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On lattices in semi-stable representations:
a proof of a conjecture of Breuil

Tong Liu

ABSTRACT

For p > 3 an odd prime and a nonnegative integer r < p — 2, we prove a conjecture of
Breuil on lattices in semi-stable representations, that is, the anti-equivalence of categories
between the category of strongly divisible lattices of weight r and the category of Galois
stable Zj,-lattices in semi-stable p-adic Galois representations with Hodge-Tate weights

in {0,...,r}.
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1. Introduction

Let k be a perfect field of characteristic p > 2, W (k) its ring of Witt vectors, Ko = W (k)[1/p],
K/Kj a finite totally ramified extension and e = e(K/Kj) the absolute ramification index. We
are interested in understanding semi-stable p-adic Galois representations of G' := Gal(K/K). An
important result in this direction is proved by Colmez and Fontaine [CF00]: semi-stable p-adic Galois
representations are classified by weakly admissible filtered (¢, N)-modules. Since G is compact, any
continuous representation p : G — GL,(Q,) admits a G-stable Z,-lattice. It is thus natural to
ask whether there also exists a corresponding integral structure on the side of filtered (¢, N)-
modules. Fontaine and Laffaille [FL82| first attacked this question by defining W (k)-lattices in
filtered (p, N)-modules. Unfortunately, their theory only works for the case e = 1, N = 0 and
Hodge-Tate weights in {0,...,p — 2}. In the late 1990s, Breuil introduced the theory of filtered
(¢, N)-modules over S to study semi-stable Galois representations [Bre97, Bre98b, Bre99a], where
S is the p-adic completion of divided power envelope of W (k)[u] with respect to the ideal (E(u)), and
E(u) is the Eisenstein polynomial for a fixed uniformizer = of K. Breuil proved that the knowledge
of filtered (¢, N)-modules over S is equivalent to that of filtered (¢, N)-modules (see Theorem 2.2.1
for the precise statement). Furthermore, it turns out that there are integral structures, strongly
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divisible lattices, which naturally live inside filtered (¢, N)-modules over S. These structures allow
for arbitrary ramification of K/Kj. For a strongly divisible lattice M, Breuil constructed a G-stable
Zy-lattice Ty (M) in a semi-stable Galois representation and raised the following conjecture (the
main conjecture in [Bre02]).

CONJECTURE 1.0.1 (Breuil’s conjecture). Fix a nonnegative integer r < p — 2. The functor Ty
establishes an anti-equivalence of categories between the category of strongly divisible lattices
of weight r and the category of G-stable Z,-lattices in semi-stable representations of G with
Hodge—Tate weights in {0,...,r}.

If » < 1, the conjecture has been proved by Breuil in [Bre00] and [Bre02]. The case e = 1
was shown by Fontaine and Laffaille in [FL82] for crystalline representations. In [Bre99a], Breuil
proved that there at least exists a strongly divisible lattice in the side of filtered (¢, N)-modules
over S if er < p — 1. Based on this result, Breuil [Bre99c| proved the case e = 1 for general
semi-stable representations, and Caruso [Car05] proved Breuil’s conjecture for er < p — 1. Their
ideas involve a weak version of Conjecture 1.0.1; see the end of §2.3 for details. In [Fal99], Faltings
proved that the restriction of Ty to the subcategory of filtered free strongly divisible lattices is fully
faithful.

In this paper, we give a complete proof for the above conjecture by using results of Kisin [Kis06].
Let Koo = U, > K("/7), Goo = Gal(K/K) and & = W (k)[u]. We equip & with the endomor-
phism ¢ which acts via Frobenius on W(k), and sends u to uP. Let Modw6 denote the category
of finite free G-modules M equipped with a p-semi-linear map @gn : M — N such that the cok-
ernel of G-linear map 1 ® pgp : 6 @y, M — M is killed by E(u)". In [Kis06], Kisin proved that
any Goo-stable Z,-lattice T' in a semi-stable Galois representation comes from an object (9, )
in Mod“/DG. Using the functor M ~ S ®, e M provided by Breuil, Kisin’s theory allows us to
construct ‘quasi-strongly divisible lattices’, i.e. strongly divisible lattices without considering mon-
odromy, to establish an anti-equivalence between the category of quasi-strongly divisible lattices and
the category of G'o-stable Z,-lattices in semi-stable Galois representations. Furthermore, we prove
that a quasi-strongly divisible lattice is strongly divisible if and only if the corresponding G,-stable
Zy-lattice is G-stable (see Theorem 3.5.4 for the more precise statement). Conjecture 1.0.1 then
follows.

The paper proceeds as follows. In §2, after briefly reviewing the theory of semi-stable p-adic
Galois representations, filtered (¢, N)-modules over S and definition of (quasi-)strongly divisible
lattices, we are then able to give a precise statement of our main theorem. Section 3 is devoted to
reviewing Kisin’s theory from [Kis06], which allows us to construct quasi-strongly divisible lattices
and establishes an anti-equivalence between the category of quasi-strongly divisible lattices and the
category of G-stable Z,-lattices in semi-stable Galois representations; and the full faithfulness
of Ty follows from this. In the next two sections, we prove that a quasi-strongly divisible lattice
is strongly divisible if and only if the corresponding Go-stable Z,-lattice is G-stable. The idea is
to use an extended version of Falting’s theorem [Fal99, Theorem 5], The proof of such a theorem
(Theorem 4.3.4) mainly depends on the construction of the Cartier dual for quasi-strongly divis-
ible lattices from [Car05], which we discuss in §4. In the last section, we combine our previous
preparations to prove the essential surjectivity of Tg.

2. Preliminaries and the main result

This paper discusses lots of categories and functors. For the convenience of readers, we begin by
summarizing their relations and our main results as the following diagram.
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Do
Modf)"¥ —Z— MF(p, N) —2= MF (i, N)

‘/cris

Repg, (G)

ModféN ©z, Qp <MW (0, N) 2 MFWV (i, N) 2 Repl (G) —= Repg, (Go)

} } | |

Tst s
MOdféN ModféN —_— Repth(G) B Repr(GOO)
R |
MOd(/pS — s RepSth (Goo)— Repr(Goo)
Mod? ¢ Me Mod? Teris Repz, (Goo)

/6 /8
W

Here is a general explanation of the above diagram.

(i) Injection arrows < symbolize fully faithful functors and ~ symbolizes equivalence or
anti-equivalence. The notation Rep® symbolizes the categories of semi-stable representations with
Hodge-Tate weights in {0,...,r}. For example, RepSth(Goo) symbolizes the category of G-stable
Zy-lattices in semi-stable representations.

(ii) The main goal of this paper is to prove that Ty is an anti-equivalence. To achieve this, we

first prove that Ty is fully faithful by showing that T restricted to Modfs (the category of quasi-

strongly divisible lattices) is an anti-equivalence in §3, and then we prove the essential surjectivity
of Ty in §§4 and 5.

(iii) The first column is about Kisin’s theory on ¢-modules over &. The second column is about
classical modules in Fontaine’s theory and the third about Breuil’s theory on S-modules.These
three theories can be connected by auxiliary categories in the first row (see the end of § 2.2, the end
of §3.1 and §3.2). The last two columns are about the Galois sides. Note that representations of G,
(e.g. Goo-stable Z,-lattices inside semi-stable representations) can be more conveniently described
by Kisin’s theory (see §§3.3 and 3.4).

(iv) The second row is about the theory over Q, whereas the third row is about the theory over
Z,,, which also is the key result of this paper. Many important inputs depend on the last two rows
which are about Kisin’s theory (via T ) and Breuil’s theory (via Teris) on Zy-representations of G
(see §§3.3 and 3.4).

2.1 Semi-stable Galois representations and weakly admissible modules

Fix an odd prime p. Recall that a p-adic representation is a continuous linear representation of
G = Gal(K/K) on a finite dimensional Q,-vector space V and a p-adic representation V of G is
called semi-stable [Fon94b] if

dimg, (Bs ®g, V) = dimg, V, (2.1.1)

where By is the period ring constructed by Fontaine; see for example [Fon94a| or §2.2 for the
construction.

In [CF00] and [Fon94b], Fontaine and Colmez give an alternative description of semi-stable
p-adic representations. Recall that a filtered (¢, N)-module is a finite dimensional Ky-vector space
D endowed with:
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(1) a Frobenius semi-linear injection: ¢ : D — D;
(2) alinear map N : D — D such that Ny = ppN;

(3) a decreasing filtration (Fil' D¢ )iez, on D := K ®, D by K-vector spaces such that Fil' Dy =
Dy for i < 0 and Fil'Dg = 0 for 7 > 0.

If D is a one dimensional (¢, N)-module, and v € D is a basis vector, then ¢(v) = av for some
a € Ky. We write ¢ty (D) for the p-adic valuation of « (p-adic valuation of « does not depend on
choice of v) and ¢y (D) for the unique integer i such that gr’ Dx is nonzero. If D has dimension d > 1,
then we write ty(D) = tx(AD) and tgy (D) = tg(A?D). Recall that a filtered (¢, N)-module is
called weakly admissible if tr7(D) = tn(D) and for any (¢, N)-submodule D' C D, ty(D') < tn(D’'),
where D). C Dk is equipped with the induced filtration.

The aforementioned result of Colmez and Fontaine [CF00] is that the functor
Dy 1 V — (Bs ®g, V)¢

establishes an equivalence of categories between the category of semi-stable p-adic representations
of G and the category of weakly admissible filtered (¢, N)-modules.

In the sequel, we will instead use the contravariant functor Dg (V') := Dg; «(V"), where V'V is
the dual representation of V. The advantage of this is that the Hodge—Tate weights of V' are exactly
the i € Z such that gr'Dg (V) # 0. A quasi-inverse to Dy is then given by

Vst (D) := Homy, (D, Bst) N Homp,- (D, K ®k, Bst)- (2.1.2)

Convention 2.1.1. Here we use slightly different notation from [Bre02] and [CF00]: Dg; here is
D7 in [Bre02] and [CF00]; Vg here is Vi in [Bre02] and [CF00]. Also we will use Ty to denote
TZ in [Bre02] and [Bre99a] later. The reason for using such notation is that we will always use
contravariant functors instead of covariant functors in this paper. Removing ‘*’ from the superscript
looks more neat and convenient.

A filtered (¢, N)-module is called positive if F ilD = D. In this paper, we only consider positive
filtered (¢, N)-modules. We denote the category of positive filtered (¢, N)-modules by MF(p, N)
and the category of positive weakly admissible filtered (¢, N)-modules by MFY (¢, N).

2.2 Breuil’s theory on filtered (¢, N)-modules over S

Throughout the paper we will fix a uniformizer 7 € O, and E(u) € W(k)[u] the Eisenstein
polynomial of 7. We denote by S the p-adic completion of the divided power envelope of W (k)[u]
with respect to Ker(s), where s : W(k)[u] — Ok is the canonical surjection by sending u to 7.
For any positive integer 7, let Fil’S C S be the p-adic closure of the ideal generated by the divided
powers 7;j(u) = E(u)’/j! for all j > i. There is a unique continuous map ¢ : S — S which extends
the Frobenius on W (k) and satisfies ¢(u) = uP. We define a continuous W (k)-linear derivation
N : S — S such that N(u) = —u. It is easy to check that Ny = poN and @(Fil'S) C p'S for
0<i<p-—1,and we write ¢; = p“¢|pyig and c1 = p1(E(u)). Note that ¢; is a unit in S. Finally,
we put Sk, := S ®z, Qp and FiliSKO .= Fil'S ®z, Qp-
Let MF (¢, N) be a category whose objects are finite free Sk, ,-modules D with:

(i) a PS5y, -semi-linear morphism ¢p : D — D such that the determinant of ¢p is invertible in
Sk, (the invertibility of the determinant does not depend on the choice of basis);

(ii) a decreasing filtration over D of Sg,-modules, i.e. Fil'(D), i € Z, such that Fil’(D) = D and
that Fil'Sk,Fil’ (D) C Fil'*/(D);

(iii) a Kp-linear map (monodromy) N : D — D such that
(1) for all f € Sk, and m € D, N(fm) = N(f)m+ fN(m),
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(2) Np=ppN,
(3) N(Fil'D) c Fil'"}(D).
We call objects in MF(p, N) filtered (¢, N)-modules over S. Let D € MF(p, N) be a filtered
(¢, N)-module. We can associate an object D € MF(p, N) by the following:

D=8 @w D (22.1)
and
* p:=ps®¢p:D—D,
e N.=N®Id+Id® N :D — D,
e Fil°(D) := D and by induction:
Fil'™'D := {x € D | N(z) € Fil'D and f.(z) € Fil""' D},
where fr : D — D is defined by A ® z — s(\)z.

For a D € MF(p, N), Breuil associated a Q,[G]-module Vi (D). Several period rings have to be
defined before we can describe this functor. Let R = lim Og/p, where the transition maps are given
by Frobenius. By the universal property of Wltt Vectors W(R) of R, there is a unique surjective
map 0 : W(R) — (’)K to the p-adic completion (’)K, which lifts the projection R — O /p = (’)K/p
onto the first factor in the inverse limit. We denote by Ags the p-adic completion of the divided
power envelope of W (R) with respect to the Ker(6), and write B, = Auis[1/p).

Cris

For each n > 0, fix m, € K a p™th root of 7w such that 7rn+1 = mp. Write © = (7,)n>0 € R, and
let [r] € W(R) be the Teichmiiller representation. We embed the W (k)-algebra W (k)[u] into W (R)
by u +— [x]. Since 6([x]) = 7 this embedding extends to an embedding S < Agis, and 0|g is the
map s : S — Ok sending u to w. The embedding is compatible with Frobenius endomorphisms. As
usual, we denote by B;g the ring obtained by formally adjoining the element ‘log[r]’ to B;ls, nd
by B the Ker(6)-adic completion of W (R)[1/p]. Choose a generator ¢ of Zj,(1) C Aeis. Such ¢ can
be constructed by t := log([e]) for € = (&)i>0 € R, where ¢; is a primitive p‘th root of unity such
that €/, ; = ;. We denote Bg[1/t] by By.

Let ;1; be the p-adic completion of the divided power polynomial algebra A.s(X). We endow
//l;t with a continuous G-action, a Frobenius ¢, a monodromy operator N and positive filtration
Fil’ as the following.

For any g € G, let €(g9) = g([x])/[x] € Acis- We extend the natural G-action and Frobenius on
Aais to Ay by putting 9(X) =¢€(9)X +€(g9) — 1 and p(X) = (1+ X)? — 1. We define a monodromy
operator N on //1; to be a unique Agg-linear derivation such that N(X) =1+ X. For any ¢ > 0,
we define

00
Fili//l;t = {ZaJ’Yj(X)a aj € Acris, jli_)noloaj =0, aj € Fili_jAcrim 0<y< Z}

Finally, [Bre97, §4.2], we have an isomorphism S = (;1;)(;

u  [r](1 + X)~L. Therefore, Ay is an S-algebra.
For any D € MF(p, N), one can associate a Q,[G]-module

Vst(D) := Homg - , n(D, Ast [1/p]).

compatible with all structures given by

The following theorem is one of main results in [Bre97].

THEOREM 2.2.1 (Breuil). The functor D : D — S Qy () D defined in (and below) (2.2.1) induces
an equivalence between the category MF (¢, N) and MF (¢, N) and there is a natural isomorphism
Vat(D) =~ Vit (D) as Qp[G]-modules.
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From now on, we always identify V(D) with Vi (D) as the same Galois representations, and
denote MF% (¢, N) the essential image of D restricted to MEY (¢, V).

2.3 The Main Theorem

Theorem 2.2.1 shows that the knowledge of filtered (¢, N)-modules over S is equivalent to that
of filtered (¢, N)-modules. It turns out that integral structures can be more conveniently defined
inside filtered (¢, N)-modules over S. However, when working on integral p-adic Hodge theory via
S-modules, the following technical restriction always has to be assumed.

AssUMPTION 2.3.1. Fix a positive integer r < p — 2. The filtration on the weakly admissible filtered
(¢, N)-module D is such that Fil’ Dg = Dg and Fil'*'Dg = 0. Equivalently, the Hodge Tate
weights of the semi-stable p-adic Galois representation under consideration are always contained in

{0,...,7}.
Remark 2.3.2. (1) Conjecture 1.0.1 has been proved for » = 0 in [Bre02, §3.1]. So we only consider

the case 7 > 0 from now on (r = 0 will cause a little trouble only in the end).

(2) Up to the twist of the (¢, N)-module of a power of the cyclotomic character, all modules
whose filtration length does not exceed r satisfy the above assumption.

Following [Bre02, §2.2], we define the integral structures inside D to correspond to the Galois
stable Z,-lattices.

DEFINITION 2.3.3. Let D be a weakly admissible filtered (¢, N)-module satisfying Assumption 2.3.1
and D :=D(D) € MFY (o, N). A quasi-strongly divisible lattice of weight r in D is an S-submodule
M of D such that:

(1) M is S-finite free and M[%] = D;

(2) M is stable under ¢, i.e. p(M) C M;

(3) p(Fil"M) C p" M where Fil" M := M NFil"D.
A strongly divisible lattice of weight r in D is a quasi-strongly divisible lattice M in D such that
N(M) cC M.

It will be more convenient and explicit to describe the category of (quasi-)strongly divisible
lattices by projective limits of torsion objects. Let ’ Mod%N denote the category whose objects are

4-tuples (M, Fil" M, ¢,, N'), consisting of:

(1) an S-module M;

(2) an S-submodule Fil"M C M containing Fil"S - M;

(3) a ¢-semi-linear map ¢, : Fil'"'’M — M such that for all s € Fil"S and x € M we have
pr(sz) = (c1) " er(s)pr(E(u)2);

(4) a W(k)-linear morphism N : M — M such that

(a) forall s € S and z € M, N(sz) = N(s)x + sN(x),
(b) E(u)N(Fil"M) C Fil" M,
(c) the following diagram commutes.

Fil' M —> M
E(u)Nl lclN (2.3.1)
Fil’ M —= M
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https://doi.org/10.1112/50010437X0700317X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0700317X

ON LATTICES IN SEMI-STABLE REPRESENTATIONS

Morphisms are given by S-linear maps preserving the Fil and commuting with ¢, and N. A sequence
is defined to be short exact if it is short exact as a sequence of S-module, and induces a short exact
sequence on the Fil.

We denote by "Mod?., the category which forgets the operation N in the definition of ’ Mod?:Y.

/S /S
Objects in’ Modfs are called filtered p-modules over S. Let Mod FI7 Y (respectively Mod FIfS) be

/S
the full subcategory of / Mod%N (respectively ’ Mod“/os) consisting of objects such that:

1) as an S-module M is isomorphic to .., S/p™ S, where I is a finite set and n; is a positive
el
number;

(2) (M) generates M over S.

Finally we denote by Mod“/oéN (respectively Mod“/os) the full subcategory of / Mod%N (respectively

! Modfs) such that M is a finite free S-module and, for all n,

(M, Fil" My, -, N) € Mod FI%N (respectively (M,,, Fil"M,,, ¢,) € Mod F175)7

where M,, = M /p" M, Fil" M,, = Fil" M /p"Fil" M, and ¢,, N are induced by modulo p".

Note that Ay, € ’Mod%N. For any M € Mod%N, define

—

Too(M) 1= Homy o0 (M. Ay).

PROPOSITION 2.3.4 (Breuil).
(1) If M is a quasi-strongly divisible lattice in D with D € MF" (¢, N), then (M,Fil" M, ¢,.) is
in Modfs where @, 1= /p".

(2) The category of strongly divisible lattices of weight r is just Modf:qN. In particular, for any

Me Modf:qN, there exists a D € MFY(p, N) such that D(D) ~ M ®z, Q, as filtered (¢, N)-
modules over S. Furthermore, Ty (M) is a G-stable Zj-lattice in V(D).

Proof. Part (1) is the consequence of Proposition 2.1.3 in [Bre99a]. Note that, though Proposi-
tion 2.1.3 only deals with strongly divisible modules, the proof does not need monodromy at all.
So the same assertion is valid for quasi-strongly divisible lattices. Part (2) is Theorem 2.2.3 and
Proposition 2.2.5 in [Bre02]. O

From now on, we use Mod%N to denote the category of strongly divisible lattices of weight r and

regard Mod@S as a full subcategory of Modfs, where Modfs denotes the category of quasi-strongly
divisible lattices. Now we can state our Main Theorem.

THEOREM 2.3.5 (Main Theorem). If 0 < r < p — 2, the functor M — Ty (M) establishes an
anti-equivalence of categories between the category of strongly divisible lattices of weight r and
the category of G-stable Z,-lattices in semi-stable p-adic Galois representations with Hodge-Tate
weights in {0,...,r}.

Remark 2.3.6. In fact, there exists a weak version of Conjecture 1.0.1. Fix a D inside MF" (¢, N).
Consider the restriction of the functor Ty, namely,

Ty |p : {strongly divisible lattices in D} — {G-stable Z,-lattices in Vi (D)}.

The weak version claims that all functors Ty |p are equivalences. It is obvious that Conjecture 1.0.1
implies the weak one. On the other hand, from the weak version, one can deduce the essentially
surjectivity of Ty;. Therefore, if the full faithfulness of Ty has been known, then the weak version
and the strong version are equivalent. [Car05] and [Bre98a] used this ideal to prove some special
cases of Conjecture 1.0.1.

67

https://doi.org/10.1112/50010437X0700317X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0700317X

T. Liu

3. Construction of quasi-strongly divisible lattices

Let T' be a G-stable Z,-lattice in a semi-stable Galois representation V' with Hodge-Tate weights
in {0,...,r}. In this section, we will use the theory from [Kis06] to prove that there exists a quasi-
strongly divisible lattice M € Modfs to correspond to T, . As we will see later, M provides the
ambient module for the strongly divisible lattice corresponding to T'.

3.1 (¢, Nv)-modules

We equip KoJu] with the endomorphism ¢ : KyJu] — Kp[u] which acts via the Frobenius on Ky,
and sends u to uP. Suppose that I C [0,1) is a subinterval. We set O the subring of Ky[u] whose
elements converge for all z € K such that |z| € I. Put O = Ojo,1)- By [Bre97, Lemma 2.1], S can
be identified as the subring of Ko[u] whose elements have the form

sz fowi € W(k), lim w; =0, (3.1.1)

71— 00

where ¢(i) is the quotient in the Euclidean division of i by e. Therefore, for any real number p
satisfying p~1/((°=De) < ;; < 1, we have natural inclusions S[1/p] — Olo,u) — Sk, compatible with
Frobenius. Set ¢ = E(0)/p € Ky and

)\—Hgo u)/pcy) € O.

We define a derivation Ny := —uAd/du : O — O and denote by the same symbol the induced
derivation Oy — Oy, for each I C [0,1).

By a ¢-module over O we mean a finite free O-module M, equipped with a ¢-semi-linear,
injective map ¢ : M — M. A (¢, Ny)-module over O is a g-module M over O, together with a
differential operator Né/[ over Ny. That is, for any f € O and m € M, we have

N (fm) = Ny(f)m + fNY (m).
Here ¢ and N/ are required to satisfy the relation N& ¢ = (1/co)E(u)o N . We will usually write
Ny for Né/[ if this will cause no confusion. The category of (¢, Nv)-modules over O has a natural
structure of a Tannakian category. We denote by Modcf(’QNV the category of (¢, Ny )-modules M of
height 7, in the sense that the cokernel of 1® ¢ : ¢*M — M is killed by E(u)" for our fixed positive
integer r, where p*M = O ®, 0 M.

In [Kis06, §1.2], Kisin constructed a functor D : Modf(’QNv — MF(p, N). Let M be an object in
Modbev. Define the underlying Ky-vector space of D(M) as M /uM, and the operator ¢ and N are
induced by ¢, Ny on M. The construction of filtration on D(M) is somewhat not straightforward.
First we define a decreasing filtration on ¢*M by

Fil'p*M := {x € ¢*M | 1 ® (x) € E(u)'M}.

Fix any real number g such that p~/¢ < p < p~'/P°. Lemma 1.2.6 in [Kis06] showed that there
exists a unique (’)[O’u)—linear, p-equivariant isomorphism

£:D(M) ®k, O[O,u) = 0" M ®0 O[O,u)- (3.1.2)
The required filtration on D(M )k is defined to be the image filtration under the composite
D(M) ®k, O,y — D(M) @k, O/E(u)O S D(M)®@k, K =D(M)g
Theorem 1.2.8 in [Kis06] shows that the functor D induces an exact equivalence between the category
Mod "™ and MF (g, N).
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3.2 A functor from Mod“/"é)]\rv to MF(p,N)

Combining the functor D in §3.1 with the functor D in §2.2 together, we obtain a functor D o D
from 1\/[0d“/0(’9]\7v to MF(p, N). It will be convenient to give another description of Do D for later use.

Let M be an object in Modbev. Define Do(M) := Sk, @p,0 M, a ©Sk, -semi-linear endomor-
phism @p, ) = S, ® PM (as usual, we will drop the subscript of ¢p,, (1) if no confusion will

arise) and decreasing filtration on Dy (M) by

Fil'(Do(M)) := {m € Do(M) | (1 ® ¢)(m) € Fil'Sk, ®0 M}. (3.2.1)
Note that ¢(A) is a unit in Sk,, and we can define N on Do (M) by
p
N=Nol+-L1oNy.
p(A)

We can naturally extend Ny from O to Sk,. Note that for any f € Sk, we have

N(p(f) = ﬁsouvv(f)).

Thus it is easy to check that N is a well-defined derivation of Dy (M) over the derivation N of Sk,
defined by N(u) = —u.

PROPOSITION 3.2.1. The derivation N is well defined on Do (M) and (Do (M), ,Fil', N) is an
object in MF(p,N).

Proof. Let D = Dp(M). We check that Frobenius, filtration and monodromy defined on D satisfy
the required properties listed in §2.2.

Since E(u)" kills the cokernel of 1 ® ¢ : O ®, 0 M — M, we see that the determinant of
@ is a divisor of E(u)"?, where d is the O-rank of M. Thus the determinant of op is a divisor
of (E(u))™® = p"ici? and therefore is invertible in Sk,. Using (3.2.1), one easily checks that
Fil'S Ko * FiVD ¢ Fil"™D. Now it suffices to check that the monodromy N satisfies the required
properties.

To see that Ny = ppN, for any s € Sk, and m € M, we have
Ne(s @m) = N(psy, (s) ® pu(m))
p
= N(psy, (8)) @ om(m) + 200 P50 (s) @ Nv(pnm(m))

— pose, (N(s)) ® grr(m) + ﬁ%% (s) ® oar (Ve (m))

_ P m
—p@D<N(3)®m+¢(A) ® Ny ( )>
= pp(N (s @ m)).

To check that N(Fil'D) C Fil'"!'D, note that

Ny(E(u)) = —uiB(u)" 'E' (u)A = E(u)* <—qu’(u)M>

pco
Thus Ny (Fil'Sk, ®0 M) C Fil'Sk, ®0 M. Now let z =", s; ® m; € Fil'D. We claim that
Cop

E(u)(1® ¢u)(N(2)) = @?A) No((1® ¢ (@)). (3.2.2)

In fact, since
_ cop _ B(u)
E(u)N = ——=Ny and Nyyp=—"¢Ny,
SD(A) Co
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we have

B ® o) (N(2)) = Bu) (3 N (s ® parom) + Lo @ ()

= :(Of) <Z Nv(Si) ® SOM(mz) +5® NV(SOM(mZ))>

- Sy <z st par(m) )

This proves the claim (3.2.2). Finally, to prove that N(z) € Fil'"'D, it suffices to show that
(1® @) (N(x)) € Fil' 'Sk, ®0 M. But (3.2.2) has shown us that

B(u)(1® @) (N(x)) € Fil'Sg, @0 M.

Then we reduce our proof to the following lemma. O

LEMMA 3.22. Let z € S (respectively Acris). If E(u)yiz € FiV''S (respectively E([z]Yz €
Fil/t* Agis) then x € Fil'S (respectively x € Fil'Aeys).
Proof. We have a natural embedding

u—[m]

S = Acris — BJR
with respect to filtration. By definition, Fil" B, = E([x])" By for all n > 0. Thus, if E([z])/z €
Fil**tJ BJR then x € FilzB:{R, as required. O

COROLLARY 3.2.3. The following equivalences of categories commute.

o =7

1\40017(5Nv

Proof. Let M € Modbev and D = Do (M ). Proposition 3.2.1 has shown that Do (M) € MF(p, N).

By Theorem 2.2.1, there exists a unique D € MF(p, N) such that Do(M) = D(D). It suffices to
check that D ~ D(M). There exists an isomorphism ig : Sk, ®,0 M ~ D ®k, Sk, in MF (¢, N).
Modulo u both sides, we get a Ky-linear isomorphism i : D(M) ~ D. It is obvious that i is
compatible with ¢ and N structures on both sides. To see that ¢ is compatible with filtration, recall
that the filtration on D(M) depends on the construction of the unique Olo,u)-linear, p-equivariant
morphism ¢ in (3.1.2):

£:D(M) ®k, Op, — ¢ M 20 O ),

where y is any fixed real number such that p~'/¢ < p < p~1/P¢. Choose p such that p~/((?—1e) <
< p~ /e By (3.1.1), Olo,) is a subring of Sg,. Then we have an isomorphism

QD*M XK O[O,u) (024 SKO ~ M ®(97g0 SKO = Do(M).
So & ®0. ) Sk, and ig induce an Sk, -linear, filtration compatible isomorphism
(D(M) @Ko O[O,u}) ® SKO ~D @Ko SKO'

Both sides define filtration on D(M) and D by modulo E(u) respectively. Therefore, filtration on
D(M) and D coincide. O
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3.3 Finite p-modules of finite height and finite Z,-representations of G,

Recall that & = W (k)[u] with the endomorphism ¢ : & — & which acts on W (k) via Frobenius
and sends u to wP. In this subsection, we first recall the theory in [Fon90] on finite p-modules
over & of finite height and associated finite Z,-representations of G». Then we study the rela-
tions between finite ¢-modules over & of finite height and filtered @-modules over S, and their
associated finite representations of Go,. These results have been essentially done in [Bre98c| and
[Kis, §1.1].

Denote by ’ Mod76 the category of G-modules 9 equipped with a p-semi-linear map @gy : 9 —
I such that the cokernel of the &-linear map: 1 ® o : 6 ®, e M — M is killed by E(u)". (We
always drop the subscript 9 of ¢gy if no confusion will arise.) We give ’ Modc/p6 the structure of

exact category induced by that on the abelian category of G-modules. We denote by Mod FI%

the full category of ’Mod% consisting of those 9 such that as an G-module M is isomorphic
to P,c; 6/p" S, where I is a finite set and n; is a positive integer. Finally we denote by Mod76
the full subcategory of / Modf6 consisting of those 91 which are G-finite free.

Recall that [x] € W(R) was constructed in §2.2. We embed & — W(R) by u ~ [r]. This
embedding is compatible with Frobenius endomorphisms. Denote by Og the p-adic completion of
S[1/u]. Then O is a discrete valuation ring with the residue field the Laurent series ring k((u)). We
write £ for the field of fractions of O¢. If FrR denotes the field of fractions of R, then the inclusion
S — W(R) extends to Og — W (FrR). Let £ C W(FrR)[1/p] denote the maximal unramified
extension of &£ contained in W (FrR)[1/p], and O™ its ring of integers. Since FrR is easily seen to
be algebraically closed, the residue field O™ /pO" is the separable closure of k((u)). We denote by
EUr the p-adic completion of £, and by O ts ring of integers. The completion £ s also equal
to the closure of & in W (FrR)[1/p]. We write " = O N W(R) C W (FrR). We regard all these
rings as subrings of W (FrR)[1/p].

Recall that Koo = {50 K(mn) and Goo = Gal(K /K). We have that G continuously acts on

&' and O™ and fixes the subring & C W (R). Denote by Rep;,,(Goo) the category of finite length
Zy-representations of Goo. For an M € Mod FI7., one can associate a finite length Z,-representation

/&’
of G by [Fon90, B.1.8]:
Ts: M — Homg (M, &M [1/p]/&™).
In [Fon90, § B.1.8.4] and [Fon90, § A.1.2], Fontaine has proved that the functor Ts : Mod Flf6 —
Repior(Goo) s an ezact functor. If M ~ ;" | &/p" S as finite S-modules, then

Ts (M) ~ P Z/p"Z
=1

)

/s is a finite free &-module with rank d, and

as finite Zy-modules. As the consequence, if 9 € Mod
we define

Ts(9M) = Homg (M, &™),
then T (9M) is a continuous finite free Z,-representation of G, with Z,-rank d.

As in [Bre98c] or [Kis, §1.1], we define a functor Mg : Mod FI% -/ Modfs as follows. We have

a map of W(k)-algebra & — S given by u — u, so we regard S as an G-algebra. We will denote

by ¢ the map & — S obtained by composing this map with ¢ on &. Given an 91 € Mod FI?G, set

M=Mg() =5 ®,c M.
One has the map 1 ® ¢ : § @, 6 M — S @g M. Set

FiI'M ={ye M| (1®¢)(y) € FiI'S ®s M C S ®@c N}
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and define ¢, : Fil'"’M — M as the composite

Fil' M ——% Fil'S 96 M 2225 S @6 M = M.
This gives M the structure of an object in ' Modfs. We have the following result similar to
Lemma 2.2.1 in [Bre98c| and Proposition 1.1.11 in [Kis].

PROPOSITION 3.3.1 (Breuil, Kisin). The functor Mg : Mod Flf — '"Mod?,, defined above induces

/S
an exact and fully faithful functor Mg : Mod FI“/D6 — Mod FI? - This functor is an equivalence of
categories between the full subcategories consisting of objects killed by p.

Proof. Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis| proved the case r = 1. The idea of
the proof can be easily extended for 0 < r < p — 2. In particular, the equivalence of subcategories
consisting of p-torsion objects is again (almost) verbatim the proof of Theorem 4.1.1 in [Bre99a]. O

COROLLARY 3.3.2. The functor Mg : Mod FI?
functor Mg : Mod/ — Mod/s.

Remark 3.3.3. In fact, the functor Mg can be proved to be an equivalence [CLOT].

IS ! Modfs induces an exact and fully faithful

Note that A is an object in 'Mod? ¢ by defining ¢, := gp/ p on Fil" As. For any M € Mod?¥ /s
one can define a finite free continuous é -representation of G

Teris : M — Hom,MOds/oS (M, Acris) (3.3.1)

as in [Bre99a, §2.3.1]. Let 9 € Mod76 and M = Mg(IM) € Modfs. For any f € Ts(M) =

Homg (9, 8"), consider the natural embedding ¢ : & — Agjs. It is easy to check that
o(ro f) € Tys(M) = Hom,MOdfs (M, Agyis). Therefore, we get a natural map Homg (9, &™) —

Hom’Mod“/"S (M (D), Acris)-

LEMMA 3.3.4. The natural map Tg(IM) — Teris(Me(90)) defined above is an isomorphism of finite
free Z,-representations of G,

Proof. Tt suffices to show that, for any 9t € Mod FI?., the natural map

/6’
Homes (90, & [1/p]/&") — Homiygoqz, (Me (M), Awis[1/p]/Acris) (3.3.2)

is an isomorphism of finite Z,[G o |-modules. Note that the left-hand side of (3.3.2) is an exact functor
on Mod FI¥. The right-hand side is also an exact functor from the facts that Mg is exact (Propo-

/6"
sition 3.3.1) and EXt'Mod*’ (M, Aeis[1/p]/Acris) = 0 for any M € Mod FI/S (Lemma 2.3.1.3

in [Bre99a]). Thus by the standard dévissage, it suffices to prove (3.3.2) for the case that p kills 91,
and this is Proposition 4.2.1 in [Bre99b]. O

3.4 G -stable Zy-lattices in a semi-stable Galois representation
A (p, N)-module over & is a finite free p-module M € Modfe, equipped with a linear endomorphism
N : M/uM @z, Qp — M/uM ®z, Q, such that No = ppN. We denote by Mod/6 the category

of (¢, N)-module over &, and by Mod? S ®Zp Q, the associated isogeny category. I The following
theorem is one of the main results (cf. Corollary 1.3.15) in [Kis06].

'Recall that, if C is an additive category, then the associated isogeny category D has the same objects and
Homp (A, B) = Home (A, B) ®z Q for all objects A and B.
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THEOREM 3.4.1 (Kisin). There exists a fully faithful ®-functor © from the category of positive
weakly admissible filtered (¢, N)-modules MFY (¢, N) to Modfé5 ®z, Qp.

Let M € Modf’GN and M = M ®es O. Then there exists a D € MFV(p, N) such that M = O(D)

if and only if there exists a differential operator Ny on M such that (M,p, Ny) € Mod“/oo ,

D(M) ~ D in MF (¢, N) and Ny modu = N on IMM/uM®z, Q. Such Ny (if it exists) is necessarily
unique.

Remark 3.4.2. (1) The above theorem is valid without any restriction of the maximal Hodge-Tate
weight. Here we only consider the case of Hodge—Tate weights in {0,...,r} with r <p — 2.

(2) The second paragraph of the above theorem is not the same as that of Corollary 1.3.15
in [Kis06]. However, they are equivalent (see Lemma 1.3.10 and Lemma 1.3.13 in [Kis06]), and our
description of Theorem 3.4.1 will be more convenient.

Furthermore, Kisin proved (cf. Proposition 2.1.5 in [Kis06]) that there exists a canonical bijection
(without restriction of maximal Hodge-Tate weights)

n: Te(M) @z, Qp = Vit (D), (3.4.1)
which is compatible with the action of G4, on the two sides. For our purpose to connect strongly

divisible lattices, we reconstruct (3.4.1) in a slightly different way.

Let D € MFY (¢, N) be a weakly admissible filtered (¢, IV)-module under our Assumption 2.3.1,
M = O(D) and (M, ¢, Ny) € Modfbj\[v as in Theorem 3.4.1. Let D = D(D) (recall that D(D) :=

S®@w k) D in §2.2). By Corollary 3.2.3, we have D = Sk, ®, 0 M = Sk, @p,6 M = Mg (M) 2z, Qp,
where Mg is the functor defined in Corollary 3.3.2. Then we have a natural map of Z,[G «]-modules

Home,go(fma (Cha! = Hom/Modfs (Me(IM), Acris) — Hom’Mod“’ (D, B )- (3.4.2)

Cris

The first map is an isomorphism by Lemma 3.3.4. Recall that
Vit (D) = Hommy g7, (D, Ax[1/p]).

The canonical projection //1; — Agis defined by sending v;(X) to 0 induces a natural map:

Hom ,M dgp N(D Ast[l/p]) — Hom/MOdHP (D B (343)

CI‘IS)

We claim that the above map is a bijection. Let us accept the claim and postpone the proof in
Lemma 3.4.3. Recall that Theorem 2.2.1 has shown that there exists a canonical isomorphism
Vit(D) ~ Vi (D) as Qp-representations of G. Therefore, combining (3.4.2) and (3.4.3), we have a
natural injection

n: TG(SR) ®Zp @p — st(D)
of Qp[Guo]-modules and thus dimg, (Vs (D)) > rankg(M) = dimg, (D). An elementary argu-
ment [CF00, Proposition 4.5] showed that weak admissibility of D implies that dimg, (Vs (D))
has to be dimg, (D). Hence the map 7 is a bijection.

LEMMA 3.4.3. The natural map defined in (3.4.3) is a bijection.

Proof. We follow the idea of Lemma 2.3.1.1 in [Bre99a]. For any f € Hom,,; ..~ (D, //l;[l/p]), let
/s

fo be its image of the map in (3.4.3). For any # € D where D = D Q) S, since N'(z) = 0 for i
big enough, we can easily check that

Z fo(N'(z))vi(log(1 + X)), (3.4.4)
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where v;(x) = x'/i! is the standard divided power. So if fo = 0, we have f = 0 because D
generates D. Thus (3.4.3) is injective. To prove the surjectivity, let fy € Hom,MOdw (D,B For

CI‘IS)

any y € D, define

Zfo ))i(log(1 + X)).

To see that f is well defined, note that f ( ) converges in B

Cris

[X], and if z € D then f(z) converges in

/;[1 /p] because N¢(z) = 0 for i big enough. By a standard computation, we can easily check that
f D — Bl [X] is S-linear. Therefore f : D — ;1;[1 /p] is well defined. It suffices to check
that f preserves Frobenius, monodromy and filtration. Since fy preserves all these structures, it
is a straightforward calculation to check that f preserves Frobenius, monodromy and filtration,
combining with the facts that p(log(1+X)) = plog(14+X), N(log(1+ X)) = 1, N/ (Fil'D) c Fil" /D

and log(1 + X) € Fil' Ag. O

Remark 3.4.4. (1) Let Vyis(D) = Hom,MOdw (D, BY,.). The above lemma gives a natural transfor-

mation which makes the following diagram commutatlve.

MF (o, ) RepQP(G )

H\T

MF(p, N —>RepQ (G)

(2) From the above proof, we see that the lemma is always valid without any restriction of the
maximal Hodge—Tate weight.

One advantage of using (¢, N)-module over & is that we can classify all G-stable Z,-lattices
inside semi-stable representations. Let Repy (Goo) denote the category of continuous finite free
Zy-representations of G

LEMMA 3.4.5 (Kisin).

(1) Let V' be a semi-stable representation with Hodge—Tate weights in {0,...,r}. For any Geo-
stable Zjy-lattice T'C V', there always exists an N € Mod/6 such that Tg(M) ~ T.

2) The functor Tg : Mod”. — Repy, (Gw) is fully faithful.
/6 p

Proof. These are easy consequences of Lemma 2.1.15 and Proposition 2.1.12 in [Kis06]. We remark
that the lemma is valid without restriction of r. O

Recall that Modfs denotes the category of quasi-strongly divisible lattices of weight r. Let

M e Modfs be a quasi-strongly divisible lattice. By Definition 2.3.3, there exists a D € MF%(p, N)
such that M C D and D ~ D(D) with D weakly admissible. Let V' := V(D) be the semi-stable
Galois representation. Then we can associate a G-stable Zy-lattice in V' as the following:

M — Tcris(M) Hom/MOdW (M ACTIS) — Hom/MOdW (D B+ ) ~ ‘/St(D) = V

Cris

has been established in Lemma 3.4.3.

CI'IS)

Recall that the isomorphism Vi (D) = Hom,MOd7 (D,B

Therefore Ty induces a functor from Modfs to Reps; z, (Gxo), where Repsztp (G) denotes the category
of G-stable Z,-lattices in semi-stable Galois representations with Hodge-Tate weights in {0, ..., r}.

PROPOSITION 3.4.6. The functor Tis induces an anti-equivalence between Mod/s and Rep%tp(Goo).
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Proof. We first prove the essential surjectivity of the functor. Let 9t = ©(D) as in Theorem 3.4.1 and
D = D(D). By Corollary 3.2.3 and Theorem 3.4.1, we see that D = M®e Sk, and T (M) is a Goo-
stable Z,-lattice in V' via 1. Suppose that T" C V' is a G-stable Z,-lattice. Then by Lemma 3.4.5,
there exists an 91 € Modfe, such that T' ~ Tg(M). We claim that M ®z, Q, ~ N ®z, Qp. In
fact, since T (M) and Ts(N) are Goo-stable Z,-lattices in V, there exist Goo-equivariant maps
f:Ts(MM) — Ts(M) and g : Ts(M) — Ts(M) such that f o g = p"ld. By full faithfulness
of T, there exists F' : 91 — I and G : M — I such that G o F = p"Id. Hence the claim
follows. Now put N' = Mg(M). We see that N is a quasi-strongly divisible lattice in D, and, by

Lemma 3.3.4, Tt,is(N) = T'. This proves that the functor is essential surjective. Let M, N € Modfs
and f : Terig(NV) — Teris(M) a morphism of Z,[Go]-module. From the above proof, there exist
MN € Mod“/oG such that Tg(IM) = Tis(M) and Tg(MN) = Teis(N). Since Tg is fully faithful
(Lemma 3.4.5(2)), there exists f : 9T — 9 a morphism in Mod% such that T (f) = f. Then by
Corollary 3.3.2 and Lemma 3.3.4, we have T¢is(Mg(f)) = f. It suffices to show that M = Mg (M)

and N' = Mg (M). Therefore, we reduce the proof to the following lemma. O

LEMMA 3.4.7. FixaD € MF%(p,N). Let M, M’ be two quasi-strongly divisible lattices contained
in D. If Tcris(M) = Tcris(M,) then M = M’.

We postpone our proof of this lemma till after Lemma 5.3.1.

We may summarize our discussion in this subsection into the follow commutative diagram.

Ts

Modfs 1% Mod?g 2% Repy, (Goo)

J

P

Tcris S
Modfs — Repth(Goo)

3.5 Full faithfulness of Tg;

Now suppose that T" is a G-stable Z,-lattice in a semi-stable Galois representation V. By Proposition
3.4.6, there exists a quasi-strongly divisible lattice M in D such that T.5(M) = T|g., and there
exists an M € Modf6 such that M = Mg(IM).

PROPOSITION 3.5.1. Let the notation be as the above. If N(M) C M, then (M, p,Fil" M, N) is a
strongly divisible lattice in D and Ty (M) =T.

Proof. Clearly M is a strongly divisible lattice in D. It suffices to prove that Ty (M) = T. By
Proposition 2.3.4,

—

Tst(M) = HOm,ModféN (M, Agt) C V(D) = V(D) =V

is a G-stable Zy-lattice. As in (3.4.3), the canonical projection ;1; — Agis defined by sending
~i(X) — 0 induces a natural map

Tst(M) = Hom,MOd%N (M, Ag) — Hom,MOd/vS (M, Acris) = Teris(M). (3.5.1)
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Then we have the following commutative diagram.
Hom,MOd%N (M, Ag)—~ Hom,MOd%N (D, Ax[1/p])

l(3.5.1) Zl(3.4.3)
Hom/MOd‘P (M ACI‘IS)(—> HOm/MOdHP (D B+ )

Cris
T¢ Vv

Thus it suffices to show that (3.5.1) is an isomorphism of Z,-modules. This has been proved
in [Bre99a, §2.3.1]. O

COROLLARY 3.5.2. The functor Ty in Conjecture 1.0.1 (Breuil’s conjecture) is fully faithful.

Proof. Let M, M’ be strongly divisible lattices, D = M ®z, Q,, D' = M' ®z, Q, and Ty (M),
T (M) be G-stable Z,-lattices in Vit (D), Vit (D) respectively. Suppose that f : Tst( ) — Ty (M)
is a morphism of Z,[G]-modules. Tensoring by Q,, there exists an f : D’ — D such that Vst(f) =
[ ®z, Qp. It suffices to show that f(M’) C M. Select an n such that p"f(M’) C M. Then g := p"f
is a morphism of strongly divisible lattices and Ty (g) = p"f. Note that (3.5.1) is an isomorphism
of Z,[G~]-modules. So if g is regarded as a morphism of quasi-strongly divisible lattices, we have
Teris(9) = Ty (g) = p"f. On the other hand, by Proposition 3.4.6, T¢s is fully faithful, and there
exists a morphism g’ : M’ — M in Modfs such that Teis(g’) = f. Therefore p"g’ = g = p"f. Then
f=g¢" and f(M') = g'(M') C M. O

Also we reduce the proof of the essential surjectivity of Ty to the following lemma.

LeEMMA 3.5.3. With notation as above, if T is G-stable then N (M) C M.

We will devote the next two sections to prove this lemma. Combining with Proposition 3.5.1,
Corollary 3.5.2 and Proposition 3.4.6, we prove the Main Theorem (Theorem 2.3.5) and the following
result.

THEOREM 3.5.4. The functor T induces an anti-equivalence between the category of quasi-
strongly divisible lattices of weight r and the category of G -stable Z,-lattices inside semi-stable
Galois representations with Hodge—Tate weights in {0, ...,r}. Furthermore, a quasi-strongly divis-
ible lattice M is strongly divisible if and only if T,.is(M) is G-stable.

4. Cartier dual and a theorem to connect M with T¢.is(M)

In this section, we extend a theorem of Faltings (cf. [Fal99, Theorem 5]) to a more general setting to
connect filtered p-modules over S with their associated Z,-representations of G'o. This theorem is
one of the technical keys to prove Lemma 3.5.3. For this purpose, we need a more explicit structure
of Fil"M and a notion of Cartier dual for M € Mod‘/ps. Luckily, such a Cartier dual is available
from the thesis of Caruso [Car05]. In the following two sections, we always regard W (k)[u| and S
as subrings of A.s via u — [z], and denote the identity matrix by I.

4.1 Structure of filtration of quasi-strongly divisible lattice

LEMMA 4.1.1. Let A be a d x d matrix with coefficients in W (k)[u]. Suppose that there exists
matrices B and C' with coefficients in S and FilPS respectively such that AB' = E(u)"I + C. Then
the following hold.
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(1) There exists a matrix B with coefficients in S such that AB = E(u)"I.
(2) Let a; € Aqis fori =1,....d. If (a1,...,aq)A is in Fil" A.s, then there exist b; € Aqis and
¢; € FilP A fori =1, ...,d such that
(a1y...,aq) = (b1,...,b9)B+ (c1,...,¢cq)-

Proof. Note that, for any f € S, we can always write f = fo + f1 with fo € W(k)[u] and f; €
Fil’S. So B’ = By + B; with the coefficients of By in W (k)[u] and the coefficients of By in FilPS.
Therefore, E(u)"I = ABy + Cy with the coefficients of Cy in W (k)[u] N FilPS = E(u)?W (k)[u].
Thus C = E(u)PCy with the coefficients of Co in W (k)[u|. Now we have E(u)"I = ABy+ E(u)PCs.
Since E(u)™ — 0 p-adically in S when n — oo, so I — E(u)P~"Cs is invertible. Thus we obtain
E(u)"I = ABy(I — E(u)P~"Cy) 1. (4.1.1)

Let B = Bo(I — E(u)?""Cy)~! and we settle part (1).

For part (2), write (a1,...,aq) = (b},..., b))+ (c1,...,cq) with b, € W(R) and ¢; € Fil? Aq4 for
i =1,...,d. It suffices to prove that there exists b; € Auis such that (b),...,0)) = (b1,...,bq)B.
Note that

(ay,...,aq)A = (by,...;b0)A+ (c1,...,cq)A € Fil" Aeyis.
Then (b},...,b)A € Fil"Auis N W(R) = E(u)"W(R). So there exists b; € W(R) such that
RN = E(u 1,-..,0q). Multiplying by B on both sides, we get RN = E(u
I b))A = E(u) (b bg). Multiplying by B both sid b} V))AB = E(u)"
(b1,...,bq)B. Finally, (b},...,b)) = (b1,...,bq)B as required. O

PROPOSITION 4.1.2. Let M € Modc/ps There exists aq,...,aq € Fil" M such that:
(1) Fil'M = @, Sa; + (FilPS)M;
(2) E(u)' M C @@L, Sa; and (¢, (1), . .., ¢r(ag)) is a basis of M.

Proof. Considering M /pM, by Proposition 2.2.1.3 in [Bre99a), M /pM has a ‘base adaptée’, i.e.
there exist a basis (e1,...,eq) of M and «ay,...,aq € Fil" M such that

d
Fil’ M/pFil’ M = @ Sia; + Fil’ S (M /pM) (4.1.2)
i=1
such that (aq,...,aq) = (uey,...,u"dey) with 0 < r; < er, where S; = S/pS and &;, €; is the

image of «;, e; in M /pM respectively. Let
M = @ Sa; + (FilPS)M.

Then M C Fil" M. We claim that the natural map
f: M/FilPSM — Fil’ M /Fil’ SM
is surjective. To see the claim, note that S/Fil’.S = W (k)[u]/(E(u)?) is Noetherian. By Nakayama’s
lemma, it suffices to show that fmodp is a surjection. Note that
Fil" M/FilPSMmod p = (Fil" M), /(FilPSM)4,
where (Fil"M); = Fil"M/pFil"M and (Fil?’SM); = Fil’P’SM /pFil’SM. By (4.1.2), we see that
fmod p is surjective and thus prove the claim. Then

d
Fil' M = M = P Sa; + (FilPS) M. (4.1.3)

=1
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Let (aq,...,aq) = (e1,...,eq)A where A is a d x d matrix with coefficients in S. Write A = Ay +
Ay with the coefficients of Ay in W (k)[u] and the coefficients of A; in Fil’S. Replacing (o, ..., aq)
by (e1,...,eq)Ap, we can always assume that the coefficients of A are in W (k)[u]. By (4.1.3), there
exist d x d matrices B’, C' with coefficients in S, Fil’S respectively such that E(u)"T = AB' + C.
Then by Lemma 4.1.1, there exists a B with coefficients in S such that AB = E(u)"I. Therefore
E(u)"M C @?:1 Sa;. Since @, (Fil" M) generates M and one always has p|p, (FilPS), we see that
(or(a1),...,pr(aq)) is a basis of M. O

Let D € MF(p, N) be a filtered (¢, N)-module over S. Following [Bre97, § 3], we define
T
Fil" (Aeis ®5 D) = > Im(Fil"™ Aris @5 Fil'D), (4.1.4)
i=0
where Im(Fil’”_iAcriS Qg FiliD) is the image of Fil" " Ay @g Fil'D in Auis @5 D. We also define
FilT(Acris Xs M) - FﬂT(Acris ®s D) N (Acris Xs M)
COROLLARY 4.1.3. With the notation as in Proposition 4.1.2, we have
d
Fil" (Acris Ks M) = @ Acris X a; + FﬂpAcris Ks M.
i=1
Proof. Since we always have Fil" ™S - Fil'D C Fil"D, it is easy to see that
Fil" (Aeris ®5 D) = Aeris ®g Fil'D.
Then the corollary follows the fact that Fil’M = Fil'D N M. O

By the above corollary, we can ¢ 4_. -semi-linearly extend ¢, of M to

cris

©r - Fil” (Acris Rs M) - Acris XS M

and we see that (Aeis ®s M, Fil"(Aqis ®s M), @) is an object in ’Modfs.

4.2 Cartier dual on Mod(’/as
In this subsection, we recall the construction of Cartier dual on Modfs from [Car05]. Let M €
Modfs. Define M* := Homg(M, S),

Fil" M* .= {f € M*| f(FiI"'M) C Fil"S}
and

op : Fil'M* — M, for all x € Fil' M, o.(f)(¢r(2)) = o (f(2)).
Note that ¢, (f) is well defined because ¢, (Fil" M) generates M.

THEOREM 4.2.1 (Caruso). The functor M — M* induces an exact anti-equivalence on Modfs and
(M*)* =M.

Proof. Proposition V 3.3.1 in [Car05] proved the theorem on the category of strongly divisible
lattices. The same proof also works on Modfs if we ignore monodromy. U

Ezample 4.2.2. Let S* be the Cartier dual of S. Then S* is the S-rank-1 quasi-strongly divisible
lattice with Fil"S* = S and ¢, (1) = 1.
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4.3 Application to Galois representations

Let M € Modfs and M* be its Cartier dual. The canonical perfect pairing M x M* — S in the
construction of Cartier dual is compatible with filtration and Frobenius on both sides. Taking
the Cartier dual on both sides, and noting that (M*)* ~ M by Theorem 4.2.1, we have a map

i:S" = M x (M)~ M x M.
Since ¢ is compatible with filtration and Frobenius, ¢ induces a pairing

i Homygoqz, (M, Ais) X Homygoqz, (M, Acris) — Homyoar (5%, Acrs). (4.3.1)

LEMMA 4.3.1. The above pairing induces a perfect paring of Z,-representations of G:
Teris(M) X Toris(M™) — Toris(S™) = Zp(r). (4.3.2)

Proof. 1t suffices to show that the pairing (4.3.2) is perfect by modulo p. The proof of this assertion
is contained in the proof of Theorem V 4.3.1 in [Car05]. Although the hypotheses of Theorem V 4.3.1
require er < p— 1, the statement is always valid for any e if we only consider the pairing induced by
filtered p-modules over S killed by p, as explained in Caruso’s remark in the end of the proof. [

*

We use A’ to denote Agis with noncanonical filtration Fil"A?;. = Aqis and Frobenius

cris
or(1) =1.
LEMMA 4.3.2. There are natural isomorphisms of Z,|G|-modules:

HomAcris,Filr,cp( :ris7 Acris s M*) =~ Fﬂr(Acris XS M*)HDTZI =~ Hom’Mod/“’S (M7 Acris)-

Proof. While the first isomorphism is totally trivial to check, the second isomorphism needs some
arguments. Let a1,...,aq € Fil" M constructed in Proposition 4.1.2, (e1,...,eq) = (@r(a1),. ..,
(o)) a basis of M and (e}, ..., e}) the dual basis. Write (a1,...,0q) = (e1,...,eq)A where A is
a d X d matrix with coefficients in S. By the argument after formula (4.1.3), we may assume that
all the coefficients of A are in W (k)[u]. By Lemma 4.1.1, there exists a matrix B with coefficients
in S such that AB= BA = E(u)"I. Put (of,...,a5) = (ef,...,e5)B" (here t means transpose). It
is easy to check that af € Fil'M* fori=1,...,d.

Forgetting filtration and Frobenius structure for a while, since M is S-finite free, we can identify
Acgris ®s M* with Homg(M, Aqis) by sending Z?Zl a; ® e} to Z?Zl a;e;. For any

f € Fil"(Aqis ®s M*) = Agis ®g Fil" M*  (Corollary 4.1.3),

write f =) . a; ® f; with a; € Auis and f; € Fil" M*. Then for any « € Fil'M, f(z) =), aifi(z) €
Fil"S - Agis C Fil" Aeis. That is, f is a map from M to A preserving filtration. On the other
hand, let f be an S-linear map from M to Agis preserving filtration. Then f(«a;) € Fil" Aqs for
all i = 1,...,d. Denote a; = f(e;), i = 1,...,d. We have (aq,...,aq)A € Fil" A5 where A is the
matrix constructed in the first paragraph. By Lemma 4.1.1, we have

(a1,...,aq) = (b1,...,bg)B+ (c1,...,¢q)
with b; € Aqis and ¢; € FilPAgis for ¢ = 1,...,d. So we have

d d d
F= aie; = b+ cie € Fil" (Aeris @5 MY).
=1 =1 =1

Therefore, we have that f € Homg(M, Ais) preserves filtration if and only if f € Fil" (Aqs®5M™).
Now suppose that f € Homg(M, Aeyis) also preserves Frobenius, that is, f(pr(x)) = ¢.(f(x)) for
all z € Fil" M. Then

pr(Fled) = @r(f)(er(ai)) = r(few) = flor(ai)) = flei), Vi=1,....d
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Therefore, ¢, (f) = f. On the other hand, if f € Fil" (Aes®@5M*)?=1, reversing the above argument
shows that f € Hom,MOd/vS (M, Agris)- O

By the above lemma, we get
Teris(M) = Fil" (Aeris @5 M*)Pr=1 s Ay @5 M*. (4.3.3)

So we also have Teis(M*) — Aeis @5 M.

From now on, we choose a generator ¢ of (Fil' Aqs)?1 =" to identify Tiys(S*) with Zp(1). We will
use a specific generator in §5 and still denote it by ¢. See the discussion after Lemma 5.1.2.

COROLLARY 4.3.3. The following diagram commutes.
Tcris(M) X Tcris(M*)(—> Acris XKs M* x Acris ®Ks M

l(4.3.2) l (4.3.4)
Zp (’I") =L Acris

Here the top row is induced by (4.3.3) and the right column is induced by the canonical pairing
Mx M* = S.

Proof. This follows from the fact that (4.3.2) is induced by taking the dual of the canonical pairing
M X M* = S. O

Now we can construct the following theorem to compare M ®g Acpis with T c\;is(M) ®z, Acris-

THEOREM 4.3.4. There exist Acis-linear injections
L Tc\l/ris(M)("") Xz, cris = Aeris @5 M, 11 Agris @5 M — Tc\;ls(M) Xz Acris,

such that ¢ and (" are compatible with G,-actions, Frobenius and filtration. Furthermore, 1 o " =
Id®tr.

Remark 4.3.5. (1) Suppose that M is further a strongly divisible lattice. Let D = M ®z, Q, and
D € MFY¥ (¢, N) such that D = D(D). In [Bre97], Breuil extended the classical isomorphism

D ®k, Bst = V{ (D) ®q, Bst
to the é\st—version: s : D ®g é\st ~ V(D) ®q, B’; where é\st = //l;[l/p, 1/t]. Note that By is a

o~

Bgt. Therefore, ¢ may

cris

Bgi-algebra after modulo X. It is not hard to see that g 5 By ~1®4
be seen as an integral version of tg.

(2) There exists a geometric interpretation of the above theorem. Conjecturally, the log-
crystalline cohomology M of a scheme X over Ok (with some hypotheses) satisfies the axioms
of strongly divisible modules, whereas the étale cohomology is closely related to Tiis(M). In the
above situation, the morphism in Theorem 4.3.4 should correspond to an integral version of period
isomorphism between these cohomologies. See [Bre02, §4] for the exposé of this direction.

(3) If M comes from an M € Modfe, ie. M = Mg(9), then we have a similar result to the

above theorem without restriction of r; see [Liu, §5.3] for details.

Proof of Theorem 4.3.4. We use the same idea as the proof of Theorem 5(ii) in [Fal99]. First an
easy computation shows that Teis(M) = Homy_,_ pirr o (Aeris ®5 M, Aeris). Then we get a map

: Teris(M) X Acris @5 M — Aggis. (4.3.5)
Therefore, we get a natural map
Lt Aais ®5 M — T (M) ®z, Acris,
80
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and it is easy to check that ¢ preserves (Go-actions, Frobenius and filtration. On the other hand, by
(4.3.3) and Lemma 4.3.1, we get
L TcriS(M*) ®Zp :ris = Tc\{ris(M)(T) ®Zp :ris — Acris ®5 M,

and Lemma 4.3.2 shows that the above map is compatible with G.-actions, Frobenius and filtration.
Combining ¢* with (4.3.5), it suffices to show that the following diagram commutes.

Tcris(M) X Tcris(M*) ®Zp A:ris Id—XL; cris(M) X Acris XS M
l(4.3.2)®1d l(4.3.5)
ZP(T) ®Zp A:ris =t Acris

Note that we have an injection Ti5(M) — Aeis®gM* by (4.3.3). So the commutativity of the above
diagram follows the commutativity of diagram (4.3.4), and this is proved in Corollary 4.3.3. U

Let aq,...,aq € FiI"M as in Proposition 4.1.2 and eq,...,eq € M a basis of M. Let ¢q1,...,¢q4
be a basis of T\, (M). By Theorem 4.3.4, we have
ag,...,aq) = (eq,...,eq)C,
where C is a d X d matrix with coefficients in Fil" Ags.

LEMMA 4.3.6. There exists a d X d matrix C' with coefficients in Agis such that the coefficients of
C'C —t"I are all in FilP A .

Proof. Forgetting G.-actions, Frobenius and filtration structures, we may identify 7T C\ﬁis(/\/l)®zp Aris

with 7Y, (M) (r) ®z, Ags as finite free A j-modules. In particular, we regard (e, ..., ¢q) as a basis
of T.0..(M)(r). Then ¢* o . makes sense and ¢* o v = ¢" ® Id by Theorem 4.3.4. Therefore, we get
t" (a1, 0q) = ou(ar,. .. aq) =" (er, ..., eq)C. (4.3.6)
Note that Fil" A%, = Acris, so that (e1,...,eq) € Fil" (T (M)(r) ®z, Af), and then t*(e1, ..., eq)
is in Fil"(M ®g Aeis). By Corollary 4.1.3, we have
(ery. . yeq) = (a1,...,aq)C" + (e1,...,eq)D, (4.3.7)
where eq,...,eq is a basis of M, and C' and D are d x d matrices with coefficients in A and

FilP A5 respectively. Write (aq,...,aq) = (e1,...,eq)A with A a d x d matrix. Combining (4.3.6)
and (4.3.7), we have

t"A=AC'C + DC.
By Proposition 4.1.2, there exists a d x d matrix B with coefficients in S such that AB = BA =
E(u)"1, so we get E(u)" (t"I—C'C') = BDC. Note that the coefficients of C' and D are in Fil” A5 and

Fil? A5 respectively. Thus the coefficients of E(u)"(t"I — C'C) are in Fil""? A. By Lemma 3.2.2,
the coefficients of C'C — t"I are all in the FilP A;s. O

5. The proof of Lemma 3.5.3

In this section, we will show how to recover monodromy N on M by the G-action on T and
then prove Lemma 3.5.3. Recall that T" is a G-stable Z,-lattice in a semi-stable p-adic Galois
representation V., M = Mg(IM) the quasi-strongly divisible lattice such that Ti.is(M) = T|g.,
(Proposition 3.4.6) and D := M ®z, Q, € MF"(p, N) satisfying V' ~ V(D). We first construct a
G-action on Agis ®g D by using N on D.
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5.1 G-action on Ag;is ®s D

We already have a natural semi-linear G-action on Agis ®g D induced from the Go.-action on
Acris. We extend this to a G-action by using N on D. For any o € G, recall that e(0) = o([x])/[x].
For any a ® € Auis ®g D, define

o0

ola®a) =" o(a)y(-log(e(0))) ® N'(), (5.1.1)
=0

where 7;(z) = 2'/i! is the standard divided power. Note that if 0 € G, then log(e(c)) = 0 and

ola ®z) = o(a) ® x. Thus G-action defined above (if it is well defined) is compatible with the
natural Gy -action on Ags ®g D.

LEMMA 5.1.1. The above action is a well defined A..is-semi-linear G-action on A.is ®g D and
compatible with Frobenius and filtration.

Proof. In fact, this result has been explicitly or nonexplicitly used in several papers, e.g. [Fal99,
§4]. To see that the series on the right side of (5.1.1) converges, note that D = D ®yy () S and N
is nilpotent on D. It suffices to show that ~;(—log(e(c))) — 0 when ¢ — oo. This is a well-known
result. See for example, [Fon94a, §5.2.4].

For any f(u) € S, x € D and o, 7 € G, we need to check that:
(1) o(1® f(wz) = o(f([x]) ® ) = f(o([x])) © o(2);
(2) o(tl®x))=(coT)(1®x);
(3) the G-action preserves filtration and commutes with ¢.

It is fairly standard direct calculations to check these equations combined with the facts that
Fil'S - N(Fil'D) C Fil'D, log(e(o)) € Fil' Agis and No = ppN in D. O

One the other hand, given the G-action on Agis ®s D defined via (5.1.1), we want to define a
certain logarithm of the G-action to recover N. (We should be careful at this point because the
G-action is not linear.) A technical result is needed to define such a logarithm.

For any field extension F' over Q,, denote Fyeo = Jo7; F((pn) with (pn a p™th primitive root of
unity. Thus Koo peo = Uro ) K( 7/, (pn) is Galois. So we have the following field extensions.

Koo poo
e AN
Ky K,

\ % /HK
Let Hg = Gal(Kp~/K) C Gal(Qpp/Qp) =~ Z;. So Hx may be identified as a closed subgroup
of Z.
LEMMA 5.1.2. The following hold:
(1) Kpe N Koo = K;
(2) Gal(Koope/K) ~ Hg and Gal(Ko poo [ Kpoo) =~ Zp(1);

(3) Gal(Koo poo/K) = Gal(Kog poo / Kpoo ) X Gal(Koo po / Koo) = Zy(1) x Hy, and Hc acts on Z,(1)
by the cyclotomic character.

oo

Proof. We only need to prove part (1). For any n > 0, let F;, = K(m,) N Ky~ and denote K ()
by K,. We prove that F,, = K by an induction on n. The case n = 0 is trivial. Now suppose that
F, = K and F, 1 # K. We first show that (, € K. Note that

[Fn—i-l . Kn : Kn] | [Kn-i-l : Kn] =p and Fn+l . Kn # Kn
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We have [F),41-K,, : K,] =pand F,,+1-K,, = K, +1. Since F), 4 is abelian over K and F,, 1 1NK,, = K,
K,41/K, is Galois and Gal(Ky41/K,) ~ Gal(F,+1/K). Let 0 € Gal(K,+1/K,) be a nontrivial
element; then o(m,41)/mn41 € Ky is a nontrivial pth root of unity. So ¢, € K, 11. Note that

[Kn(Cp) : Kn] <p—1and [Kn((p) : Kl | [Knt1 : K] = p.
We have K,((y) = K,, and ¢, € K,,. By the induction that F,, = K, we get (, € K.

Now Gal(Kp~/K) is a closed subgroup of Gal(Qy, ,/Q,((p)) =~ 14+pZ,. Note that p > 2. By tak-
ing p-adic logarithm, we see that 1+pZ,, ~ Z, as pro-p-groups. Hence any closed subgroup of 1+pZ,
has the form 1+p"Z,. Since [F, 11 : K| = p, there exists an m such that Gal(Kpe /K) ~ 14+p™Z), ~
Gal(Qppo /Qp(¢pm)) and Gal(Kpeo /Fry1) = 1+ p™ 17, ~ Gal(Qp poe /Qp(Cpm+1)). Therefore (pm €
K, (mi1 ¢ K and Fpy1 = K((ym+1). In particular, Gal(Kp41/Kp) ~ Gal(K(Gym+1)/K(Gym)) ~
Z/pZ. Choose o € Gal(K,y1/Ky) such that o((,m+1) = (p¢m+1. Then o(mp41) = ngnﬂ for some
be (Z/pZ)*. Write

p—1
Cpm+1 = Z CLﬂTTZl_i_l with a; € OKn
i=0
Then
p—1 p—1
. "y
CpCpm+1 = U(Cpm+l) = J(Z aiﬂ,ll_,_l) = Z az‘CpZ?T;L_,_l.
i=0 =0
Thus we have a9 = (pap and ag = 0. Then (,m+1 is not a unit. This is a contradiction. Therefore
F,+1 has to be K. Ol

Remark 5.1.3. The above lemma fails if p = 2 in general. For example, let K = Q9 and w = 2. Then

Q2(v2) C Q2(¢g). On the other hand, if Q2({4) C K, then Gal(Ka~/K) C Gal(Qg20/Q2((4)) =~
1+ 475. The above strategy by p-adic logarithm also works here and we still have Ko N Ko, = K.

Fix a topological generator 7 of Gal(K po/Kp=). The above lemma shows that —log(e(7)) is
a generator of (Fil' Aui)?1='. So from now on, we fix ¢ := —log(e(7)). Note that 7 acts trivially on
€(7), thus on t. Therefore, for any n > 0 and = € D, an easy induction on n shows that

oo

(T=1"@) =) > ,L', Ym () @ N™(x). (5.1.2)

i)y
m=n \ i1+ tip=m,ij>1 | n

In particular, (7 — 1)"(z) € Fil"B. ®g D and ((7 — 1)"/n)(x) — 0 p-adically as n — oo (in fact,

cris

it is easy to show that 7, (t)/n — 0 p-adically, see [Fon94a, §5.2.4]). So we can define

o0

log(7)(x) = Z(—nn—l@(@«) (5.1.3)
n=1
and a direct computation shows that
log(7)(z) =t ® N(x). (5.1.4)

5.2 A Qp-version of Theorem 4.3.4
Let D € MF¥(p, N) be a weakly admissible filtered (¢, N)-module and
D=D(D):=D @wu S € MF"(p,N).
By Lemma 3.4.3, the map
V(D) = Hom,y,_o.v (D, Ag[1/p]) — Homyygoqe (D, BE,) (5.2.1)
0d)s /S

cris
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induced by the canonical projection ;1; — Acs defined by sending v;(X) — 0 is an isomorphism
compatible with G,-action. On the other hand,

Hom/MOdw (D,B Hom , (Aeris ®s D, B (5.2.2)

CI‘IS) CI'IS)

cristﬂ. P

By Lemma 5.1.1, we have a natural G-action on Aqis ®g D via (5.1.1). So there exists a G-action
on the right side of (5.2.2) defined by

o(f)(x) =o(f(c™ (x))) forany z € Auis @ D.
Combining (5.2.1) with (5.2.2) together, we have the next result.

LEMMA 5.2.1. The map

V(D) = Homy 7. (D, Ag[1/p]) — Hom , (Aais ®s D, B

eris, Fil7 Crls)

induced by (5.2.1) and (5.2.2) is a G-equivariant isomorphism.

Proof. Lemma 3.4.3 has proved that the above map is a Qp linear bijection. So we only need
to check the G-equivariance. For any f € Hom,, dWV(D Ast[l/p]) let fo € Hom/MOdw (D,BI. )

Cris

be its image of the map defined in (5.2.1). It suﬂices to check, for any z € D, o0 € G, that
a(f)o(z) = o(fo(c~1(x))). Using (3.4.4) and the fact that o(X) = €(c)X + e(0) — 1, we have

o(f(2)) =Y o(fo(N'(2)ri(log(L + (X))

i>0

= o(fo(N'(x Z% —j(log(e(0)))v; (log(1 + X)).

>0

Modulo X, we then get
a(fo(x) =D o(fo(N/(2)))y;(log(e(o)))

Jj=0
— o (o utionto o) 0 87w ) )
Jj=0
— o(folo™1(x))). 0
COROLLARY 5.2.2. The Bg;is-ljnear injections
L ®z, Qp : Aais ®s D — V{ (D) ®z, Acis,
v ®z, Qp 1 Vit (D)(r) ®2z,, Adris = Acxis ®s D,

are compatible with G-actions, where ¢ and (* are constructed as in Theorem 4.3.4.

5.3 Proof of the Main Theorem

We use the same notation as in §3.5 and Lemma 3.5.3. Recall that T" is a G-stable Z,-lattice
in a semi-stable p-adic Galois representation V, and M the quasi-strongly divisible lattice such
that Teis(M) = T, (Proposition 3.4.6). Also recall that 7 is the fixed topological generator of
Gal(K oo poo / Kpeo ) discussed in §5.1. We will use Lemma 4.3.6 and Corollary 5.2.2 to prove that N
is stable on M in two steps. The first step is to show that Agis ®g M is G-stable in A ®g D.
More generally, we have the following lemma.
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LEMMA 5.3.1. We use the notation as in Theorem 4.3.4. Let M, M’ € Mod“/os. Suppose that we
have the commutative diagram

Acris Xs M, ﬂ) ngis(M/) ®Zp Acris
i lf (5.3.1)
Acris Ks M L—M> Tc\1/~1s(M) ®Zp Acris

where f and f are Agps-linear or T-semi-linear morphisms compatible with Frobenius and filtration.
Then we have that, if p|f, then plf.

Proof. We only prove the lemma in the case that f and f are As-linear. The proof for the 7-semi-
linear case is totally the same.

Let d’ be the S-rank of M’, and o/, ..., ), € Fil" M’ such that ¢,(a)),...,¢r(¢/,) is a basis of
M. Since § preserves filtration, f(c, ..., a) € [Fil"(Auis ®s M)]%. By Corollary 4.1.3, we have

d
FﬂT(ACriS s M) = @ Acris K oy + FﬂpAcris Rs M (532)
i=1
with (e1,...,eq) = (pr(a1),...,or(aq)) a basis of M. Therefore there exist d x d’ matrices X,
W with coefficients in Ags, FilP Acpis respectively such that

f(ah, ..., aly) = (a1,...,aq) X + (e1,...,eq)W. (5.3.3)

We claim that the coefficients of X are in Fil' Aqis + pAcsis.
To see the claim, applying ta¢ on both sides of (5.3.3), we have

imof(al, . ) =tmlan, .. yaq) X +imler,...,eq) W = (e1,...,eq)(CX + W),

where eq,...,¢q is a basis of T, (M) as in Lemma 4.3.6 and C', W’ are matrices with coefficients
in Acs, FilP Aqis respectively such that cayg(aq,...,aq) = (e1,...,¢9)C and tpq(eq, ... eq)W =
(e1,...,¢q)W’. On the other hand, since diagram (5.3.1) is commutative and p|f, all the coefficients
of CX + W' are in pAeis. By Lemma 4.3.6, there exists a matrix C’ such that the coefficients of
C'C —t"I are in Fil? A.. Thus the coefficients of t" X are in FilP A.is + pAcris. To show the claim,
it suffices to show that if 2 € Auis and ¢z € pAeis + FilP Agyis then 2 € Fil' Aqyis + pAeris. Recall
that R = liﬂl(’)[‘{/p constructed in §2.2. For any (a;)i>0 € R with a; € Og/p, let a; € O be a
lift of a;, then a(© = lim,_ (4, )P" is well defined and independent of the choice of G;. We define
the valuation on R by vr((a;)i>0) = v(a®) where v(-) is the standard valuation of O (§§1.2.2
and 1.2.3 in [Fon94a)). Let Fil'R be the image of Fil’(W(R)) under the reduction modp. We see
that Fil'R = {z € R | vp(x) > 1} and Acis/(pAeis + FilPAgis) ~ R/FilPR. Let & and £ be the
image of z and ¢ in R/Fil” R respectively. Note that

vr(f) = v%% - 1> - ]%.

Since t"z € Fil’R, vp(t"Z) > p. But

_ T‘p
t") = <p-—1
vR(t") T

because r < p — 2. Therefore, v(Z) > 1 and 2 € Fil' A mod p.

Now since f is compatible with Frobenius, by (5.3.3) we have

f((pr(al), - or(ag))) = or((ar, ..., aa) X + (e1, ... eq) W)
= (e1,...,eq)p(X) +pler,...,eq)p.(W).
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Since the coefficients of X are in Fil' Aqjs + pAeis, we have plo(X). Note that p|e, (W) because the
coefficients of W are in Fil? Aqs. Finally, since ¢, (o)), ..., ¢r(al,) is a basis of M’, we get p|f. O

Proof of Lemma 3.4.7. Tt suffices to prove that M’ € M. Choose the smallest integer n such that

p"M’' € M. Then p" : M" — M is a morphism in Modfs. Use Lemma 5.3.1 for f = p™ and f = p".

Then we see that n has to be 0. O

Combining Theorem 4.3.4 with Corollary 5.2.2, we have the commutative diagram

L®Zp Qp

Agis ®s D ‘/s::/ (D) ®Zp Acris

J JA (5.3.4)

Acris @5 M —— T (M) Xz, Acris

cris

where the top row map is compatible with G-action and the bottom row map is compatible with
Gso-action. We claim that A ®g M is stable under G. To check that this, it suffices to check that
Agris ®5 M is stable under 7. Since TV = T}, (M) is a G-stable Z-lattice, we see that TV @z, Aeis
is stable under 7. Choose n such that p"7(Acis ®s M) C Aqis ®s M. Now using Lemma 5.3.1 for
f=p"T on Auis ®s M and f = p"7 on T (M) ®z, Aais, we have T(Agis @5 M) C Ais @5 M.
Now we begin the second step to show that M is stable under N. By (5.1.4), for any x € M, we
have t ® N(x) = log(7)(z). We claim that t ® N(M) C Aeis ®s M by proving that log(7)(M) C

Agis ®5 M. Tt suffices to show that
(r—1)"
n

(M) C Agis 05 M

for all n > p. Let (aq,...,aq) € Fil"M constructed in Proposition 4.1.2, and (ej,...,eq) =
(or(a1), ..., pr(ag)) a basis of M. Using (5.1.2), we see that

(1 —1D)™"(a,...,aq) € [Fil"B (Awis @5 M)
Since 7(M) C (Acris ®s M), we get

(1 —D)™(a1,. .., aq) € [Fil" Agis(Acris @5 M)]%
Therefore, we obtain

(T—=1D)"(e1,...,eq) = or((T — )" (a1, ..., aq)) € [@r(Fil" Acyis) - ©(Acris @5 ./\/l)]d.

Now it suffices to check that, for any n > p and x € Fil" A, we have ¢ (z)/n € Agis. We
can further reduce the problem to check if ¢(E(u)™)/p"nm! € S for all m > n > p. Note that
c1 = ¢(E(u))/p is a unit in S. So it is equivalent to show that p”~" /nm! € Z, for all m > n > p and
we include the computation in the lemma below. Thus we prove the claim that tQ N (z) € Aeis®@s M.

LEMMA 5.32. If m>2n>p>2andr <p—1, then m —r — v,(nm!) > 0.

Proof. Since n > p, we have v,(n) < n/p < m/p. Hence

2 2
-3 1 -3 1 1
dzm—m,(nm!)}m—i—@:m(p p+)2p P+ —p—2— ——.
p—=1 p p(p—1) p—1 p—1
Since d is an integer, it follows that d > p —2 > r. O

Finally, suppose that we have
N((el7 e 7ed)) = (617 e Jed)W
86

https://doi.org/10.1112/50010437X0700317X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X0700317X

ON LATTICES IN SEMI-STABLE REPRESENTATIONS

with the coefficients of W in Sk, . Select the smallest number n such that all the coefficients of p"W
are in S. Then p"N(M) C M. Since E(u)N(Fil"D) C Fil"D, we have

E(uw)p"N((oq,...,aq)) = (aq,...,aq9) X + (e1,...,e9)Y (5.3.5)

with the coefficients of X, Y in S, FilPS respectively. On the other hand, note that t ® N(M) C
Aeris®@sM and t@ N (Fil" M) C Fil" (Aeris®sM) because there exists v € Acyis such that t—E([x])y €
FilP Aeris. We have

tN((Oél, R ,ad)) = (041, - ,ad)X' + (61, - ,ed)Y’ (536)
with the coefficients of X', Y” in Agis, FilP Agis respectively. Combining (5.3.5) with (5.3.6), we have

A(tX — E(uw)p"X') = tY — B(u)p"Y’,

where (aq,...,aq4) = (e1,...,eq4)A. By Proposition 4.1.2, there exists a d x d matrix B with coeffi-
cients in S such that BA = AB = E(u)"I, and we have

E(u)" (tX — E(u)p"X') =tBY — E(u)p"BY'.
Note that the right-hand side is in Fil' Ay - Fil? Aeris. By Lemma 3.2.2, we get that Eu)  1(tX —
E(u)p"X') € Fil? Aeis. Modulo FilP Aes + pAcris both sides, we get the coefficients of E(u)"~1tX

are in FilPAcs + pAcis (here we may assume that n > 1). Almost the same argument as in the
proof of Lemma 5.3.1 shows that the coefficients of X are in Fil'S + pS.

Now consider the following:

ap"N((e1,...,eq)) = a1p"N(or(a1),...,vd(aq))
=p"er(E(u)N((a1, ..., aq)))
= ¢r((a1, ..., aq))p(X) + o((e1, - - . eq))or(Y).

But p|p(X) and p|e,(Y) in Aeis. This contradicts the selection of n unless n = 0. That is, W has
all its coefficients in S and then N(M) C M.
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