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1. Introduction. An almost Hermitian manifold (M, J, g) with Riemannian connec-
tion V is called nearly Kaehlerian if (VyJ)X =0 for any X € Z(M). The typical example is
the sphere S°. The nearly Kaehlerian structure J for $® is constructed in a natural way by
making use of Cayley division algebra [3]. It is because of this nearly Kaehler,
non-Kaehler, structure that S® has attracted attention. Different classes of submanifolds
of S® have been considered by A. Gray [4], K. Sekigawa [5] and N. Ejiri [2]. In this paper
we study 2-dimensional totally real submanifolds of S®. These are submanifolds with the
property that for every x e M, J(T,M) belongs to the normal bundle v. For this class we
have obtained the following result.

THEOREM. Let M be a complete totally real 2-dimensional submanifold of S®. Then M
is flat and minimal.

2. Preliminaries. Let C, be the set of all purely imaginary Cayley numbers. Then
C, can be viewed as a 7-dimensional linear subspace R’ of R® Consider the unit
hypersurface which is centred at the origin,

SN ={xeC,:{(x,x)=1}.

The tangent space T,S°® of $%(1) at a point x may be identified with the affine subspace of
C. which is orthogonal to x.
On S%(1) define a (1, 1)-tensor field J by putting

JU=xXxU,

where the above product is defined as in [2] for x € $%(1) and U € T,S°. This tensor field J
determines an almost complex structure (i.e. J*= —Id) on $°(1). The compact simple Lie
group of automorphisms G, acts transitively on S°(1) [3]. Now let G be the (2, 1)-tensor
field on S5(1) defined by

G(X, Y)= (Vi)Y (2.1)

where V is the Levi-Civita connection on S°(1) and X, Y € #(5°. The vector field G
possesses the following properties ([5], [4]);

G(X, X)=0, 2.2)
G(X, Y)=—-G(Y, X), (2.3)
G(X,JY)=-IG(X, Y), (2.4)
g(G(X, Y), Z)=-g(G(X, Z), Y), (2.5)
g(G(X,Y), G(Z, W))=g(X, Z)g(Y, W) —g(X, W)g(Z, Y)
+g(JX, Z)g(Y, IW) —g(JX, W)g(Y, JZ) (2.6)

where X, Y, Z, W € £(5°) and g is the Hermitian metric on $°(1). Note that (2.2) means
that S¢ is nearly Kaehler with respect to J.
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Let M be a submanifold of S°(1) and denote by V, V and V* the Riemannian
connections on M, S° and the normal bundle respectively. These Riemannian connections
are related by the Gauss formula and Weingarten formula

VY =V,Y+h(X,Y), 2.7)
VxN =—AxX + ViN, (2.8)

where N is a local normal vector field on M in $%(1) and X, Y € Z(M), and where
h(X, Y) and AyX are the second fundamental forms which are related by

g(h(X, Y), N)=g(AnX, Y).
For M in S%1) the equation of Codazzi is given by

(Vxh)(Y, Z) = (Vyh)(X, Z), (2.9
where (Vxh)(Y, Z) =Vxh(Y, Z) — h(VxY, Z) — h(Y, Vx2).

3. Totally real submanifolds of S°(1). We consider 2-dimensional totally real
submanifolds of S%(1); so in the following M always denotes a 2-dimensional totally real
submanifold of $°(1). For M, equations (2.7), (2.8), and (2.9) hold. Assume that X and Y
are unit tangent basis vectors for the tangent space T,M. The normal bundle v splits as
v=u @ J(TM) where u is an invariant subbundle of v i.e. Ju = u. Therefore the normal
bundle v is spanned by an orthonormal frame field of the form {JX, JY, N, JN} for some
unit vector field N in p.

Now using (2.5) and (2.2) we get

g(G(X, V), X)=0. (3.1)
Also, using (2.3), (2.5) and (2.2), we have

g(G(X,Y),Y)=0. 3.2)
From (2.5), (2.4) and (2.2) we get

g(G(X, Y),JX)=0. (3.3)
Switching the role of X and Y in (3.3) and using (2.3) we also get

g(G(X,Y),JY)=0. (3.4)

Equations (3.1), (3.2), (3.3) and (3.4) imply that G(X, Y) € u.
From (2.8) with N =JY we have

JVxY + (V)Y = ~A,, X + VEIY. (3.5)
Using (2.7) and (2.1) in (3.5) we get
Jh(X,Y)=-ApX +VxJY -G(X, Y)-JV,Y. (3.6)

Assume that the orthonormal frame field {X, Y} for TM is chosen in such a way that
VxX =0. Such a choice is possible since M is complete and therefore such a frame exists
[6, p. 456]. To choose the field Y orthonormal to X one can just apply the Gram—-Schmidt
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process to any frame field orthogonal to X. For the frame field {X, Y} we have

g(V&IY,JY) =0, (3.7)
g(VEIY, JX) =0. (3.8)

(3.7) is trivial since the frame field is orthonormal; (3.8) follows from g(JX,JY)=0,
(2.8), (2.2), with the help of V,X =0, and the fact that g is Hermitian.

From (3.7) and (3.8) we conclude that V3JY belongs to u. Since the normal bundle v
splits as v=pu @ J(TM), the vector Jh(X, Y) e u © (TM). Hence the vector —A;y X +
VxJY — G(X, Y)—JV,Y in the right hand side of (3.6) belongs to u & (TM). Since we
have shown that both G(X, Y) and V3JY belong to y, it follows that

VY =0. (3.9)
Switching X and Y in (3.9) we also get
VyX =0. (3.10)
Using (3.10) and the fact that the frame is orthonormal we get
(VyY,Y)=0 (3.11)
and
(VvY, X)=0. (3.12)

From (3.11) and (3.12) it follows that
VyY =0. (3.13)
Note that the sectional curvature K of M is given by
KX, Y)=R(X,Y,Y, X)=g(VxV,Y -V, VY -V x Y, X).
Using (3.9), (3.10) and (3.13) in this equation we get K(X, Y)=01i.e. M is flat.
4. Proof of the theorem. In order to prove the theorem we need the following
lemma.
LemMmA. Let X, Y € Z(M). Then h(X, Y) € J(TM).
Proof. For Z € Z(M) we have
28(A,xY, Z)=g(h(Y, Z),JX) +g(h(Y, Z),JX)
=g(VvZ,J1X)+g(V,Y,JX)
= —g(J(VyZ +V,Y), X).
Using (2.1) and (2.3) in the equation V,JZ =JV,Z + (V,J)Z we have

JVyZ+V,Y)=VJZ +V,JY.
Therefore, ) _
28(A,xY, Z)=—g(VWZ, X)-g(VLIY, X)

=g(JZ, VyX)+g(AnZ, X)

28(A,xY, Z)=—g(UVyX, Z) + g(A;vX, Z).
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Since Z € Z(M) is arbitrary, we have

2A;xY =AnX —JVy X =A,y —Jh(X, Y) 4.1)
where we have used V,.X =0 in the last equality. Similarly we have
24,0 X = A;xY —Jh(Y, X). 4.2)

Subtracting (4.2) from (4.1) we get

3(A,xY — A,;pX) =0.
Thus
A;xY =ApX. 4.3)
Using (4.3) in (4.1) we have
A;xY=—-Jh(X,Y). (4.4)
It follows from (4.4) that A(X, Y) e J(TM).

We now start the proof of the theorem. In Section 3 we proved that M is flat. We
know from the above lemma that h € J(TM). Considering {X, Y} as an orthonormal
frame field on M, we can write

h(X, X)®aJX +bJY and h(Y,Y)=cJX +dJY (4.5)

for some smooth functions a, b, ¢, d on M. Using (4.3) we have
8(AixY, X)=g(AyX, X) and g(AX,Y)=g(A;xY,Y)

which imply that
gh(X, V), JIX)=g(h(X, X),JY) and g(h(X, Y),JY)=g(h(Y, Y),JX). (4.6)
From equations (4.5) and (4.6) we can write
h(X, Y)=blX +dY. 4.7

Since M is flat and the ambient space is of constant curvature, then the Codazzi equation
(2.9) becomes
Vxh(Y, X)=Vyh(X, X) (4.8)
and
vh(X, Y)=Vxh(Y, Y). (4.9)
Using (3.9) in (3.6) we have
Jh(X,Y)=-AnX +V3xJY - G(X, Y), (4.10)
and using (4.4) in (4.10) we get
VxlY =G(X,Y). (4.11)

We know that G(X,Y)ep and, from (2.6), ||G(X,Y)|=1 - Therefore
{JX,JY, G(X, Y),JG(X, Y)} is an orthonormal frame field for the normal bundle v.
Then, using (4.5), (4.7) and (4.11) in (4.8), the G(X, Y)-component gives ¢ = —a. Also
using (4.5), (4.7) and (4.11) in (4.9), the G(X, Y)-component gives b = —d. Hence
h(X, X)=—-h(Y, Y); i.e. M is minimal.
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ExampLE. Let M =S<%) XS(%) be the clifford torus. M can be imbedded in
$3(1) as follows. Let (X,, X,) be a point of M where X, and X, are vectors in E* each of
length _\}—5 Then M is a flat minimal surface of $3(1). Since $3(1) is totally geodesic in
§%(1), M would be flat and minimal in S®(1). M is also totally real in S°(1). To see this
first note that $3(1) can be isometrically immersed in S°(1) as a totally real and totally
geodesic submanifold [1]. Now write TS%(1)|ss) = TS*(1) @ v, and TS>(1)|,y=TM D v,
where v, is the normal bundle of $3(1) in $°(1) and v, is the normal bundle of M in $3(1).
For any P in M let X € TM. Then X e TS*(1). Since S3(1) is totally real in $°(1), JX € v,.
But TS(1)|s = TM @ v, @ v,. Therefore JX belongs to the normal bundle of M in S°(1)
and it follows that M is totally real in S®(1).
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