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1. Introduction. If E is a Hausdorff locally convex space and M is an Ny-
dimensional subspace of the algebraic dual E* that is transverse to the continuous dual
E’, then, according to [7], the Mackey topology t(E, E’' + M) is a countable enlargement
(CE) of t(E, E’") [or of E]. Much is still unknown as to when CEs preserve barrelledness
(cf. [14]). E is quasidistinguished (QD) if each bounded subset of the completion E is
contained in the completion of a bounded subset of E [12]. Clearly, each normed space is
QD, and Tsirulnikov [12] asked if each CE of a normed space must be a QDCE, i.e., must
preserve the QD property. Since CEs preserve metrizability (but not normability), her
question was whether metrizable spaces so obtained must be QD, and was moderated by
Amemiya’s negative answer (cf. [, p. 404]) to Grothendieck’s query, who had asked if all
metrizable spaces are QD, having proved the separable ones are [4].

And although Catalan and Tweddle [1] showed that every infinite-dimensional
normed space admits a QDCE, they answered her question in the negative by their
Proposition 2, which is transparently and precisely equivalent to the second part of the
following.

Fact. A sufficient condition in order that every CE of a normed space E be a QDCE
is that every (Hausdorff) quotient E/H with dim(E/H)=<c be separable. Moreover
(Catalan and Tweddle (1, Proposition 2)), the condition is necessary if we assume the
Continuum Hypothesis (CH).

As pointed out in [1], E = I =17/{0} now yields a specific negative answer.

This note’s contribution is twofold: (1) We twice answer Tsirulnikov's question
without assuming CH or any other non-ZFC axiom. If one subsequently assumes CH, our
answers become that of Cataldn and Tweddle above [1, Proposition 2].

(2) We improve Propositions 1 and 3 of [1] so as to provide the first part of the above
fact, again without assuming CH or any other non-ZFC axiom.

2. Results. In the remainder of the paper E will denote an infinite-dimensional
normed space, B its closed unit ball, B the closed unit ball in the completion Eof E,and a
bar over a set will indicate closure in the normed space E unless otherwise indicated as,
for example, in the equation B = B£. Denote by M an arbitrary Ny-dimensional subspace
of E* such that M NE ={0}, with Hamel basis {f,:n e N}. Tsirulnikov [12, Lemma]
showed that the mapping € which takes x € E into (x, fi(x), fo(x),...) is an isomorphism
from (E, T(E, E' + M)) onto a dense subspace D of the Fréchet space £ X w, where w is
the product of Ny copies of the scalar field K.

We can use Cataldn and Tweddle’s characterization of QDCE ((ii) below) to find
simpler ones.

1 This paper was started while this author stayed at the University of Florida supported by DGICYT
PR94-204, later being supported by DGICYT PR 95-182.
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LemMA. The following are equivalent.
(i) The countable enlargement t(E, E'+ M) is a QDCE.
(i) There is a bounded subset A of D such that AE*« 2 B x {0}.
(iii) There is a bounded subset A of D such that A£*“ 2 B x {0}.
(iv) There is a T(E, E' + M)-bounded subset A of E such that A2 B.
(v) There is a o(E, M)-bounded subset A of E such that A 2 B.

Proof. (1)& (ii) is due to [1, §2], and (ii) & (iii) = (iv) 2 (v) is clear.

[(v)= (iv).] Assume A is a o(E, M)-bounded subset of E with A = B. Then A N2B is
a T(E, E' + M)-bounded subset of £ and A N2B 2 B, since given x € B there exists some
sequence {x,:n € N} in A converging to x, so that ||x, — x|| =1 for sufficiently large n; i.e.,
x, e AN2B.

[(iv) = (iii).] Suppose A, is a T(E, E' + M)-bounded subset of E with A, 2 B. Since
closures and continuous linear images of bounded sets are bounded, there is a closed
bounded subset C of w such that

9(A)F** = EXC.
Let m denote the projection of £ X @ onto E along w. Since C is compact,
n(B(A)E*“)2 A, 2B.

Thus 6(A,)5*“ - ({0} x C)2 B x{0}. Now there exists some 7(E,E'+ M)-bounded
subset A, such that

0(A)F“2{0}x C

by [6, p. 133, Lemma 2]. Thus A, — A; is ©(E, E'+ M)-bounded, and 6(A; — A;) is
bounded in D, with

8(A; - A))T*“ 20(A)5“ - 8(A)** 2B x{0}. O

Density character is the same for the quotient by a subspace as by its closure, and if
uncountable, cannot exceed dimension. Thus a simple rephrasing of [1] yields

(Cataldn and Tweddle [1, Proposition 2].) Assume CH. There is a CE of E that is not
a QDCE if there is a (normed) quotient of E with dimension and density character c.

Without assuming CH, we twice replace ¢, once with the bounding cardinal b and once
with the dominating cardinal d. These cardinals, defined in 1939 and 1960 (cf. [2]), were
recently given locally convex characterizations ([9], [10], [11]); e.g., b is the least
infinite-dimensionality for metrizable barrelled spaces, and D is the least size of a
fundamental system of bounded sets for a given non-normable metrizable locally convex
space. They satisfy X; = b= Db =<c. Since for any infinite cardinal « it is a trivial matter to
find a normed space of dimension and density character «, we thus twice answer
Tsirulnikov’s question ((i) and (ii) below), and without assuming CH. Clearly, if we
afterward assume CH then (i) and (ii) below become precisely the Cataldn-Tweddle
answer. To avoid using CH, we rely on two CH-free reconstructions ¢, and ¢, [9] of
Tweddle’s space ¢ [13]. These are dense barrelled subspaces of w with dimension b and b,
respectively, whose bounded sets have lesser dimension [9, Theorems 6 and 7).
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THeoreM. (1) There is a CE of E which is not a QDCE if there is a quotient E|H with
dimension and density character b.
(i1) There is a CE of E which is not a QDCE if there is a quotient E[H with dimension
and density character d.
(iii) Each CE of E is a QDCE if every quotient of dimension =c is separable.

Proof. (i) Let {xg+ H:B e b} be a basis of E/H, and define g, € E* such that
8.(H)={0} and {(g,(xs))5=1:B € b} is a predetermined basis for ;.

Let L =sp({g,:n € N}) and let M be an algebraic complement of LN E' in L, so that
dim(M) =N,. Any 7(E, E’ + M)-bounded subset A of E is o(E, L)-bounded; i.e., each
g.(A) is a bounded scalar set. Therefore {(g,(y))i=1;y € A} is a bounded subset of i,
thus of dimension less than b, so the projection 7(A) of A into sp({xs:B e b}) along H
also has dimension less than b. Now sp(n(A)) + H contains A and has codimension b in
E. Consequently, M is infinite-dimensional; otherwise the choice A = B N M would have
finite-codimensional span in E. Hence t©(E,E'+ M) is a CE. On the other hand, A s
contained in sp(n(A)) + H, a proper subspace of E since the density character of E/H is
b. Therefore A 2 B, and by [(iv) & (i)] of the Lemma, t(E, E' + M) is not a QDCE.

(ii) Simply replace b by b.

(iii) The third part of the Theorem is an immediate consequence of the Proposition
below. Indeed, if T(E, E'+ M) is any CE, then E/M° is algebraically isomorphic to a
subspace of w, which has dimension ¢, and thus dim(E/M% <c¢. O

ProposiTion. 1(E, E' + M) is a QDCE if E/M® is separable.

Proof. Let {x,:n e N} be a sequence in E such that {x, +M%n e N} is dense in
E/M®. Each E, = N{fx:k <n}is dense in E since M N E’ ={0}, and there exists some u,,
in E, such that

lxn = unll =1/n.

Now {u, + M%:n e N} is also dense in E/M?, so that W, + M®:n e N} is dense in E,
and thus so is A = U{u, + M°:n e N}. For each k e N, f,(A) = {fi(u,):n € N} is a finite
set, hence bounded; i.e., A is o(E, M)-bounded. Therefore [(v) & (i)] of the Lemma and
A=E2Bensure 1(E,E'+ M)is a QDCE. O

Our Proposition improves Propositions 1 and 3 of [1]. As indicated earlier, if one
assumes CH, then (i) and (ii) of the Theorem becomes Proposition 2 of [1], and (iii) the
converse. However, the converse to our Proposition is denied by the following

Cram. If Ny < dim(E) <, then there is a QDCE t(E,E' + M) with M° = {0},

Proof. Since E is fit, i.e., has a dense subspace F with algebraic complement G of the
same dimension (8, Corollary 2], then E has a dense Hamel basis P. Specifically, there is a
dense subset D of F with |D} = dim(G); let {H(x):x € D} be a partition of a Hamel basis
for G such that each H(x) is a (linearly independent) countable set whose closure
contains 0. (If necessary, replace members of a given Hamel basis for G with
appropriately small positive multiples thereof.) The union of all the sets x + H(x) is
linearly independent and thus is contained in a Hamel basis P for E; each x € D is in the
closure of x + H(x), hence in P. That is, P contains D, hence F, hence E.
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Let I ={a e K:ja| = 1}. Since separability is a c-multiplicative property [3, Corollary
2.3.16], there is a dense sequence S in the separable compact product space /*. Now sp(S)
is dense in K", and K” is naturally identified with (E*, o(E*, E)) via x* = (x*(x)),cp-
Under this identification M =sp(S) is a dense subspace of E* of dimension Ny Thus
M®={0} and t(E, E’+ M) is a CE, since for any absolutely convex linear combination f
of members of S,

{fr=52rpP,

implying L
F=2P=E,

and f is either 0 or discontinuous, ie., MNE’ ={0}. Now S°2P implies P is
o(E, M)-bounded, and from P = E 2 B it follows that 7(E, E' + M) is a QDCE, by the
Lemma [(v) & (1)].
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