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Abstract

In this paper we prove the following result: there exists an infinite arithmetic progression of positive odd
numbers such that for any term k of the sequence and any nonnegative integer n, each of the 16 integers
k − 2n , k − 2− 2n , k − 4− 2n , k − 6− 2n , k − 8− 2n , k − 10− 2n , k − 12− 2n , k − 14− 2n , k2n

−

1, (k − 2)2n
− 1, (k − 4)2n

− 1, (k − 6)2n
− 1, (k − 8)2n

− 1, (k − 10)2n
− 1, (k − 12)2n

− 1 and
(k − 14)2n

− 1 has at least two distinct odd prime factors; in particular, for each term k, none of the
eight integers k, k − 2, k − 4, k − 6, k − 8, k − 10, k − 12 or k − 14 can be expressed as a sum of two
prime powers.
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1. Introduction

By calculation, it is found that almost all positive odd numbers can be expressed in
the form 2n

+ p, where n is a positive integer and p is prime. In 1934, Romanoff [9]
proved that the set of positive odd numbers which can be expressed in the form 2n

+ p
has positive asymptotic density in the set of all positive odd numbers, where n is a
nonnegative integer and p is prime. For a positive integer n and an integer a, let
a(mod n)= {a + nk | k ∈ Z}. We say that {ai (mod mi )}

k
i=1 is a covering system if

every integer b satisfies b ≡ ai (mod mi ) for at least one value of i . By employing a
covering system, Erdős [5] proved that there is an infinite arithmetic progression of
positive odd numbers, each of which has no representation of the form 2n

+ p. Cohen
and Selfridge [4] proved that there exist infinitely many odd numbers which are neither
the sum nor the difference of two prime powers. In 2005, Chen [2] proved that there
is an arithmetic progression of positive odd numbers such that for each of its terms M ,
none of the five consecutive odd numbers M , M − 2, M − 4, M − 6 and M − 8
can be expressed in the form 2n

± pα , where p is a prime and n, α are nonnegative
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integers. Recently, Chen and Tang [3] presented an explicit arithmetic progression
of this type. Chen [1, Corollary 3 with a = 1] proved that there exists an infinite
arithmetic progression of positive odd numbers such that for any term k of the sequence
and any nonnegative integer n, each of the ten integers k − 2n , k − 2− 2n , k − 4− 2n ,
k − 6− 2n , k − 8− 2n , k2n

− 1, (k − 2)2n
− 1, (k − 4)2n

− 1, (k − 6)2n
− 1 and

(k − 8)2n
− 1 has at least two distinct odd prime factors.

For related information, see the papers by Filaseta et al. [6], Luca and Stănică [8],
and Guy [7, A19, B21, F13].

In this article, it will be shown that the ‘ten’ in [1] can be improved to ‘sixteen’.

THEOREM 1.1. There exists an infinite arithmetic progression of positive odd
numbers such that for any term k of the sequence and any nonnegative integer n, each
of the 16 integers k − 2n , k − 2− 2n , k − 4− 2n , k − 6− 2n , k − 8− 2n , k − 10−
2n , k − 12− 2n , k − 14− 2n , k2n

− 1, (k − 2)2n
− 1, (k − 4)2n

− 1, (k − 6)2n
− 1,

(k − 8)2n
− 1, (k − 10)2n

− 1, (k − 12)2n
− 1 and (k − 14)2n

− 1 has at least two
distinct odd prime factors. In particular, for each term k, none of the eight integers k,
k − 2, k − 4, k − 6, k − 8, k − 10, k − 12 or k − 14 can be expressed as a sum of two
prime powers.

REMARK 1.2. The key to dealing with this kind of problem is to find suitable covering
systems so that the Chinese remainder theorem can be applied. In [1, Theorem]
(see also [2, Theorem 1]), conditions are given that these covering systems should
satisfy. In this paper we will successfully find eight covering systems which satisfy
the conditions of [1, Theorem]; the construction of covering systems is a very difficult
topic.

Similarly, there exists an infinite arithmetic progression of positive odd numbers
such that for any term k of the sequence and any nonnegative integer n, each of
the 16 integers k + 2n , k + 2+ 2n , k + 4+ 2n , k + 6+ 2n , k + 8+ 2n , k + 10+ 2n ,
k + 12+ 2n , k + 14+ 2n , k2n

+ 1, (k + 2)2n
+ 1, (k + 4)2n

+ 1, (k + 6)2n
+ 1,

(k + 8)2n
+ 1, (k + 10)2n

+ 1, (k + 12)2n
+ 1 and (k + 14)2n

+ 1 has at least two
distinct odd prime factors. Many other results parallel to those in [1] also hold true;
we omit the details.

2. Proofs

LEMMA 2.1 [1, Theorem]. Let k1, k2, . . . , ku+v be integers, let {ai j (mod mi j )}
ti
j=1

(i = 1, 2, . . . , u + v) be covering systems with ai j ≥ 0, and let pi j ( j =
1, 2, . . . , ti , i = 1, 2, . . . , u + v) be positive primes such that

pi j | 2mi j − 1 ∀ i, j.

Let ri j be integers such that 0≤ ri j < pi j and

ri j ≡ 2ai j − ki (mod pi j ), j = 1, 2, . . . , ti , 1≤ i ≤ u,

ri j ≡−2ai j − ki (mod pi j ), j = 1, 2, . . . , ti , u + 1≤ i ≤ u + v.
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Suppose that if pi j = puv , then ri j = ruv . Then there exist two positive integers M
and M0 with 2 | M and 2 - M0 such that if k ≡ M0(mod M), then for any nonnegative
integer n, each of

k + ki − 2n (1≤ i ≤ u), (k + ki )2n
− 1 (1≤ i ≤ u),

k + ki + 2n (u + 1≤ i ≤ u + v), (k + ki )2n
+ 1 (u + 1≤ i ≤ u + v)

has at least two distinct odd prime factors.

PROOF OF THEOREM 1.1 For completeness, we give a full proof. Let k1 = 0,
k2 =−2, k3 =−4, k4 =−6, k5 =−8, k6 =−10, k7 =−12 and k8 =−14.

Take

{a1 j (mod m1 j )}
8
j=1 = {0 (mod 2), 3 (mod 4), 5 (mod 8),

9 (mod 16), 17 (mod 32), 33 (mod 64),
1 (mod 128), 65 (mod 128)},

{a2 j (mod m2 j )}
7
j=1 = {1 (mod 2), 0 (mod 4), 6 (mod 8),

10 (mod 16), 18 (mod 32), 34 (mod 64),
2 (mod 64)},

{a3 j (mod m3 j )}
26
j=1 = {0 (mod 3), 2 (mod 4), 3 (mod 5)

1 (mod 10), 4 (mod 12), 2 (mod 15),
1 (mod 18), 7 (mod 20), 8 (mod 24),
19 (mod 25), 24 (mod 25), 11 (mod 36),
23 (mod 36), 25 (mod 40), 25 (mod 45),
40 (mod 45), 20 (mod 48), 44 (mod 48),
9 (mod 50), 39 (mod 50), 37 (mod 60),
35 (mod 72), 4 (mod 75), 5 (mod 120),
29 (mod 150), 215 (mod 360)},

{a4 j (mod m4 j )}
9
j=1 = {0 (mod 2), 1 (mod 4), 7 (mod 8),

11 (mod 16), 19 (mod 32), 35 (mod 64),
67 (mod 128), 3 (mod 256), 131 (mod 256)}

{a5 j (mod m5 j )}
13
j=1 = {1 (mod 2), 2 (mod 3), 2 (mod 5),

4 (mod 9), 6 (mod 10), 6 (mod 12),
10 (mod 18), 0 (mod 20), 24 (mod 30),
34 (mod 36), 48 (mod 60), 34 (mod 90),
88 (mod 180)},

{a6 j (mod m6 j )}
60
j=1 = {1 (mod 3), 3 (mod 4), 1 (mod 5)

2 (mod 7), 7 (mod 10), 2 (mod 11),
3 (mod 11), 0 (mod 14), 12 (mod 21),
4 (mod 22), 6 (mod 27), 8 (mod 28),
20 (mod 28), 5 (mod 33), 18 (mod 36),
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32 (mod 42), 6 (mod 44), 18 (mod 44),
45 (mod 48), 30 (mod 54), 32 (mod 56),
5 (mod 60), 8 (mod 66), 20 (mod 66),
21 (mod 72), 9 (mod 80), 42 (mod 81),
69 (mod 81), 78 (mod 81), 68 (mod 84),
80 (mod 84), 33 (mod 96), 81 (mod 96),
29 (mod 100), 49 (mod 100), 89 (mod 100),
66 (mod 108), 102 (mod 108), 4 (mod 112),
60 (mod 112), 98 (mod 132), 110 (mod 132),
38 (mod 135), 69 (mod 144), 117 (mod 144),
24 (mod 162), 96 (mod 162), 24 (mod 168),
108 (mod 168), 53 (mod 180), 113 (mod 180),
105 (mod 240), 153 (mod 240), 122 (mod 264),
254 (mod 264), 83 (mod 270), 209 (mod 300),
269 (mod 300), 294 (mod 324), 533 (mod 540)},

{a7 j (mod m7 j )}
90
j=1 = {0 (mod 2), 1 (mod 7), 1 (mod 11),

9 (mod 11), 3 (mod 12), 9 (mod 13),
7 (mod 14), 11 (mod 17), 5 (mod 18),
21 (mod 26), 29 (mod 34), 2 (mod 35),
31 (mod 35), 6 (mod 39), 33 (mod 39),
13 (mod 49), 14 (mod 51), 32 (mod 51),
47 (mod 51), 5 (mod 52), 17 (mod 52),
29 (mod 52), 26 (mod 63), 53 (mod 63),
25 (mod 68), 51 (mod 68), 59 (mod 68),
3 (mod 70), 9 (mod 70), 25 (mod 77),
15 (mod 78), 12 (mod 91), 19 (mod 91),
54 (mod 91), 55 (mod 98), 35 (mod 102),
53 (mod 102), 101 (mod 102), 49 (mod 104),
10 (mod 105), 16 (mod 105), 58 (mod 105),
107 (mod 126), 97 (mod 147), 20 (mod 153),
38 (mod 153), 39 (mod 154), 109 (mod 154),
151 (mod 154), 105 (mod 156), 117 (mod 156),
129 (mod 156), 141 (mod 156), 5 (mod 182),
89 (mod 182), 131 (mod 182), 27 (mod 196),
69 (mod 196), 125 (mod 196), 77 (mod 204),
95 (mod 204), 179 (mod 204), 197 (mod 204),
157 (mod 210), 199 (mod 210), 205 (mod 210),
4 (mod 231), 46 (mod 231), 125 (mod 252),
251 (mod 252), 82 (mod 273), 124 (mod 273),
166 (mod 273), 139 (mod 294), 181 (mod 294),
209 (mod 306), 227 (mod 306), 245 (mod 306),
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137 (mod 308), 309 (mod 312), 319 (mod 462),
403 (mod 462), 17 (mod 504), 143 (mod 504),
269 (mod 504), 395 (mod 504), 481 (mod 546),
523 (mod 546), 559 (mod 588), 425 (mod 612),
907 (mod 924)},

{a8 j (mod m8 j )}
10
j=1 = {1 (mod 2), 2 (mod 4), 0 (mod 8),

12 (mod 16), 20 (mod 32), 36 (mod 64),
68 (mod 128), 132 (mod 256), 260 (mod 512),
4 (mod 512)}.

Noting that {a j (mod m j )}
k
j=1 is a covering system if and only if for every integer n

with 0≤ n < lcm{m1, . . . , mk} there exists a j such that n ≡ a j (mod m j ), we can
verify that each of the above {ai j (mod mi j )}

ti
j=1 (1≤ i ≤ 8) is a covering system (the

first five systems are exactly as in the proof of [2, Theorem 2]). Now, for every
ai j (mod mi j ), we appoint a prime pi j such that mi j is the order of 2(mod pi j ) and
such that if pi j = puv , then

2ai j − ki ≡ 2auv − ku (mod pi j ). (2.1)

Let

p11 = p21 = p41 = p51 = p71 = p81 = 3,

p12 = p22 = p32 = p42 = p62 = p82 = 5,

p13 = p23 = p43 = p83 = 17, p14 = p24 = p44 = p84 = 257,

p15 = p25 = p45 = p85 = 65537, p16 = p26 = p46 = p86 = 641, p27 = 6700417,

p31 = p52 = p61 = 7, p33 = p53 = p63 = 31,

p34 = p55 = p65 = 11, p35 = p56 = p75 = 13,

p37 = p57 = p79 = 19, p38 = p58 = 41,

p3(12) = p5(10) = 109, p3(13) = p6(15) = 37.

p3(18) = p6(19) = 97, p3(17) = 673,

p3(21) = 1321, p5(11) = p6(22) = 61,

p64 = p72 = 127, p66 = p73 = 89,

p67 = p74 = 23, p68 = p77 = 43.

We can verify that (2.1) holds for all of these cases.
Note that the Fermat numbers F6, F7 and F8 are composite. Let p18 = p47 = p87

and p17 be two distinct prime divisors of 264
+ 1, let p48 and p49 = p88 be two distinct

prime divisors of 2128
+ 1, and let p89 and p8(10) be two distinct prime divisors of

2256
+ 1. Then (2.1) follows from the fact that

22k
+1
− 0≡ 22k

+2
− (−2)≡ 22k

+3
− (−6)≡ 22k

+4
− (−14) (mod 22k

+ 1).
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If m > 1 and m 6= 6, then there exists at least one prime p such that m is the order
of 2(mod p) (see [10]; we may verify this directly by calculation). Thus, we may
appoint a prime pi j for each of the ai j (mod mi j ) provided that the multiplicity of the
modulus mi j is one. To complete the proof, it suffices to appoint k distinct primes
p1, p2, . . . , pk to the modulus m which has multiplicity k except for the above cases.
If p1, p2, . . . , pk are primes and the order of each 2(mod pi ) is m, then we write this
as m[p1, p2, . . . , pk]. By calculation, we find that

25[601, 1801], 28[29, 113],
35[71, 122921], 39[79, 121369],
44[397, 2113], 45[631, 23311],
50[251, 4051], 51[103, 2143, 11119],
52[53, 157, 1613], 63[92737, 649657],
66[67, 20857], 68[137, 953, 26317],
70[281, 86171], 72[433, 38737],
81[2593, 71119, 97685839], 84[1429, 14449],
91[911, 112901153, 23140471537], 96[193, 22253377],
100[101, 8101, 268501], 102[307, 2857, 6529],
105[29191, 106681, 152041], 108[246241, 279073],
112[5153, 54410972897], 132[312709, 4327489],
144[577, 487824887233], 153[919, 75582488424179347083438319],
154[617, 78233, 35532364099], 156[313, 1249, 3121, 21841],
162[163, 135433, 272010961], 168[3361, 88959882481],
180[181, 54001, 29247661], 182[224771, 1210483, 25829691707],
196[197, 19707683773, 4981857697937], 200[401, 340801, 2787601, 3173389601],
204[409, 3061, 13669, 1326700741], 210[211, 664441, 1564921],
240[394783681, 46908728641], 252[40388473189, 118750098349],
264[7393, 1761345169, 98618273953], 294[748819, 26032885845392093851],

231[463, 4982397651178256151338302204762057],
273[108749551, 4093204977277417, 86977595801949844993],
300[1201, 63901, 13334701, 1182468601],
306[123931, 26159806891, 27439122228481],
462[14323, 70180796165277040349245703851057],
504[1009, 21169, 2627857, 269389009, 1475204679190128571777],
546[547, 105310750819, 292653113147157205779127526827].

Now, the first part of the theorem follows from Lemma 2.1. It is clear that if l is an odd
integer such that for any nonnegative integer n, l − 2n always has at least two distinct
prime factors, then l cannot be expressed as a sum of two prime powers. The second
part of the theorem therefore follows from the first part. This completes the proof. 2
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