line broadening we developed an
apparatus that to be located inside a commercial XRD instrument
with Cu-K𝛼 radiations to maintain ice at low temperatures. By
using this method we succeeded in accurately measuring the dis-
location densities in ice as a function of the creep strain at −20ºC
under an applied stress of 2 MPa. The effect of microparticles on
the dislocation densities is also discussed.

2. Experimental methods

2.1. Sample preparations

Ultra-purewater (18.2MΩ-cm)was sprayed into liquid nitrogen in
order to produce ice powders. Additionally SiO2 (silica) powders,
simulating impurities in ice cores, with a diameter of 300 nm and
an amorphous structure weremixedwith the ice powders. Two dif-
ferent artificial ice samples were prepared; (1) pure ice powders and
(2) pure ice powdersmixed withmicroparticles containing ice.The
latter contained 0.1 mass% silica in the ice. These powders were
sievedwith amesh size of 710𝜇mso as to obtain a uniform powder
size. The powders were loaded into a metallic die and then sin-
tered at a cold room maintained at −10ºC for 1 h and pressed at
70 MPa using a hydraulic jack. During the sintering the inside of
the die was evacuated by a rotary pump to remove air bubbles as
much as possible (Azuma and others, 2012). The average dimen-
sions of the sintered ice with a diameter of 33 mm and a height
of 65 mm were cut. The obtained artificial ice had polycrystalline
microstructures.

Creep specimens were cut from a sintered sample into four
pieces with equivalent volumes, and then each piece was turned
on a lathe to shape the specimen into a cylinder with a diameter of
15 mm and a height of 30 mm.

2.2. Uniaxial compressive tests of the bulk specimens

Creep specimens were immersed in a container filled with silicone
oil to prevent sublimation during the test and to suppress friction
between the specimen and jig. A load was applied to the cylin-
drical creep specimen parallel to its long axis and controlled to
maintain the applied stress at 2 MPa. The creep test machine was
placed in a constant temperature bath inside a freezer maintained
at −20ºC. The strain was measured using the digital displacement
meter (Mitutoyo ID-F125) attached to the creep machine.

2.3. Microstructural observations

Themicrostructures before and after the creep tests were observed
using an optical microscope (Olympus BX51). The samples were
cut from the cylindrical specimens used for the creep tests, and the
observation directions were fixed perpendicular to the long axis
of the cylindrical specimens. The upper and bottom parts of the
cylinder were cut about 10 mm from the edges, and a remaining
10 mm part located near the centre of the cylinder was used. The
average grain diameter was calculated based on the equivalent cir-
cle diameter after measuring the area of each grain using Image J.
Additionally, subgrain boundary densities were also calculated by
measuring the length of the subgrain boundaries using Image J
within the area of a field of view.

2.4. Sample holder for X-ray diffraction analyses

The X-ray diffraction analyses were performed using an commer-
cial XRD machine (Rigaku Ultima IV) installed in a room main-
tained at ambient temperature. A sample holder shown in Figure 1a
wasmade of a Cu plate (thermal conductivity: 400Wm−1K−1), with
blocks of thermal insulators made of Teflon covering the top sur-
face, except for the space parallel to the beam line. The ice was
maintained between the Teflon blocks, which were 8 mm thick,
on the Cu plate and cooled at −20ºC. After fixing the ice sample
to the Cu plate in a cold room kept at −10ºC, the space was sealed
using a Kapton tapewith awidth of 20mm so that it did not disturb
the X-ray emissions to the surface of the ice at large Bragg angles.
The Cu plate was cooled using a container which was made of an
A5052P aluminium alloy (thermal conductivity: 200 Wm−1K−1)
and filled with cooling nitrogen gas (purity of 99.9%) flowing
into a helical and 750-mm-long Cu tube kept in liquid nitrogen
at −196ºC as shown in Figures 1c and d. The sample holder was
easily removable and placed on the cooling container just before
starting the X-ray analysis. The container could be adjusted to the
central position by an XYZ linier translation stage, and the opti-
mum height was adjusted using a stereomicroscope (Figure 1b).
The surface of the Kapton tape was gently covered with dry air
to prevent frosting due to moisture absorption from the air in the
experimental roommaintained at ambient temperature.The X-ray
radiation used was Cu-k𝛼 with a wavelength of 0.15406 nm. The
tube voltage and current used were 40 kV and 20 mA, respec-
tively. The step size and scan speed used were 0.01º and 0.2º
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Figure 1. (a) design of removable sample holder, (b) arrangement of x-ray generator, sample holder and x-ray detector in ultima IV, (c) at the top of the dewar vessel poured
liquid nitrogen and (d) a helical and 750-mm-long cu tube which was immersed in liquid nitrogen.

min−1, respectively. The schematics of the developed cooling sys-
tem for the X-ray measurements of ice samples are summarised in
Figure 2.

2.5. Dislocation density measurements

At least two independent parameters of grain size and strain in
polycrystalline materials are included in diffracted intensities of
the X-ray (Warren and Averbach, 1950). The shape of a diffracted
intensity can be represented by a Fourier series, and it is expressed
as

An(l) = AP
nAD

n (l) (2)

where n is an index ranging from −∞ to ∞ including zero, l is the
Miller index given e.g. by (00l) and AP

n and AD
n (l) are particle size

and distortion coefficients, respectively (Warren and Averbach,
1952). Williamson and Hall originally reported the composite
broadening of diffracted intensities inX-ray diffraction (XRD)pro-
duced by particle size and strain effects (Williamson and Hall,

1953), expressed by

𝛿 = 𝜆
tcos𝜃 + 2𝜉tan𝜃 (3)

where 𝛿 is a spectral integral line breadth, 𝜆 the X-ray wavelength,
t a mean linear dimension of the grain, 𝜃 the Bragg angle and 𝜉 the
strain distribution. If the well-known Eq. (3) is rearranged, e.g., to

𝛿cos𝜃
𝜆 = 1

t + 2𝜉sin𝜃
𝜆 (4)

then from the intercept and slope of the 𝛿cos𝜃/𝜆 − 2sin𝜃/𝜆 dia-
gram, the particle size t and strain 𝜉 can readily be extracted.
However, the scattering of the X-rays is significantly affected by the
incident beam direction, dislocation direction, the Burgers vector
and elastic anisotropy of the crystals. To improve the accuracy of
themeasurement the dislocation contrast factor was included in the
theory of the broadening of the X-ray intensities by Krivoglaz and
Wilkens (Krivoglaz, 1969; Wilkens, 1969). This was then extended
to be analysed from the actual XRD patterns of cubic crystals
(Groma and others, 1988;Ungár and others, 1998), andwas applied
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Figure 2. Schematic of the developed cooling system for x-ray measurements of ice
samples using N2 gas and liquid N2. Symbols (a) to (d) correspond to Figures 1a to 1d,
respectively.

for hexagonal crystals (Klimanek and Ku ̌zel, 1988; Ungár and
others, 2001; Dragomir and Ungár, 2002).

The intuitive expression of the diffracted intensity Ig(S) includ-
ing the effect of elastic strains can be explained by (Wilkens,
1969)

Ig = ∫Ag (n) exp (2𝜋inS) dn (5)

where Ag(n) is the Fourier transform of Ig(S) which is normalised
to unity, S = 2 (sin𝜃 − sin𝜃0) /𝜆, 𝜃 diffraction angle, 𝜃0 the Bragg
angle of the undistorted lattice and 𝜆 the X-ray wavelength. The
effect of strains 𝜀n is inserted in Ag(n) as

Ag(n) = ⟨exp(2𝜋ign ⋅ 𝜀n)⟩ (6)

The brackets ⟨ ⟩ indicate a mean value and g the reciprocal lat-
tice vector. According to the theory of dislocations the elastic strain
energy of dislocations per unit length can be expressed as (Wilkens,
1967; Hirth and Lothe, 1968)

W = C
𝜇b2
4𝜋 𝜌log(Re

r0
) (7)

where 𝜇 is the shear modulus. Additionally, Wilkens derived the
following equation for the mean square of the differential strain
using Eq. (7) and a rough approximation of Young’s modulus

E = 2𝜇 by considering Poisson’s ratio as 0.325 (Petrenko and
Whitworth, 1999),

⟨𝜀20⟩ = b2

4𝜋𝜌Clog(Re
r0

) (8)

here C is the dislocation contrast factor, Re and r0 are the outer and
inner cutoff radii of the dislocation, respectively. Thus we realise
from Eqs. (5), (6) and (8) that the intensity profiles of XRD pat-
terns can be broadened due to the presence of strains related to the
dislocations whose effect is included in the parameter of C.

The obtained X-ray profiles were fitted using the Lorentz
function. The modified Warren-Averbach (WA) and modified
Williamson-Hall (WH) plots were then used to evaluate the dis-
location densities as a function of the creep strain. Here we assign
K = 2sin𝜃/𝜆 and ΔK = 2cos𝜃 (Δ𝜃) /𝜆. The full width at
half-maximum (FWHM) of line profiles can be given as

ΔK = 0.9
D + (𝜋H2b2

2 )
1/2

𝜌1/2K ̄C1/2 + (𝜋H′b2

2 )U1/2K2 ̄C (9)

whereD is the volume averaged grain size,H a constant, ̄C the aver-
age dislocation contrast factor, H′ a constant and U a correlation
factor (Ungár and others, 1998). The last term in Eq. (9) is usu-
ally small and hence it can be neglected. Eq. (9) is known as the
modified WH plot. In the case of hexagonal materials the average
dislocation contrast factors are expressed as (Dragomir and Ungár,
2002).

̄Chk.l = ̄Chk.0(1 + q1x + q2x2) (10)

where q1 and q2 are fitting parameters and x = (2/3) (c/a)2: a
and c are lattice parameters of the hexagonal materials, and c is
measured parallel to the c axis. From Eqs. (9) and (10)

(ΔK)2 − 𝛼
K2 = 𝜅 ̄Chk.0 (1 + q1x + q2x2) (11)

is derived, where 𝛼 is 0.9/D and 𝜅 = (H2b2/2)1/2𝜌1/2.
The modified WA plot is given by

lnA (L) ≈ lnAP (L) − (𝜋𝜌b2L2
2 ) ln(Re

L )K2 ̄C + (U𝜋2b4L4

4 )

× ln(R1
L ) ln(R2

L )K4 ̄C2 (12)

where L = na3 is the Fourier length, a3 = 𝜆/2 (sin𝜃2 − sin𝜃1)
is in the direction of the diffraction vector g and the line profile
is measured from 𝜃1 to 𝜃2 of an angular range, AP(L) is the size
contribution to the Fourier coefficient for the intensity distribution
and R1 and R2 are auxiliary constants which are not interpreted
physically (Ungár and others, 1998). Eq. (12) can be simplified such
as

lnA (L) ≈ 𝜏 − 𝜑K2b2 ̄C + oK4b4 ̄C2 (13)

and the last term is omitted and then the parameter 𝜑 becomes
a fitting parameter when a lnA (L) − K2b2 ̄C diagram is drawn by
selecting several Bragg peaks in the line profile

𝜑 = 𝜌𝜋L2
2 ln(Re

L ) (14)

From Eq. (14) we can create a diagram of 𝜑/L2 − lnL, and it
reveals the dislocation density from the slope of −𝜋𝜌/2. The dis-
location density was indeed measured as the sum of mobile and
immobile dislocations using this technique.
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Figure 3. Strain rate and strain diagrams of pure and silica-containing ice measured
at-20ºC and 2 MPa after the creep tests.

3. Results and discussion

3.1. Creep curves

The measured strain rate and strain diagrams associated with the
creep experiments are given in Figure 3, which show samples crept
to 20% strain. Both samples show concave upward behaviours as
a function of the strain: as the strain increases, the strain rate
decreases. The initial trends of the strain rates are very similar
to those reported earlier in our paper (Saruya and others, 2019);
that is, the pure ice shows slightly concave downward behaviour
up to ≈ 0.36% strain, while the silica-containing ice shows a
rapid decrease in the strain rate until around 0.5% stain. This
means that silica may promote creep deformation particularly in
the early stages of the creep deformation in the primary creep
region. However pure ice shows continuous decrease in the strain
rate within our experimental conditions. As a result the silica-
containing ice is much softer than the pure ice above 0.56% strain.
This result is consistent with that reported by Saruya and others
(2019).

3.2. Microstructural observations and quantifications of grain
size and subgrain boundary density

The creep tests were conducted up to 1, 10 and 20% strains in both
the pure and silica-containing ice based on Figure 3. The observed
microstructures are shown in Figure 4. The quantitative results
associated with the average gran size and subgrain boundary den-
sity as a function of the strain are given in Figure 5. In the initial
state before the creep deformations grain boundaries (GBs) indi-
cated by black arrows are well distinguished. The shape of GBs is
equiaxed and appears straight. Additionally, some spherical and
weak contrasts are seen in the silica-containing ice, as indicated
by white arrowheads. They are the silica particles, but they appear
aggregated when observed with the optical microscope (OM).

Once stress is applied to the ice (1% strain), subgrain bound-
aries (sGBs) shown by white arrows appear within the grains
particularly in the pure ice. They divide the crystal into several
subgrains. Since there are no silica particles, dislocations canmove
easily. Large amounts of dislocations are generated as the 1% strain
is within the primary creep regime. Thus both grain refinements
and increases in sGB density occur in the pure ice as indicated

in Figure 5. However the sGBs are rarely observed in the silica-
containing ice at the 1% strain. The grain size also hardly changes,
due to the pinning effect of the silica particles on theGBs (Figure 5).
The drastic changes in themicrostructures occur in the 10% strain.
In both the samples the appearances of dynamic recrystallisation
are obvious, and average grain sizes decrease. SGB densities also
increase; it is readily estimated that large amounts of dislocations
are introduced in the samples. Both microstructures are very sim-
ilar, as shown in Figure 4, and therefore the quantitative results in
Figure 5 also reveal similar trends. At 20% strain apparent grain
growth can be confirmed in the pure ice, as shown in Figure 4.
This is evident even from the grain size measurement shown in
Figure 5. Nevertheless, while the grain size continuously decreases
in the silica-containing ice, the size increases from10 to 20% strains
in the pure ice. Surprisingly, the sGB densities in both types of ice
are almost saturated.

3.3. Dislocation densities in the crept ice

An example of the XRD profile obtained from the as-sintered ice
is shown in Figure 6. We assume that the crystal is hexagonal ice
(Ih) with the space group symbol of P63/mmc (No. 194), with
lattice parameters of a = 0.4501 nm and c = 0.7348 nm: only oxy-
gen sites of 1/3, 2/3, zO; 1/3, 2/3, 1/2 − zO; 2/3, 1/3, 1/2 + zO
and 2/3, 1/3, 1 − zO are considered (Hobbs, 1974; Petrenko and
Whitworth, 1999).The parameter zO represents a small shift of the
hexagonal rings in the plane normal to the c-axis. zO is reported
to be 0.0622. Based on this crystal structure the Miller indices are
assigned to all the diffracted peaks shown in Figure 6, although
they do not usually represent the four indices for hexagonal mate-
rials. Some small deviations from the ideal Bragg angles for ice Ih
indeed appear. We neglect them as they are trivial andmeasure the
modified WH and WA plots from some independent Bragg peaks
appearing at more than 20 º.

During the calculations we used the hypothesis that the dislo-
cation slips almost occur exclusively based on the basal slip system
< 1120 > (0001) (Hondoh, 2000), even during the creep defor-
mations under our experimental conditions. Then ̄Chk.0 parame-
ter in Eq. (10) was calculated using a computer program called
ANIZC (Borbély and others, 2003) which provided us with the
average dislocation contrast factor by inputting the second order
elastic constants Cij or elastic stiffness constants Sij. The values
used for C11, C12, C13, C33 and C44 were 13.20, 6.69, 5.84, 14.42
and 2.89 GPa, respectively, and c/a was 1.63 (Hobbs, 1974). Here,
c/a indicates the ratio of the c lattice parameter to the a lattice
parameter.

The measured dislocation densities as a function of the stain
are summarised in Figure 7. The minimum and maximum dislo-
cation densities obtained in this study range from 1011 to 1016 m−2.
The absolute values are quite high, and some reported dislocation
densities for metallic alloys are on the order of 1014 m−2 using the
modified WH and WA methods (Yin and others, 2003; Shintani
and Murata, 2011). We must note that the dislocation density
reaches 1.4 × 1014 m−2 even in the as-sintered pure ice in our case.
This may indicate that dislocation densities significantly increase
during the pressure-sintering process. Indeed metallic alloys sub-
jected to severe plastic deformation, such as cold-working, show
dislocation density greater than 1015 m−2 (Saymour and others,
2017).Though the same process was used for the fabrication of the
silica-containing ice, the density is 3.8 × 1011 m−2. The decrease
in the dislocation densities in the silica-containing ice just after
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Figure 4. Optical microscope images before and after creep deformations were obtained from pure and silica-containing ice. ‘Initial’ indicates the initial state before the
creep deformations, and 1%, 10% and 20% indicate interrupted creep strains as shown in Figure 3.

Figure 5. Average grain size or subgrain boundary density as a function of strain
measured at − 20ºC and 2 MPa.

sintering could be explained by the behaviour of creep deforma-
tions of the silica-containing ice at 20% strain, asmentioned below.
At least we can discuss the relative dependence of the silica addi-
tion on the changes of dislocation densities by comparing between
pure and silica-containing ice.

Figure 6. XRD profile obtained from as-sintered pure ice.

At 1% strain dislocation densities in both types of ice rapidly
increase. In the silica-containing ice it shows a two orders of
magnitude increase compared to the initial state. Nevertheless,
although the dislocation densities increase, the grain sizes do not
alter. The sGBs rapidly increase in the pure ice, but they do not
increase in the silica-containing ice (Figure 5). The strain rate-
strain diagrams shown in Figure 3 reveal a raid decrease in the
strain rate in both samples, and the pure ice is harder. Hence, it can
be concluded that the rapid decrease in the strain rate is related
to work hardening, particularly in the pure ice in the primary
creep regime. Similar conclusions are drawn in our previous paper
(Saruya and others, 2019); the hardening behaviours of the strain
rate-strain diagrams are related to dislocation pile-ups. However
the silica-containing ice shows a rapid decrease in the strain rate
until the 0.5% strain. Hence dispersion hardening (Ashby and
Jones, 1980) may occur only in the initial stage of the deforma-
tion, but it does not continue in the later stage of the deformation.
The dislocation density at 10% strain slightly decreases or remains
almost consistent with that in the 1% strained sample in the pure
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Figure 7. Dislocation densities measured using modified WH and WA plots for pure
and silica-containing ice as a function of strain.

ice and work hardening continues, while it exhibits the maximum
density in the silica-containing ice. Simultaneously the grain sizes
decrease and the sGB densities increase. This means recrystalli-
sation occurs in addition to a sufficient increase of dislocations
(Humphreys and Hathery, 2004): it is confirmed in Figure 4. Some
dislocations are used for the formation of sGBs (Figure 5) as well
as strain hardening; therefore the strain rates decrease compared
with those in the initial stage of the creep.

In both types of ice the stain rates continuously decrease as
shown in Figure 3. This is also consistent with what we reported
previously (Saruya and others, 2019). However, the dislocation
densities show different behaviour. Although the measured dislo-
cation densities are almost constant in the pure ice after the 1%
strain, the density rapidly decreases in the silica-containing ice at
20% strain. The decrease is more than two orders of magnitude.
Figure 5 suggests that the grain size of the silica-containing ice con-
tinuously decreases from 10% strain, while in pure ice it remains
almost constant within the error bars. The sGB densities do not
significantly change with or without the silica addition. The grain
refinement must be related to the occurrence of dynamic recrys-
tallisation, which consumes dislocations for the nucleation of new
crystalline grains (Humphreys and Hathery, 2004), but at the same
time relatively large grains also remain (Figure 4); we can see zig-
zag shapes of the GBs, i.e., occurrence of strain-induced boundary
migrations (SIBM, Faria and others, 2014). The occurrence of
SIBM is also confirmed in the pure ice. Again the hardening effect
in the pure ice at 20% strain compared with that of the silica-
containing ice (Figure 3) can be explained by work hardening, the
occurrences of which is directly confirmed in Figure 7. Thus the
silica addition promotes dislocation annihilations near the grain
boundaries of the fine grains (Gifkens, 1976) due to the pinning
effect of the silica additions, leading to a decrease in the disloca-
tion density at 20% strain. Hence the silica-containing ice is softer
than the pure ice (Figure 3).

3.4. Rough calculations of dislocation velocities in the crept ice

Lastly the dislocation velocities in pure and silica-containing ice
were roughly calculated based on Eq. (1) by considering only the
basal glide during the creep deformation.The velocities were eval-
uated at the 10% strains. The dislocation velocities in the pure
and silica-containing ice are 3.10 × 10−12 and 4.17 × 10−14 m s−1,
respectively, assuming that the measured dislocations include both

geometrically necessary dislocations and statistically stored dislo-
cations (Ashby, 1970). It should be emphasised that the dislocation
velocity in the silica-containing ice is two orders of magnitude
lower than that in the pure ice. The delay in the dislocation veloc-
ity could be related to the presence of nanoscale silica particles,
which could also be dispersed on the basal planes. At the creep tem-
perature dislocation glide and climb should occur simultaneously.
It is difficult to consider uniform distributions of the silica in the
ice crystals, but some segregations can easily be expected, as such
uniformly dispersed particles are usually unrealistic in the case of
composite materials (for example, Homma and others, 2009). This
means that dislocations might be pinned at the densely distributed
silica regions. Such regions can be seen in the 10%and20% strained
samples shown in Figure 3.The orders of magnitude of the disloca-
tion velocities are smaller than those reported by other researchers,
although they are calculated or measured (Perez and others, 1978;
Higashi, 1988). The reported minimum velocity was around 10−6
to 10−9 m s−1 (Forouhi and Bloomer, 1978;Whitworth, 1978) using
single crystals and X-ray diffraction topography methods. This
indicates that since dislocation densities in the single crystal ice
are lower, dislocation tangles in the polycrystalline artificial ice
sufficiently reduce the velocities.

In the case of the steady-state creep with a constant-stress
condition the steady-state creep rate is expressed as

.𝜀 = B𝜎mexp(− Q
kT ) (15)

according to Weertman (Weertman, 1973). Here B is a constant, 𝜎
the applied stress, Q an activation energy, k Boltzmann’s constant
and T the absolute temperature. Weertman then estimated:

𝜌 = (𝛽𝜎
𝜇b)

2
(16)

if the average internal stress generated by dislocation tangles is
equivalent to dislocation densities, where 𝛽 is a constant. The
velocity of dislocations is given by

v = 𝛾𝜎exp(− Q
kT ) (17)

where 𝛾 is a constant. Glen identified the stress exponent as 3.7
(1955), which is slightly larger than that reported by Weertman
(1973). Based on the equations we understand that the dislocation
density is one of the important factors in determining the steady-
state creep rate. Using Eq. (17) the constant 𝛾 for the pure and
silica-containing ice can roughly be determined using activation
energies reported by Saruya and others (2019). These are 60 and
66 kJmol−1 for the pure ice and 0.1% silica-containing ice, respec-
tively. By replacing Boltzmann’s constant with the gas constant we
obtain the 𝛾 values in Eq. (17) as 3.8 × 10−6 and 8.8 × 10−7 m Pa−1
s−1 for the pure and silica-containing ice, respectively.These results
suggest that the dislocation velocities with microparticles should
almost always be lower than those in pure ice at the stead-state
creep region in our experimental conditions.

4. Conclusions

The cold stage and sample holder for X-ray diffraction measure-
ments of ice were developed using a nitrogen gas combined with
liquid nitrogen.The obtained X-ray diffraction patterns were anal-
ysed based on the modifiedWarren-Averbach (WA) and modified
Williamson-Hall (WH) plots of X-ray line broadening; this is
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the first report to accomplish dislocation measurements with the
modified WH andWAmethods for ice samples.

Dislocation densities as a function of strains were measured
from the modified WA and WH plots using artificial ice with and
without silica. The silica models the existence of impurities in ice
sheets. The X-ray diffraction system was set in a room maintained
at ambient temperature. The creep tests were conducted at −20ºC
and 2 MPa.

In the initial ice large amounts of dislocations are stored due
to the sintering process, which uses 70 MPa of the sintering pres-
sure. In the primary creep region dislocation densities increase
with the increase in the grain size, particularly in pure ice. Since
the aggregates of silica act as pinning sites for grain growth, the
grain sizes in the silica-containing ice are relatively smaller than
those in the pure ice. The maximum dislocation densities are
achieved at 10% strain, with high subgrain boundary densities,
while at 20% strain, the density decreases. However the disloca-
tion densities in the pure ice remain almost constant values. The
silica dispersions act as pinning sites for the suppression of grain
growth. Such small grain sizes may introduce sinks for dislocation
annihilations.

The small grain size due to the silica dispersions increases dislo-
cation densities because of the pile-up at grain boundaries at 10%
strain.The dislocation velocity was roughly calculated based on the
Orowan equation. As can easily be estimated, the silica addition
retards the dislocation velocity compared with that in pure ice due
to the grain refinement and large number of dislocations.
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