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SMALL AMPLITUDE LIMIT CYCLES FOR CUBIC SYSTEMS 

V. GUÎNEZ, E. SÂEZ AND I. SZÂNTÔ 

ABSTRACT. In this article we study the simultaneous generation of limit cycles out 
of singular points and infinity for the family of cubic planar systems 

x = y(ax2 + y2 - 1 ) - ley1 + sxy(—4 + y) 

y = ~x(x2 + by2 - 1 ) + 2dx2 + exy(-4 + x). 

With a suitable choice of parameters, the origin and four other singularities are foci and 
infinity is a periodic orbit. We prove that it is possible to obtain the following configura
tion of limit cycles: two small amplitude limit cycles out of the origin, a small amplitude 
limit cycle out of each of the other four foci, and a large amplitude limit cycle out of 
infinity. We also obtain other configurations with fewer limit cycles. 

1. Introduction. In this paper we consider systems of the form 

(1) x = P(x,y) 

y = Q(x,y), 

where P and Q are relatively prime real cubic polynomials. We are interested in the 
possible configurations of small and large amplitude limit cycles for systems of form ( 1 ). 
Here small amplitude limit cycles are limit cycles which bifurcate out of a critical point, 
and large amplitude limit cycles are limit cycles which do so out of infinity. 

It is well known that small amplitude limit cycles can be obtained from a fine focus 
of order k (see below) with a sequence of perturbations of the coefficients of the system 
such that each perturbation reduces the order of the fine focus and reverses its stability. 
We recall that a critical point is a fine focus of (1), if it is a centre for the corresponding 
linearised system. We now define the order of a fine focus. For simplicity we assume 
that the origin is a fine focus. It is also well known that there is a function V defined 
in a neighbourhood of the origin such that V, its rate of change along orbits, is of the 
form r/2 r2 + 774 r4 + • • •. The 772* are the focal values and are polynomial functions of the 
coefficients in P and Q. The origin is a fine focus of order k if 

m = m = • • • = r]2k = 0 and 772̂ 2 ^ °-

In general, given a class of systems with a fine focus at the origin we compute each 772* 
modulo the ideal generated by {772,..., 772̂ —2}—thus we set 772 = 774 = • • • = 772̂ -2 = 0 
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in the expression for r]2k- The polynomials so obtained are called the Liapunov quantités, 
and denoted by L(0), L(l) , . . . (cf. [9]). 

There exists another method for computing the focal values for a fine focus which can 
be extended for infinity when it is a periodic orbit for the system. If the origin is a focus, 
system (1) can be written in polar coordinates (r, 9) in the form 

(2) |=*M) , 

for r sufficiently small. The corresponding flow is of the form 

r(9,r0) = Z<*n(9y0, 

where the an(9) are determined recursively by substitution into (2). The numbers r/̂  = 
ak(2ir) are called focal values, and the order of the fine focus is k if a\ (2TT) — 1, an(27r) — 
0 if 1 < n < 2k, and a2k+\(27r) ^ 0; note that we necessarily have that a2i(2n) — 0 if 
an(27r) = 0 for n < 21 — 1. More details can be found in [1]. 

When infinity is a periodic orbit of ( 1 ) focal values and Liapunov quantities are defined 
in the same way by using the coordinates (p, 9) with p — r~x, and large amplitude limit 
cycles are similarly obtained. 

Let X = (P, Q) be the polynomial vector field associated to system (1). We say that 
the vector field X, or system (1), has the small configuration 

{k\,...,kn} 

if X has n different foci F\,...,Fn and &/ small amplitude limit cycles around Ft, for 
/ = 1, . . . , n. Moreover, if X has kn+\ large amplitude limit cycles created from infinity, 
we say that X has the small-large configuration 

\k\,..., kn\ kn+\ | . 

For quadratic systems the small-configurations are: 

{k}, with£= 1,2,3, and {1,1} (cf [2], [12]) 

and there are no large amplitude limit cycles. 
With respect to cubic systems, almost all of the small configurations for systems of 

form (1) are known when the origin is a focus and there are no quadratic terms. These 
are: 

{*}wi th*=l , . . . ,5 (cf [3], [10]), 

{1,2, 1} ,{*I ,1 ,* I}>{*2 , 1,1, l,fe} with&i = l,2,3and*2 = 1,2 (cf. [9]) 

(in the above small configurations the central index corresponds to the origin). 
For this class of cubic systems the origin is a fine focus of order at most five (cf. [3], 

[10]). For general cubic systems there are examples with the origin a fine focus of order 
eight and which generate the small configuration: 

{8} (cf[l]\ 
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With respect to small-large configurations, the following are known: 

{4; 2} (tf [4], [6]), 

{2,2,2,2; 1} (cf. mi 

In this paper we give examples of cubic systems having the following small-large 
configurations (see Figure 1) 

{1,2,1; 1},{1,1,2,1,1; 1} and {1,1,1,1,1}, 

o o 
o 

o o 
{1,2,1 ;1 } {1,1,2,1,1;1 } {1 ,1 ,1 ,1 ,1} 

FIGURE 1 

Section 2 is devoted to stating the main results of this paper, while the proofs of these 
results are given in Section 3. 

Examples of polynomial vector fields of degree 2k + 1, with k large amplitude limit 
cycles may be found in [5]. 

2. Main results. Consider the vector field X = (P, Q) where 

(3) P(x,y)=y(ax2+y2-\) 

Q(x,y) = -x(x2+by2-l\ 

with a > b > 1. Since 

(4) P(-x, y) = P(x, y), Q(-x, y) = -Q(x, y), 

(5) P(x, -y) = -P(x, y), Q(x, -y) = Q(x, y), 

the points (0,0), (±1,0), (0, ±1) and infinity are centres for X. Moreover, the points 
(±y/^^j-, ± y ^ n " ) are hyperbolic saddles. The phase portrait of X is shown in Figure 2. 

Let XCjd be the family of vector fields given by 

(6) Xc4(x,y) = X(x,y) + (-2cy2, Idx1). 
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FIGURE 2 

For c, d small enough, the critical points of Xc4 with Poincaré index +1 are 

(0,0), (A_(ÛO,0), (A+(d),0), (0, A_(c)) and (0,A+(c)), 

where A_(z) = z — \/z2 + 1 and A+(z) = z + Vz2 + 1. 
Our next lemma shows the different possibilities for these critical points. 

LEMMA 1. Let us consider the field Xcj with \c\,\d\ « 1. Then: 
1) Ifcd is positive (resp. negative), the origin is an expanding (resp. attracting) fine 

focus of order two, and ifcd vanishes, the origin is a centre. 
2) If c is positive (resp. negative), the point \A-(d),0) is an attracting (resp. ex

panding) fine focus of order one, and the point \A+(d), 0) is an expanding (resp. 
attracting) fine focus of order one. 

3) If d is positive (resp. negative), the point (0,A_(c)J is an attracting (resp. ex
panding) fine focus of order one, and the point (0, A+(c)J is an expanding (resp. 
attracting) fine focus of order one. 

4) If c (resp. d) vanishes, the points \A-.(d),0) and \A+(d),0) (resp. the points 

(0,A_(c)) W(0,A + (c ) ) ; are centres. 
5) Ifa>b>\ and cd ± 0 and ^ < a < M (respm ÏLM < a < U=l!>)t then 

infinity is a fine focus of order one which is attractive (resp. expansive) for cd 
negative and expansive (resp. attractive) for cd positive. Ifcd vanishes, infinity 
is a centre. 

Figure 3 gives a graphical summary of these results. 
We now consider the family of vector fields Xc^£ — Xcj + Y£ where 

y£{x,y) = exy • ( -4 +y, - 4 + JC). 

In the next lemma we give the small-large configurations associated to XC^E. 
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i d 

FIGURE 3 

17-8/? < a < LEMMA 2. For c, d, e small enough and a > b > 1 and cd ^ 0 and 
]1~%lb\ the vector field XcciE has the following small-configurations: 

1) {1,1,1,1,1 ; 1} */c, d are positive and e is negative; 
2) {\,\,\;\}ifdis negative and c, s are positive; 
3) {1,1,1,1} ifc, d are negative and E is positive. 

Finally, we consider the family of vector fields Xc^£^ with c, d, e small and 0 < 
\r]\ <<min{|c|,|</|,|e|} defined by 

XC4w(x,y) = XCtdy£(x,y) + r](x,0) 

in the following 

THEOREM. For c, d, e small enough and a > b > 1 and cd ^ 0 and 17-8/7 < a < 
17-7/? g- ,̂ the vector field XcdErj has the following small-configurations: 
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1) {1,1,2,1,1 ; 1} ifc, d, T) are positive and e is negative; 
2) {1,2,1 ; 1} //d, 7] are negative and c, e are positive; 
3) {1,1,1,1,1} if c, d, T] are negative and e is positive. 

3. Proof of the main results. Before proving our main results, we note that for 
the vector field X the closed small orbits encircling the origin have positive orienta
tion, while the small closed orbits encircling the point (A±(d),0), those encircling the 
point (0, A±(c)), and the large ones encircling infinity have negative orientation. We let 
Ld±(k), Lo(k) and Lc±(k) denote the order k Liapunov quantities at the points, respec
tively, (A±(d), O), (0,0) and (0, A±(c)), and ak(—2TT) will denote the derivative of order 
k of the Poincaré map at infinity. 

PROOF OF LEMMA 1. For a general cubic system with a focus at the origin 

x = aÏOx + y + a2QX2 + a\ \xy + a02y
2 + a-^ç? + a2\x

2y + aX2xy2 + a03y
3 

y = -x + ai0y + b2ox2 + b\ \xy + b02y
2 + b^ox3 + b^y + b\2xy2 + bo3y

3 

we have 

L(0) = a\o and 

L(l) = -an(«20 + «02) + b\i(*2o + ̂ 02) + 2(a20b20 - a02b02) + an + b2\ 

(cf. [9, Lemma 2.2]). 
Therefore, for system (6) we have Lo(0) = Lo(l) = 0. 
If xo — A±(d), by setting 

x = u/M + xo, y — v/N, 

with M, N positive such that M2 — 1 /2(1 +xç>d) and N2 = \/(a — \+ Ixoad), system (6) 
becomes 

ù = v + 2x0aMN2uv - 2cN3v2 + aM2N2u2v - x0bMN2v3 

v = -u + (3x0 + 2d)MV - x0bMN2v2 - M4u3 - bM2N2uv2 

and 
Ld±{\) = 4A±(d)c(a - /7)MA^5. 

Moreover, by setting 
x = —v, y — u 

system (6) becomes 

ù = v(Z?w2 + v2 - 1 + 2dv) 

v = —u(u2 + «v2 — 1 — 2cw) 

and therefore 
Lc±(l) = 4A±(c)d(a - £)MN5, 

https://doi.org/10.4153/CMB-1993-009-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-009-4


60 V. GUINEZ, E. SÂEZ AND I. SZÂNTÔ 

with M, N positive. 
To compute Lo(2) we consider the function 

V(x,y) = ^(x2 + / ) + ^(dx3 + cy3) + ±((a - b)x4 + 2(1 - b)x2y2) 

2 
+ — (d(3a -3b + 5)x5 + 5dx3y2 + 5c(a -b+ l)x2y3 + c(2a -2b + 5)y5) 

+ -^ ((6a2 - I6ac2 - 9ab + 6a + \6bc2 - 16c2 + 3b2 -6b+ \6d2)x6 

+ 6cd(a - ^ y + 3(-16ac2 - 3ab + 6a+ \6bc2 - 16c2 + 3b2 - Ylb 

+ 6)x4y2 + \6cd(a - b - 2)x3y3 + 24(-8ac2 + 86c2 - 8c2 - 3b + 3)*V 

+ 6cd(—a+ /?)xy5). 

Its rate of change along orbits of system (6) is 

V(x,y) = -cd(a - b^x2 + >>2)3 + • • • . 
6 

Therefore 

L o ( 2 ) = i a / ( a - i ) 
o 

and statements 1), 2), 3) and 4) of Lemma 1 are proven. 
Concerning 5), let 

x = - cos(#) and y — - sin(#) 
r r 

in system (6). Then 

dS _ R3(ff) + rR2(ff) _ _ r ^ ^ T ( B ) 

where 

A3(0) = - cos4(0) - sin4(0) - (a + b) cos2(6) sin2(0), 

R3(9) = cos(0)sin(0)((a - l)cos2(0) - (Z> - l)sin2(0)), 

A2(0) = 2(dcos\9) - csin3(0)), 

R2(9) = 2cos(0)sin(0)(Jcos(0) - csin(0)); 

the first Tk are 

r i(0) = -

7-2(0) 

7-3(0) 

A3(0)' 
/?2(0) + A2(0)7-,(0) 

A3(0) 
A2(0)7-2(0) + 7-1(0) 

A3(0) 
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Therefore 

ot\(6) = exp / T\(e)dc, 

a2(9) = ax{6) f ax{e)T2{c)dc, 

a3(0) = ado) fo{2a2{e)T2{e) + oc]{e)T3{e)) de. 

For c — 0 or d — 0 system (6) verifies symmetries (4) or (5) and infinity is a centre. 
Since T\(6) does not depend on c and d, we have cc\(—2rc) — 1, thus a2(—2n) = 0; 
furthermore 

«S(-21r) = - j f 
-2n a]{9)A2(9)T2{9) 

A3(9) 

Straightforward calculations show that 

dO. 

4cd r-2* aj(9)f(9) jn 

with 

/(0) = cos4(l9)sin4(<9)((17 -la- Sb)cos2(6) - (17 - 8a - 7fc)sin2(0)). 

Since/(0) > 0 for - ^ < a < « and/(<9) < 0 for « < a < £f&, the result 
now follows. 

PROOF OF LEMMA 2. Clearly, the points 

(0,0), (A_(d),0), (A+(d),0), (0,A_(c)) and (0,A+(c)) 

are critical points of the vector field Xcdfi. Moreover, 

ài\Xc4t£(x,y) = 2(a - 6)xy + eg(x,;y), 

with 

g(x,)0 = (.* + 2)2 + (v + 2 ) 2 - 8 . 

For c, J small enough, the function g is positive at the points (A+(d), 0) and (0, A+(c)\ 
negative at the points (A-(d), O) and (0,A_ (c)), and vanishes at the origin (see Figure 4). 
Therefore we have that 

divXc^e(0,0) = 0 

and that a small amplitude limit cycle is created around each of the singularities 
1. (A±(d),6) and (0,A±(c)) if 0 < -e « min{c,d}, 

2. (A±(d),0)ifd<0<£«c, and 
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(A+(d),0) 

g(x,y)=0 

FIGURE 4 

3. (A±(d),6) and (0,A±(c)) if max{c,d} « -e < 0. 
Furthermore, for the vector field XCd£ we have 

with 

Lo(l) = 2e(l - 4c - 4d) and (*i(-27r) = exp/i(£), 

/?3(#) + 2£Cos2(6>)sin2(60 

*<*> = - £ 
-2TT 

A3(0) + £cos(0) sin(0)(cos2(0) - sin2(fl)) 

where A3(#) and #3(#) are as in the proof of Lemma 1. 
Since h vanishes at zero and its derivative with respect to e at zero is 

d9 

*'(0) - L 
2TT cos2(0) sin2(fl)/(fl) 

de, 

with 
1(6) = (a+ 1) cos4(<9) + (b + 1) sin4(fl) + (a + £ + 2) cos2(#) sin2(#), 

we have that ft'(0) < 0 and thus a\(—2n) < 1 if e is positive and ai(—2n) > 1 if £ is 
negative. 

Therefore, for cases 1) and 2), a small amplitude limit cycle is created at the origin 
and a large one at infinity by Lemma 1 which completes the proof. 

PROOF OF THEOREM. The limit cycles created in Lemma 2 are hyperbolic; the per
turbation r/(jc, 0) makes the origin an attracting focus if 77 is negative, and an expansive 
focus if 7] is positive. Then, according to the value of Lo(l) in the proof of Lemma 2, a 
new small amplitude limit cycle is created out of the origin for the vector field XC^E^ if 
17/I « min{|c|, \d\, \e\} and zr\ is negative and we obtain the result. 
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