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Abstract

The observables of modular quantisation are studied from the point of view of locality.
Such a study allows identification of possible Hamiltonians and also enables us to
generalize the fundamental bilinear commutation relations of parafield theory. A com-
parison of modular field theory with a normal U(m) gauge theory, begun in an earlier
publication, is completed with the conclusion that the two are equivalent except that the
former has certain restrictions on its observables.

1. Introduction

The best known form of generalised quantisation is parafield theory [4] and this
has received much attention in the literature over the past twenty-five years [6].
Perhaps the most important result derived [2] has been that when a Fock
representation is considered, parafield theory becomes essentially equivalent to a
theory which is quantised normally but which has a U{p) global gauge symmetry
(p is the "order" of the parafield theory).

The possible observables of parafield theory have been studied from the point
of view of locality by Ohnuki and Kamefuchi [13]. They have shown that locality
restricts the possible algebraic form of the observables. Moreover when these
restricted observables are expressed in terms of the normally quantised fields, it
becomes clear that conditions of locality in parafield theory are the same as
conditions of gauge invariance under certain orthogonal groups in the normally
quantised theory.
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222 R. Kleeman [2]

In this paper it is proposed to study, also from the point of view of locality, the
observables of a different scheme of quantisation known as modular field theory
which was introduced by Green [5] about ten years ago. As in parafield theory,
the locality constraints will be seen to impose algebraic constraints on modular
observables. We shall demonstrate a set of observables obeying the locality
contraints and use some of them to generalise the fundamental relation of
parafield theory.

Modular field theory has been shown, like parafield theory, to have an ansatz
solution whose algebraic structure is a colour algebra [15] (in the literature these
are also referred to as generalised Lie algebras). This similarity of solution
suggests a comparison of modular field theory with a normally quantised gauge
theory may be useful in understanding the new quantisation. Some progress [9]
has been made in this direction and in particular it has been shown that modular
field theory of order m possesses all the physically relevant "non-relativistic"
states (those not involving anti-particles) for a U(m) gauge theory. This analysis
is continued below, mainly from the point of view of comparing observables in
the two theories. In addition, in Section 5 we shall also consider the question of
states involving anti-particles. We now present a review of the essentials of
modular quantisation. Further details may be found in the author's previous
publication [9].

2. Basics of modular field theory

We shall take the fundamental relations of modular field theory of order m to
be the following equal-time relations1:

= 8(xl - x 2 ) « ^ Y ( J C 3 ) ± 8(x2 -

+ ,(JC»+l) ± KM • • • KjXm + l)

(2.1)

1 The bold face spatial variables within delta functions implies that these variables are to be
considered at equal times. The + signs refer to a Fermi like quantisation, while the - signs refer to a
Bose like quantisation. The Fermi case is considered below although a generalisation to the Bose case
is straightforward.
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(31 Observables in modular field theory 223

It should be observed that these relations are a generalisation of a set of relations
discovered for parafield theory of order two [4] and in fact modular field theories
of order one and two coincide (apart from a numerical factor) with parafield
theories of the same order.

Another way of introducing modular field theory (and the way initially chosen
by Green [5]) is to introduce a unitary operator u satisfying um = 1 and then
define a superscript on the ^a(x) via

W(x) = u-ta(x)u'. (2.2)
The commutation relations are then assumed to take the form

It is quite straightforward to show that (2.3) implies (2.1)—by simple substitution
and use of the relations (2.3). Whether the Fock representations of these two sets
of relations coincide or not is, as yet, uncertain. Some light has been shed on this
problem in the author's thesis [10] to which the reader is referred. The second set
of relations, in fact, constitute an ansatz solution of the first set. To see this,
consider the following non-singular linear transformation of the <|^r)(x):

1 m — \

•<'>(*)--pr E rT'WKx), (2-4)

where TJ is the m 'th primitive root of unity. When the inverse of this transforma-
tion is taken one is able to show that

1 m — 1

* „ ( * ) " I •£"(*). (2-5)

In addition one can use (2.7) and (2.5) to derive the following relations for the

tfKxxWHxi) ± <-^f)(*a)4ir)(*i) = 0, (2.6a)

- x2)«"! (2.6b)

). (2.6c)

One can now show [9] that the above relations imply that the <t>i*\x) form a
colour algebra. Equation (2.5) therefore gives an ansatz solution to modular field
theory which is very similar to the ansatz solution of Green [4] for parafield
theory. Since the transformation (2.4) is invertible, assumption of the relations
(2.3) is equivalent to assuming the ansatz.

In the same way as parafield theory [2], we can introduce a Klein transforma-
tion [12] which transforms the 4>^\x) into fields $*(JC) which are quantised
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normally. Thus we have [9]

*a'(x) = u'-W(x) (2.7)

and it is straightforward to show that the ^ ( x ) satisfy Bose or Fermi relations.
If we consider the Fock representation of the ansatz solution (2.5), then it is

possible to compare the field theory of the $a(x) with the original modular field
theory providing we assume that the vacuum state |) and u satisfy

The existence of a u operator with the above properties has been demonstrated in
[11].

3. Locality constraints on observables

In ordinary field theory the consideration of what constitutes an observable is
far from resolved. As a consequence of this, we shall follow the approach used by
Ohnuki and Kamefuchi [13] to consider the analogous problem in parafield
theory. As was mentioned iri the introduction this involves using locality condi-
tions to restrict the possible algebraic form of observables.

The essential feature of this approach is that observables are defined in local
regions of space. This is achieved as follows: Let g be a function of the fields
> K * i ) > * K x 2 ) , • • •. t*()>iX $*(yi), ••• a n d h y a f u n c t i o n o f x u x 2 , . . . , y v y 2 , . . .
which vanishes if any of its arguments lie spatially outside the region V. An
observable F{V) for the region V is now defined to be of the form

•'space

r(yi),+m{y2),-~) dx,dx2 • • • dyxdy2 • • • , (3.1)

with xx, x2,..., yv y2,... having the same time component.
A first requirement of our theory is that measurement of two observables

defined at equal times in non-connected regions should be independent. This is
simply an expression of the principle of causality and can be achieved through the
following equal time equation

[F(V),F'(V')]_=0 V~V, (3.2)

where V ~ V means that V and V are disjoint. We shall refer to (3.2) as a
condition of weak locality.

A stronger condition than (3.2) is the equal time relation

( x ) ] _ = 0 x£V, (3.3)
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I s 1 Observables in modular field theory 225

where yp(x) = $(x) or i//*(x). This relation ensures that measurement of F(V) is
unaffected by the existence of particles in regions which cannot have any causal
influence2 on V. Condition (3.3) shall be referred to as strong locality. It is fairly
clear that (3.3) implies (3.2), however, as we shall see below, the converse is
certainly no t true.

W e turn now to the particular case of modular quantisation. We make the
assumption here that the modular fields satisfy the conditions (2.2) and (2.5). In
other words, we are considering the ansatz solution of the relations (2.1). We also
restrict our at tention here to the Fermi modular quantisation. These two assump-
tions will remain for the rest of this paper.

It is fairly easy to construct observables from modular fields which obey weak
locality. A n example is

nv) = f hv(x,y)r(yH(x)dxcfy. (3.4)
•'space

Relations (2.3) easily confirm that [F(V),F(V')]_ = 0 for V ~ V. In general,
however, these observables do not satisfy the condition of strong locality3. In
order to consider the form of observables which are strongly local it proves
convenient to allow them to be constructed from the ansatz fields <j>*^r\x) and
tfr)(x), or equivalent^, by (2.4), from the fields xp*(r\x) and $(r\x). The
following result now holds:

THEOREM 3.1. Observables F(V) constructed from the ansatz fields obey strong
locality if and only if

(i) They are functions of <$>*(r)(x)<$>(t){y), $(fi)(.JCi) • • • <j>(r«\xq) and its hermitean
conjugate; where q = mfor m even and q = 2m for m odd.

(ii) u~lF(V)u = F(V).

PROOF. We first demonstrate the sufficiency of the two conditions: Using a
Taylor series expansion of g in (3.1), we may rewrite it, with the aid of (2.3) and a
change of variables, as:

(3.5)

2 See Ohnuki and Kamefuchi [14], p. 88 for a more detailed discussion on this point.
3 For m = 2 candidates may be constructed [13]. For m > 2 see Theorem 3.4 below.
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226 R. Kleeman

Now if we take \p(z) with z € V, we obtain after repeated use of (2.3)

+ (z)F(V)=[hv I clB^-1)(Jc1)-..^-l)(*l)^("-1)(
l n r t

*<'-")(*)(-l)11+l«fci • • • <fyi • • • (3-6)
By the use of condition (i) we have that n - / = 0 mod m and n + I = 0 mod 2.
It follows now from (2.2) and (3.6) that

+ (z)F(V) = u-lF(V)u+(z) = F(V) + (z),

when (ii) is used.
To demonstrate necessity we first rewrite (3.5) with the aid of (2.4):

---^°"Ky.)- (3-7)

Secondly we regroup terms in this sum as follows:

modm modm mod 2

- rl'-Hy.) (3-8)
with x = T.'im,iti and y = HUiri- We now have the following commutation
relations:

^ /+'(-l)V4¥J)(4 (3-9)
Since

^ • • • d y l - - - , (3.10)
c,q,t

strong locality therefore demands that

dxdyhy £ [l - T,^+c(-l)']F^<fc)(z) = 0, (3.11)

where dx = rfxx rfx2 • • • and dy = dyldy1 • • •. Let W be a region of space
containing z but not intersecting V. Define the following operator:

u(W) s expU)

with

\ m Z r<t>*ir)(x)<t>(r)(x)]dx (3.12)
L J
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I71 Observables in modular field theory

and

= 0 x e w.
This operator will be unitary since A is evidently anti-hermitean. Now

(3.13)

One of the Baker-Campbell-Hausdorff identities [3] allows us to then conclude
that

= , » x ^ y » ) ( z ) . (3.14)

If (3.11) is premultiplied by u~r(W) and post-multiplied by ur(W) we obtain

^ : ) ^ . (3.15)
b,c,q,t

If we multiply this by ifdr, sum over r and use the following
m—1 m—1

E rf<V6= E ^fc-">=mSw, (3.16)
(—0 r - 0

then we can conclude that

/ dxdyhy E [l " i»"+e(-l) '] W > ( * ) = 0. (3.17)

We can use operators similar to u(W) io eliminate the summations over c, q and
t in the above equation. We now obtain

/ dxdyhv[l - V+'(- l) f ]Fy<'y")(2) = 0. (3.18)

The above arguments are easily modifiable to the case 4>*(z) instead of ^(z). We
are led then to

dxdyhv[l - i r " - ' ( - l ) ' ] 3<V W ) (*) = 0. (3.19)

The bracketed quantity in (3.18) is the complex conjugate of the corresponding
quantity in (3.19) and so therefore they vanish simultaneously. Suppose they
vanish for all values of d. A little thought will show that this can only occur when
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j = i = s = 0 (consider d = 1 and m — 1 and solve the relevant equations). Thus
unless this situation occurs we may conclude that for some d

j dxdyhyF/s%W(z) = J dxdyhyF/s^*^(z) = 0. (3.20)

Consider now the integral

/ dxdyf M l " Xv{z))FV{^d\zW\z') + ̂ (z')4>*^(z)) dz

with z' £ V. By (3.20) this is zero, however by (2.6b) it is also

/ dxdyj hv(l - X K(Z))^')8(Z - z')dz= j dxdyhyFfp

and so therefore we are led to

j dxdyhvF^=d, (3.21)

whenever i = j = s = 0 does not apply. Conditions (i) and (ii) now follow from
(3.1), (3.7), (3.8) and (2.6c).

The question now arises as to the form of strongly local observables which are
solely functions of the modular fields ^(x) and ^*(*)- This problem is partially
solved in the following theorem:

THEOREM 3.2. Let us define the following polynomials of modular fields:

CN\XI> ••

=
perm(

•>**) =
cycl(l,...

E
cycl(l,...

1) /=0

(_i) '

(̂

(J

)

c M _ , ) - . - ^/(^:m.

h) ••• 4>(xm-i- l)(-l)'

(*AT)

(3.22)

(3.23)

(3.24)

An observable F(V) is strongly local if the function g in (3.1) is a function of the
following modular field polynomials (and their hermitean conjugates): M, Clm(Clm)',
C/m(C,^,)' and when km is even, Bkm.

PROOF. Contemplation of Theorem 3.1 shows that it is sufficient to show that
the relevant field polynomials are invariant under u. The case of B is considered
firstly.
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191 Observables in modular field theory 2 2 9

It is easily seen from (2.2) and (2.3) that when N is even and equal to km then

and therefore

BN(Xl,...,xN) = k " l ^>(^) • • • *<"(*„).

The form of the right-hand side of this equation now gives the desired result. The
case of polynomials involving C is proved in a similar way.

For the case of M we move the fields ^(*i)>..., \p(xm_,_1) in equation (3.22)
to the left using equation (2.3) repeatedly. After a straightforward but tedious
calculation we obtain the result:

m-l m-q-l kt k2 kq

E E E E E ••• E Jf«(m-/,m-l)Jf<-l>(l,»1)
perm <7=0 1-0 ^=0 n2 — 0 nq—0

X(-2\nx + 2 ,«! + n2 + 1) • • • X(-«>(/ - « , - 1, r - 2)

X<-<-»(t, m - l - \)Y<-'-"-l\m - 1, / )y<- '-«)(/ - 2, / - n , - l ) • • •

(3.25)

where

t = q + 1 + £ n,; x s (/ + l)(^r - m
i-i

This may now be rearranged by use of (2.3):

j . . . A-<-'-«>(/- « , - 1,/ -

(3.26)

https://doi.org/10.1017/S0334270000005749 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005749
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By the rearrangement of the summations and by setting nq+1 s m — /, we obtain

E E (-1)' I E^-|-I)(i.-i)--^-|-'-1)('«-»f+i.'«-i)
perm 9 - 0 £?^,1n,=« '~°

(3.27)

where s stands for m — 1 — q. Consider terms in this sum with fixed n, with
i = l,...,q + 1. Corresponding to these terms are other terms with their ni being
a cyclic permutation of these fixed values. After an appropriate permutation of
the spatial indices these latter terms become

E X<-'-^(f(j) + hf(j + 1) - 1) • • • *<-'-1+>-«>(m - n,+ 1 , m - 1)
/-o

(3.28)

where /(y) =7 + £/_!«, with y = 1,..., q. This may be rearranged using (2.3)
repeatedly:

£ ^ - ' - ^ ^ ^ l . / i J ^ - ' - ^ ^ ^ C i + 2,»i + "2 + 1) • • •
/-o

m - \,m - nq+l) • • •

(3.29)

Now as / goes from 0 to n} the index -/ - 1 + f(j) goes from -1 + f(j) to
f(j - 1) or when j = 1, to 0. In the original unpermuted term the corresponding
index goes from -1 to -1 - nq+1 = t - 1 = q + Ef_x«, = f(q). It is clear now
that this index will cover all values mod m when (3.29) is summed over all values
of j and added to the original term. Hence this sum will be invariant under u. A
little thought about how the terms in (3.29) are produced will show that all terms
in (3.27) may be grouped into such sums in a non-overlapping way. Hence

^ = M.
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[ill Observables in modular field theory 231

In the special cases of m = 2 and m = 3, the polynomial M has the form

J*(*i.*)=[*(*i). **(*)]-, (3-30)

M(x1,x2,y1,y2)= I rMPi
perm(l,2)

In the case of m = 2 we are dealing with parastatistics of order two and in that
case the strong locality of M follows directly from the fundamental commutation
relation of paraquantisation [4]. This observation tends to suggest that a gener-
alisation of this fundamental equation may be possible. This turns out to be the
case as the following theorem shows:

THEOREM 3.3. The field polynomial M given in equation (3.22) satisfies the
following commutation relations:

m-2

E (-i)'+18(z-ym-,-1)r(ym-l-2)---i*(yl)
.,m-l) /=0

x*(*i) • • • +(*m-i)r(ym-i) • • • r(ym-,), (3.32)

perm(l m-1) /=0

x +*(ym-i) • • • r(yi)Mxi) • • • Hxm-,.2). (3.33)

PROOF. We have firstly, the following interesting lemma:

LEMMA.

-= 0. (3.34)

PROOF. We introduce the abbreviations iK*/) = *< a n ^ ^*(yi) = yt- Now by
(2.3) we have

• • • x,y, • • • mx

f i W 1 ) ' + l • • • x ^ i - i ) " " (3.35)
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Now for there to be any fields in the range y%l2 ''' y$i> t n e index / must be
less than m — 2. It follows from (2.3) that we may move yjp_2

 t 0 ̂ e ^e^ without
picking up a delta function, thus:

Obviously this argument can be extended until we obtain

ym-i • • • y,+A'+l) • • • * f l + V + 1 ) • • • yi'+1)*i+i • • • xm.x.

By the use of an argument similar to the one just described we can move the fields
xi+i ''' xm-\ t o ̂  l^1 obtaining

and finally this may be rewritten as
ym-i • • • ^1+1*1+1 • • • *m- i* i • •

which demonstrates the lemma.

As a corollary to the above lemma we have the following alternative form for
M:

.,m-l) /=0

X • • • ^(^-1)^(^-1) • • • **(^,-/)(-l)'. (3-36)

We begin the proof of Theorem 3.3 by demonstrating (3.33). By the use of the
abbreviations introduced above we have, using (3.22),

m - l

M(x, y)+*(z) = £ £ ( - ! ) ' *« - / ••• * m - i ^ , - i ••
perm /=0

= E ( - I ) " " 1 * . - , • • • xM_#m_x • • • y

m-2

+ T. Y. (-i)'xm-i • • • xm-iym-i
perm /—0

(3.37)

The first term in (3.37) is equal to

L X •• X zOyf-1' • • • V(-l)xi'l) • • • X*--1)
xm-l xm-\z ym-l 7l xl xm-l-l

£ i-i \ L) xm-l m-7-1

Consideration of the second term in (3.37) then gives equation (3.33).
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[13] Observables in modular field theory 233

Now the hennitean conjugate of (3.22) is

lt..., ym_lt«!,..., xm_J, (3.38)

where (3.36) has been used. We have now

= -{[M(y,xU*(z)]_)m (3.39)
and then (3.32) follows from (3.33) and (3.39).

In the case m = 2, the commutation relations given in (3.32) and (3.33)
evidently have other solutions apart from simply m = 2 modular field theory.
These are, of course, the higher order parafield theories. One might expect,
therefore, that the relations (3.32) and (3.33) will have further solutions when
m > 2. Whether this is so is, at present, unclear. In the special case of m = 3 this
author has attempted without success to find other ansatz solutions. This suggests
that the above expectation may not be realized.

A further question deserving investigation is whether the new commutation
relations can serve as the fundamental defining relations for modular field theory.

A classification of all strongly local observables remains an open question. In
the case of m = 2 the parafield classification [13] applies. In the more general
setting the following theorem is of some interest:

THEOREM 3.4. For m > 2 there are no strongly local observables which are of
second order or less in modular fields. For m > 4 there are no such observables
which are fourth order or less.

PROOF. Consideration of Theorem 3.1 shows that first and third order poly-
nomials are impossible for strongly local observables.We show now that second
order polynomials are impossible for m > 2.

By Theorem 3.1 such polynomials must involve both a \p and a $* and must
therefore have the form

*(*i)**(*2) + ***(*2)*(*i)] Aiidxi + K (3.40)

where K is a c-number and where a and b are functions of x1 and x2 which
vanish when these variables are not in V. By the use of (2.5) and (2.6) this may be
rewritten as

f [ ]xldxi + K (3.41)
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where K is a c-number. When the notation of equation (3.8) in the proof of
Theorem 3.1 is used, we may rewrite this as

[*m — 1

FxiY) = f\ E (a- n"b)Ftf> dxxdx2 + K (3.42)

where we have
Foa)= E 4>w(x1)^*{r)(x2). (3.43)

r-t — v

It follows from the proof of Theorem 3.1 that

f = O v * 0. (3.44)

Evaluate now

0 = /><">(*2) - ^w\z2)Fv = Gv_w

and then

Gv.J>«w-')(z1) + rf-^miw-B)^i)Gv.w.

After these calculations are carried out, we obtain the equation

If v can take on more than one value, as it can when m > 2, then this implies that
a = b = 0 which shows that F2(V) = 0.

If m > 4 it is clear from Theorem 3.1 that the only possible strongly local
observables of fourth order involve two i|/ and two t|/* fields. Some thought as to
the possible permutations of these fields leads us to conclude that such observa-
bles must have the form4

F4(V) =

)}, (3.45)

where at and bt are functions vanishing when their arguments lie outside V.

4 We are using ^*(>'i)tK*i)<K*2)1l'*(>*2) = 'i'(x2)}p*(y2)}l/*(yl)<Kxl) which is a trivial conse-
quence of equations (2.3).
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(is] Observables in modular field theory 235

When (2.2), (2.3) and (2.5) are used, we can rewrite the terms in the first
bracket (apart from a c-number) as

j (3.46)

r,t i,j = l

where

A(rlf r2ttlt t2) = ax- rf^a2 + rf+*-'*a3 - V
D+I^^a4 + V

2"as,
v = 'i + h-'-1-r2 (3.47)

and T'J are products of delta functions and the ak. By the use of a change of
variables, the second integral in (3.45) can be combined with the second term
from (3.46) and we may write (3.45) as

FA(V) = f dx1dx2dy1dy2

X f E A(r1; r2, tlf
i.',

+ E E f/'7(^, 0*(0(^)<>*(r)(^)] + K (3.48)
J«.>

where U'j are products of delta functions the ak and the bk.
By the use of a similar proof to the one used for second order observables

above, we may conclude, using the proof of Theorem 3.1, that

j dx1 dx2 dy1 dy2F&> = 0 v * 0 (3.49)

with

+ E E t/'V0(^)**(r)(^)- (3.50)
r —r —t; i/

We introduce the following notation:

xidyifa, A * J * ^ a A(rlf r2, rx, /2)

where A is evaluated at X[, x2, yv y2.
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Now when (3.49), (3.50) and (2.6) are used we obtain

= «<->(z1)Fo-i,-/><

= -if / I

f Ui^v+a\xi)8(zl - yj) dxxdx2dy^dy\ (3.51)

= -V-"Gv+a v * 0.
Similarly we have

) ( X 2 ) ^ 1 ^ 2 (3.52)
s -i ,-°--^e + a + 6 o ̂  0.

If we continue in this manner we obtain

0 = <t>*M(z3)Hv+a+b - Vv+a+b-2cHv+a+b<l>*M(^)

dx[ A ^ y - v"~bK2c^2 - i f ' A ^ T 1 (3-53)

= - T J ^ d + c-a-b¥=0,

where we have defined d=v + a + b-c. Finally taking the anticommutator of
Jd with <y*id)(zA) we obtain

WWl ~ vT-'Well1'1 ~ Vc-dK^Zl + Vc+a-"-dK3dir2 = 0 (3.54)
for d + c — a — b ¥= 0. By the use of (3.47) and the notation

a,4321 = a , ( * 4 > * 3 > * 2 , * i ) , (3 .55)
we obtain the equation

fl4321 _ va-

f21 - afn - af2x + a?12)f a
4321 _ fl4312 _ ^c+a-6-^3421 + ^c-^3412) (3 5

4321 _ fl4312 _ fl3421 + fl34!2)

when d + c — a — b =t 0.
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If we take d=a+b-c+l and d=a + b-c + 2 and remember that
m > 2 then we may subtract the resulting equations obtaining

(r,-1 - 7T2)h2«-<V12 - r , 2—V4 2 1] +(n - V2)[va-ba?21 ~ afn]
- ( i , - V

2)V
c-"[atm - a?12 - a\™ + a™2]

+ (v2-V4)[a?21-Va-baru]
-0» - y2)Wc-°-ba?21 - V*c-»a?12] = 0. (3.57)

If we let a = 0,1 and subtract the resulting equations we obtain

ain2+(v ' V2)^1 ~ I)v2c-ba?21 = 0. (3.58)

If c = 0,1 is then substituted, subtraction of these equations gives

a?2\^ - r,-2) + al™(V - i,2) = 0. (3.59)

The above procedure may be repeated, in the case of m > 3, with d = a + b — c
— 1 and d = a + b — c + l i n (3.56). The resulting expression is

^ ( T 1 - n) + ̂ ( n - n"1) = o
or in otherwords Oj421 = af421. Substitution of this into (3.59) gives

a^ir1 - I)"2 + TJ + T,2) = 0

which for m > 3 implies that fl?421 = 0 = a\An. Substitution into (3.58) gives also
a4321 = 0. Equations (3.57) and (3.56) finally give

_4321 _ -4312 _ 3421 , 3412 _ n

a4 a4 a4 + aA - 0,
4321 _ -4312 _ 3421 , 3412 _ n ^ '

t*2 — ^ 2 — " 2 2 — ^ '

By the use of the first equation of (2.1) and its hennitean conjugate the following
identity may be derived:

l)**(>'l). (3-61)

If we multiply the left hand side by a2(xl, x2, yly y2) and integrate over the four
variables we may, after a change of variables in the final three integrals and use of
(3.60), conclude that the result is zero. Examination of the right hand side of the
identity will then show that the second term in (3.54) becomes a quadratic term.
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A similar argument holds for the fourth term and so we conclude that FA(V)
must be a second order polynomial and hence, from the first part of the proof,
zero.

It should be remarked at this point that the above four theorems are easily
modified to deal with derivative fields.

4. Relationship to a normal field theory

We consider firstly the effect of the Klein transformation (2.7) on strongly local
observables. If one takes an arbitrary product of modular fields then there is no
guarantee that after the transformations (2.5) and (2.7) are applied, the resulting
products of Fermi fields will not involve the non-local Klein operator. Certainly if
modular field theory is to be compared with a normal field theory then observa-
bles in the two theories should coincide. The following result is therefore
reassuring:

THEOREM 4.1. After Klein transformation, strongly local observables involving
modular fields consist of only normal Fermi fields and may be considered as strongly
local observables in the Fermi field theory.

PROOF. AS was seen in the proof of Theorem 3.1 strongly local observables may
be written as

F(V) = f hvF^dxl---dyl--' (4.1)

where F$ involves field polynomials of the form

+W(Xl) . . . •O)(JC|)^(.,)(_Fl)-. . . **M{yn), (4.2)

withEr, = Ef, mod m; / - n = 0 modm; I + n even.
Upon use of the transformation (2.7), such polynomials become

1) • • • M1-'»*'>(JCI)**'1(;>1)H'1-1 • • • ®*'"(yn)u'»-\ (4.3)

Equation (2.6c) then allows us to write this as

jfcM<|-"-='<+='<>*'i(jCl) . . . <&"(;t/)<I>*''(j'i) • • • <t>*'"(yn), (4.4)

where k is some phase factor involving the with primitive root of unity. Now
because of the restrictions following (4.2) and the fact that um = 1, we have
demonstrated the first part of the theorem. The second part is trivial since any
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observable consisting of an even product of Fermi fields is easily shown to be
strongly local. The third restriction following (4.2) requires this for strongly local
observables.

We turn now to the question of identifying a suitable normal gauge theory with
which modular field theory may be compared. In the normal theory, the global
gauge group is implemented as follows:

m - l

*'(*) -» E *"*'(*) (4-5)

where the matrices g belong to an m-dimensional representation of the gauge
group (we shall assume that it is the fundamental representation here). If we
assume the vacuum is left invariant by the gauge group, then (4.5) can be shown
to induce a continuous unitary representation of the gauge group on the Fock-
space.

Since the classification problem for strongly local observables is as yet incom-
plete, we obviously cannot, as has been done in parafield theory, identify a gauge
group which will select out the strongly local observables.

There may, moreover, be fundamental problems in this regard since Theorem
3.4 appears5 to rule out the possibility of observables of second degree when
m > 2. Since the fundamental invariants of the simple Lie-groups are quadratic
the existence of a "selecting" gauge group appears problematical. One possible
solution to this difficulty lies in the area of non-linear representations [1]. Thus
one implements the gauge group not through (4.5) but through a non-linear
generalisation of it. One might hope that the linear part of the representation
(namely the stability group of the related coset space) would be a group which
selected out certain invariant polynomials in the usual way and that the non-lin-
ear part of the representation would leave only higher order linear invariants,
invariant.

Naturally the above discussion is purely speculative and awaits further investi-
gation for confirmation.

In view of the above difficulties we confine ourselves here to comparing
modular field theory with a normal field theory having a U(m) gauge symmetry.

We begin by constructing strongly local observables which, when expressed in
terms of normal Fermi fields, are invariant under U(m). In this regard we have

5 There remains the peculiar possibility that the observables might be of higher than second order in
the modular fields but of second order only in the Fermi fields.
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the following results:

THEOREM 4.2. Observables constructed from the following modular field polynomi-
als are strongly local and when Klein transformed, are invariant under the gauge
group U(m):

(i)CmC:\ where _

perm(xo,...,A:m_,)

E CJ^...,V,). (4.7)
penn(0,...,m-l)

(ii) For m = 3 the special case

M(x1( x2, yu y2) = M(xx, x2, ylt y2) + M(x2>x1, yu y2). (4.8)

PROOF. Consider firstly the case (i): When the ansatz (2.5) is used, Cm becomes
(apart from a numerical factor)

m - l

Q=E E ^K)- - -^ - 1 ^ - ! ) - (4-9)
perm /;=0

Consider now the terms 4>lr°\x0),..., 4>(l»(jcy.) • • • <t>(rk\xk) • • • *
(r"-l)(xm_1)

from this sum. By use of the commutation relations (2.6a) the <j>^\xj) and
4>(r*)(**) fields may be interchanged with the result

_•>-V*>(*o) • • • <C(rt)(^) • • • Wxj) • • • *<'->(*.,_!).

Thus if fj = rk then this term will not be present in the sum (4.9) since this sum
extends over all permutations of the spatial indices. Hence it becomes

cm= E E • ( ' b ) W - - - * ( r - l ) ( * - i ) . (4-10)
perm #j * #y

If we now apply the Klein transformation (2.7), we obtain

cm= Z L «l-*«'»(*o)-.--«1-r-l*r~l(*m-i)
perm rt ̂  JJ

= E I. f(ro,....rm-l)*HxO)-'- *'"(xm-i)»-lmlm-l»/2

perm rt ̂  rj

(4.H)
using (2.6c), the fact that r0 rm_1 must be a permutation of 0, . . . , m - 1 and
where

f(r0,...,rm_,) S ^M-VJl'+ito. (4.12)
Now (4.11) may be re-expressed as

E I/(Y(0),Y(l),...,Y(m-l))*Tm(*yff l ))
penn(jco,...,jcM_,) y

(4.13)
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where y is an arbitrary permutation of 0 , . . . , m — 1. When the anticommuting
nature of the Fermi fields is used, this becomes

E *°(*o) • • • *"-1(*»,-i)} I sign(Y)/(r(0),. • •,y(m - 1))
penn(*0.---.*m-i) ' Y

Xu-(m(m-l))/2 ( 4 1 4 ^

The sum to the right of the curly brackets has been considered in an earlier
publication [9] and is equal to 7}cdet(S), where c is an integer and S is the
invertible Sylvester matrix [7] which i s m X m and has the elements

Su = if". (4.15)

We may now rewrite (4.14) as

E e,0 r.,.I*'«(*o)---»r-1(*«-x)}i»cdet(S)H-<"<—^ (4.16)

where det(S) ¥= 0 and e is the completely antisymmetric tensor of w'th order.
Let the quantity in brackets in (4.16) be called Dm. This has been shown [2] to

transform as follows under U(m):

h - (417)

where g is the matrix implementing U(m) through (4.5). If we take the hermitean
conjugate of (4.16), we may deduce that

CmC* = kDmD'm* (4.18)

where k is a real constant. Now since G is unitary it follows that det(G) is a
phase factor and hence CmC" is left invariant by G. Finally Theorem 3.2 and
(4.7) show that CmC^ can be written as a sum of field polynomials which give
rise to strongly local observables and hence any observable constructed from it
will obviously also be strongly local. This completes the demonstration of the first
case.

In the second case we have

penn(x,,x2)

( 2 ) - (4-19)
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(2.3) allows us to rewrite this as

perm \_r*=0

= L
perm

f £
L''=0

- (4.20)

We show that the various order terms in this sum are invariant under 17(3). The
scalar terms (8 functions) are obviously so, For the second order terms we have,
using (2.5), (2.6c) and the Klein transformation (2.7)

I *<'>(JC)**<'>(;0 = £ <t>*(x)$**(y) (4.21)

and, as is well known, this transforms as the fundamental invariant of U(3).
Consider now the fourth order terms:

E £ +(r)(*i)+<r)(*2)**(r)(^)**(r)Oiy
perm(jc1,x2) r=0
permC^,^)

- \ Z t E ^'+-'-V')(x1)^'>(xa)*'W(xl)^->(^)
perm r—0 s,t,v,w

= j E •£ *(')(*i)*(')(*2)**(0)(^)«*(llP)(j'i) (4-22)
perm i + rKu + w

where we have used (2.5) and (2.6c) and the equivalence sign is modulo 3. Now
since the sum is over permutations of the x and y spatial indices, it follows that
we must have s =£ t and v ¥= w within the summation. When the Klein transfor-
mation is applied we obtain

j £ £ u1-sQs(xl)u
1-'<l>'(x2)$*D(y2)u

v-1<!>*w(y1)u
w-l(4.23)

perm

= } £ £ vra->)u2-'-lV(x1)V(x2)V°(y2)V
w(y1)

perm s + t^v + w

X MO+H>-2^-1) (424)
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The fact that the sum only extends over s + t = v + w and also (2.6c), means this
may be rewritten as

T E E irw+w-"«1(*i)*'(*2)**"(.>'2)**w(.>'i)- (4-25)
perm s + t&o + w

Consider the possible values for s and t in this sum: Clearly, apart from order,
these are 0,1 0,2 and 1,2. Given the restriction s + t = v + w mod 3, these
values must be matched by the same values (apart from order) for v and w. When
the sum over spatial indices is taken into account, (4.25), becomes

perm a > b

F(a,b) = 1 - •qb-a - if'* + Tjfl-fc+6-a = 3

and so therefore the sum is

perm a > b

The sum over permutations means that this becomes

£ E*'(*l)*y(*2)**'(tt)**'(tt)
perm ij

= E L[nx1)9*l(y1)^(x2)^(y2)-8(x2-yl)9'(xl)<t*'(y2)]
p e r m i,j

(4.26)

which is manifestly invariant under U(3). Given (4.8), M is, by Theorem 3.2,
strongly local.

For future reference we express M in terms of the Fermi fields. By use of
(4.20), (4.21) and (4.26), we deduce that

M= E E [*'(*i)**'(^i)»y(*2)**y(>2)

-28(Xl -

(4.27)

A few comments are appropriate regarding Theorem 4.2: firstly, in the case that
m = 2 we are dealing with parafield theory and so the field polynomial
['/'*(>'), <K*)]- is strongly local and invariant under t/(2). Secondly, one might
expect that strongly local U(m) invariant field polynomials could be constructed
from the polynomial M for arbitrary m. Whether this is so is not clear. We have,
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however, the following conjecture:

Conjecture: The polynomial

M = £ M(*i , . . . , *m_x, * , . . . , .yn-i) (4-28)
pern^*, xm_t)

is strongly local and invariant under U(m).
The proof of this conjecture appears to involve complicated algebraic computa-

tions and is not attempted here.

5. The relativistic states

We come now to the important consideration of a relativistic theory. In this
case one would expect, as with the usual relativistic theory, that modular fields
would be made up of two parts corresponding to positive and negative frequen-
cies. Thus for example, one would write the free spinor modular field as [8]

I «'(k)fli + e'<M+«*o> £ u ' (k)c ' t ) (5.1)
k \ , = i , = 3 j

where the t/'(k) are the usual Dirac spin components, V is the volume appropriate
to the spatial fields, and the operators a'k and cj,* are to be interpreted as particle
annihilation and anti-particle creation operators respectively.

In order that the relations (2.1) be satisfied by our relativistic spatial field, the
relations

Ojata, + a,ataj = 8Jka, + 8klaJt

« * , « * , « * , • • • akm+i + aki--- ak^aka*kx = 8kikak} • • • akm+i, ( 5 . 2 )

okakl • • • akmakm+i + akm^akt • • • akaki = 0

which apply in the non-relativistic case, need to be extended to deal with
anti-particle operators. This may be achieved by following the prescription that a
creation operator aj£ in (5.2) may be replaced by an annihilation operator ck

providing that Kronecker deltas involving the momentum labels of particles and
anti-particles are removed. In otherwords ck acts algebraically like ajf except with
an extra degree of freedom corresponding to its status as an anti-particle
operator. Similar comments apply for exchanging ak with c£. With this prescrip-
tion the first equation of (5.2) expands to include the following extra equations:

cjckcf + cfckcf = 8klcf + 8jkcf,

cfa*kcT + cfa*kcf = 0,

cjata^aiatcf = 8klcj, (5.3)

cfcka, + a,ckcf = 8jkah

ajCka, + a,ckaj = 0.
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Similar extensions occur for the other two equations. It is interesting to note that
when m > 3 these extended equations are non-trivial in the sense that one cannot
just consider the anti-particle to be an ordinary particle with an "anti-particle"
label. To see this, we observe that the second equation of (5.3) has no counterpart
involving just particle operators (except, of course, when m = 2). This non-trivial
property distinguishes modular field theory from parafield theory where it is
possible to consider anti-particles as simply ordinary particles with an anti-par-
ticle label [14].

We now construct a colour algebra ansatz which carries out the above prescrip-
tion. We introduce the elements ek

r\ e*(r), bk
r\ £*(r). We then assume the colour

algebra relations

ejrHs) + Vr~'eis)ejr) = 0,

e*(r)eis) + •qs-reis)eJ*
(r) = SJkS

rs (5.4)

for the e and identical relations for the b. Between the e and b we assume the
relations

&jr) = 0,

f* = 0. (5.5)

Finally we specify the action of the u operator as

u-reis)ur = -n- rse(
k
s\ u - rbk

s) ur = TJ"6^> . (5.6)

Relations such as (5.4)-(5.6) have been discussed in detail elsewhere [10] where
the existence of Fock representations is demonstrated. We now define an ansatz
for the particle operator ay and the anti-particle operator cy.

1 m — 1 1 m — 1

As in Section 2 we may also define

c)r) s u-rcjU
r, a)r) = u-rajur. (5.8)

With these definitions and the equations (5.4)-(5.7) we can derive the equations

cjr)4J) + ci'+^cy-V = afW> + flfC*+i)fl*C-i) = 0,

c;<r>4'> + ci'-^cf'-V = ajr)ar(l) + af'-Vay-* = SkjS", (5.9)

cjr>aj?<'> + a;('+1>cjr-1> = c/<'>aj?<" + atl'-Vcp'-V = 0.
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Substitution of the expressions (5.7) into (5.1)6 gives us our relativistic modular
field. When the relations (5.9) are taken into account it is easily shown by the
usual methods [8], that the fields so constructed satisfy (2.3) and hence (2.1).
Moreover it is relatively easy to also see that equations (5.9) imply the extended
relations such as (5.3).

We turn now to consideration of states involving anti-particles. We have
already seen how the spatial modular ansatz fields are Klein transformed into
Fermi fields (see equation (2.7)). In order that this be consistent with decomposi-
tions such as (5.1), we specify the following Klein transformations for the e and b
ansatz operators:

r/*> = ur~ lbjs\ tjs) = ul~ rejs). (5.10)

This ensures that particle annihilation operators and anti-particle creation opera-
tors transform in the same way.

In the previous publication [9] it was stated that construction of the meson
colour singlet state in the modular Fock-space is impossible. We shall see below
that this assertion is incorrect and the relations (5.9) will be central in demonstrat-
ing the existence of such states.

Consider the operator

m-1

7 - 1

with k, I =* n,, Vi. The use of equation (5.9) allows this to be rewritten as

(5.12)

When this operator is applied to the vacuum state |> we can use the relation

c ... c c* ... c*\\ = \\ (s 13)

which was derived in the previous publication [9], to show that
m - 1

^l )= £ o*°V0)l)- (5-14)
7 = 0

Usage then of (5.11) and the ansatz (5.7) shows that
m - 1

M|>= £ r^trij)\) (5-15)
7-0

which is the colour singlet meson state.

6 With an appropriate addition of a spin index.
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The above discussion may be extended and we may prove (modulo a technical
difficulty) the general result

THEOREM 5.1. The modular Fock-space possesses all the physically relevant states
ofaU(m) gauge theory.

The proof of this theorem may be found in the author's thesis [10] and is very
close to Ohnuki and Kamefuchi's proof for parafield theory.

6. Conclusions

Central to our approach to modular observables has been the concept of strong
locality. Apart from the causality implications, Ohnuki and Kamefuchi [14] have
also pointed out that if a Hamiltonian H(V) for a particular region V satisfies
only weak locality then the usual Heisenberg equation of motion for fields no
longer holds. Given this undesirable property the strongly local observables of
Theorem 2.2 would appear then to be prototypes for possible modular Hamiltoni-
ans. In view of this, an interacting field theory would seem to be implied for
modular quantisation. The case of order three quantisation would appear to be
most promising in this regard as it possesses a fourth order f/(3) invariant (M of
Theorem 4.2) which may give rise to a renormalisable theory.

Despite the above remarks it should be noted that Green [5] has constructed a
quadratic Hamiltonian obeying Heisenberg's principle which can be shown [10],
in its local form, to be both strongly local and invariant under U(m). Such a
Hamiltonian can no doubt serve as the Hamiltonian of a free modular field
theory. The problem with such an operator is that it requires the operator u for
its expression and apparently [10] cannot be expressed purely in terms of the
modular fields.

In summary, we can conclude that modular field theory is essentially equivalent
to a normal field theory with a U(m) gauge symmetry in which the observables
have been further restricted by some, as yet unknown, requirement.
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