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On lattices in semi-stable representations:

a proof of a conjecture of Breuil

Tong Liu

Abstract

For p � 3 an odd prime and a nonnegative integer r � p − 2, we prove a conjecture of
Breuil on lattices in semi-stable representations, that is, the anti-equivalence of categories
between the category of strongly divisible lattices of weight r and the category of Galois
stable Zp-lattices in semi-stable p-adic Galois representations with Hodge–Tate weights
in {0, . . . , r}.
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1. Introduction

Let k be a perfect field of characteristic p > 2, W (k) its ring of Witt vectors, K0 = W (k)[1/p],
K/K0 a finite totally ramified extension and e = e(K/K0) the absolute ramification index. We
are interested in understanding semi-stable p-adic Galois representations of G := Gal(K̄/K). An
important result in this direction is proved by Colmez and Fontaine [CF00]: semi-stable p-adic Galois
representations are classified by weakly admissible filtered (ϕ,N)-modules. Since G is compact, any
continuous representation ρ : G → GLn(Qp) admits a G-stable Zp-lattice. It is thus natural to
ask whether there also exists a corresponding integral structure on the side of filtered (ϕ,N)-
modules. Fontaine and Laffaille [FL82] first attacked this question by defining W (k)-lattices in
filtered (ϕ,N)-modules. Unfortunately, their theory only works for the case e = 1, N = 0 and
Hodge–Tate weights in {0, . . . , p − 2}. In the late 1990s, Breuil introduced the theory of filtered
(ϕ,N)-modules over S to study semi-stable Galois representations [Bre97, Bre98b, Bre99a], where
S is the p-adic completion of divided power envelope of W (k)[u] with respect to the ideal (E(u)), and
E(u) is the Eisenstein polynomial for a fixed uniformizer π of K. Breuil proved that the knowledge
of filtered (ϕ,N)-modules over S is equivalent to that of filtered (ϕ,N)-modules (see Theorem 2.2.1
for the precise statement). Furthermore, it turns out that there are integral structures, strongly
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divisible lattices, which naturally live inside filtered (ϕ,N)-modules over S. These structures allow
for arbitrary ramification of K/K0. For a strongly divisible latticeM, Breuil constructed a G-stable
Zp-lattice Tst(M) in a semi-stable Galois representation and raised the following conjecture (the
main conjecture in [Bre02]).

Conjecture 1.0.1 (Breuil’s conjecture). Fix a nonnegative integer r � p − 2. The functor Tst

establishes an anti-equivalence of categories between the category of strongly divisible lattices
of weight r and the category of G-stable Zp-lattices in semi-stable representations of G with
Hodge–Tate weights in {0, . . . , r}.

If r � 1, the conjecture has been proved by Breuil in [Bre00] and [Bre02]. The case e = 1
was shown by Fontaine and Laffaille in [FL82] for crystalline representations. In [Bre99a], Breuil
proved that there at least exists a strongly divisible lattice in the side of filtered (ϕ,N)-modules
over S if er < p − 1. Based on this result, Breuil [Bre99c] proved the case e = 1 for general
semi-stable representations, and Caruso [Car05] proved Breuil’s conjecture for er < p − 1. Their
ideas involve a weak version of Conjecture 1.0.1; see the end of § 2.3 for details. In [Fal99], Faltings
proved that the restriction of Tst to the subcategory of filtered free strongly divisible lattices is fully
faithful.

In this paper, we give a complete proof for the above conjecture by using results of Kisin [Kis06].
Let K∞ =

⋃
n�1 K( pn√

π), G∞ = Gal(K̄/K∞) and S = W (k)[[u]]. We equip S with the endomor-
phism ϕ which acts via Frobenius on W (k), and sends u to up. Let Modϕ

/S denote the category
of finite free S-modules M equipped with a ϕ-semi-linear map ϕM : M → M such that the cok-
ernel of S-linear map 1 ⊗ ϕM : S ⊗ϕ,S M → M is killed by E(u)r. In [Kis06], Kisin proved that
any G∞-stable Zp-lattice T in a semi-stable Galois representation comes from an object (M, ϕ)
in Modϕ

/S. Using the functor M � S ⊗ϕ,S M provided by Breuil, Kisin’s theory allows us to
construct ‘quasi-strongly divisible lattices’, i.e. strongly divisible lattices without considering mon-
odromy, to establish an anti-equivalence between the category of quasi-strongly divisible lattices and
the category of G∞-stable Zp-lattices in semi-stable Galois representations. Furthermore, we prove
that a quasi-strongly divisible lattice is strongly divisible if and only if the corresponding G∞-stable
Zp-lattice is G-stable (see Theorem 3.5.4 for the more precise statement). Conjecture 1.0.1 then
follows.

The paper proceeds as follows. In § 2, after briefly reviewing the theory of semi-stable p-adic
Galois representations, filtered (ϕ,N)-modules over S and definition of (quasi-)strongly divisible
lattices, we are then able to give a precise statement of our main theorem. Section 3 is devoted to
reviewing Kisin’s theory from [Kis06], which allows us to construct quasi-strongly divisible lattices
and establishes an anti-equivalence between the category of quasi-strongly divisible lattices and the
category of G∞-stable Zp-lattices in semi-stable Galois representations; and the full faithfulness
of Tst follows from this. In the next two sections, we prove that a quasi-strongly divisible lattice
is strongly divisible if and only if the corresponding G∞-stable Zp-lattice is G-stable. The idea is
to use an extended version of Falting’s theorem [Fal99, Theorem 5], The proof of such a theorem
(Theorem 4.3.4) mainly depends on the construction of the Cartier dual for quasi-strongly divis-
ible lattices from [Car05], which we discuss in § 4. In the last section, we combine our previous
preparations to prove the essential surjectivity of Tst.

2. Preliminaries and the main result

This paper discusses lots of categories and functors. For the convenience of readers, we begin by
summarizing their relations and our main results as the following diagram.
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Modϕ,N∇
/O ∼

D ��

DO
∼

��
MF(ϕ,N) ∼

D ��MF(ϕ,N)
Vcris �� RepQp

(G∞)

Modϕ,N
/S ⊗Zp Qp MFW(ϕ,N)� �Θ�� D

∼ ��
��

��

MFW(ϕ,N) ∼
Vst ��

��

��

Repst
Qp

(G) �� RepQp
(G∞)

Modϕ,N
/S

��

��

Modϕ,N
/S

����������

��������

��

��

Tst

∼ �� Repst
Zp

(G)

��

��

�� RepZp
(G∞)

��

M̃odϕ
/S

Tcris

∼ ��
� �

��

Repst
Zp

(G∞) � � �� RepZp
(G∞)

Modϕ
/S � �

TS

��
� � MS �� Modϕ

/S
Tcris �� RepZp

(G∞)

Here is a general explanation of the above diagram.

(i) Injection arrows ↪→ symbolize fully faithful functors and −→∼ symbolizes equivalence or
anti-equivalence. The notation Repst symbolizes the categories of semi-stable representations with
Hodge–Tate weights in {0, . . . , r}. For example, Repst

Zp
(G∞) symbolizes the category of G∞-stable

Zp-lattices in semi-stable representations.

(ii) The main goal of this paper is to prove that Tst is an anti-equivalence. To achieve this, we

first prove that Tst is fully faithful by showing that Tcris restricted to M̃odϕ
/S (the category of quasi-

strongly divisible lattices) is an anti-equivalence in § 3, and then we prove the essential surjectivity
of Tst in §§ 4 and 5.

(iii) The first column is about Kisin’s theory on ϕ-modules over S. The second column is about
classical modules in Fontaine’s theory and the third about Breuil’s theory on S-modules.These
three theories can be connected by auxiliary categories in the first row (see the end of § 2.2, the end
of § 3.1 and § 3.2). The last two columns are about the Galois sides. Note that representations of G∞
(e.g. G∞-stable Zp-lattices inside semi-stable representations) can be more conveniently described
by Kisin’s theory (see §§ 3.3 and 3.4).

(iv) The second row is about the theory over Qp whereas the third row is about the theory over
Zp, which also is the key result of this paper. Many important inputs depend on the last two rows
which are about Kisin’s theory (via TS) and Breuil’s theory (via Tcris) on Zp-representations of G∞
(see §§ 3.3 and 3.4).

2.1 Semi-stable Galois representations and weakly admissible modules

Fix an odd prime p. Recall that a p-adic representation is a continuous linear representation of
G := Gal(K̄/K) on a finite dimensional Qp-vector space V and a p-adic representation V of G is
called semi-stable [Fon94b] if

dimK0(Bst ⊗Qp V )G = dimQpV, (2.1.1)

where Bst is the period ring constructed by Fontaine; see for example [Fon94a] or § 2.2 for the
construction.

In [CF00] and [Fon94b], Fontaine and Colmez give an alternative description of semi-stable
p-adic representations. Recall that a filtered (ϕ,N)-module is a finite dimensional K0-vector space
D endowed with:
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(1) a Frobenius semi-linear injection: ϕ : D → D;
(2) a linear map N : D → D such that Nϕ = pϕN ;
(3) a decreasing filtration (FiliDK)i∈Z on DK := K⊗K0 D by K-vector spaces such that FiliDK =

DK for i� 0 and FiliDK = 0 for i� 0.

If D is a one dimensional (ϕ,N)-module, and v ∈ D is a basis vector, then ϕ(v) = αv for some
α ∈ K0. We write tN (D) for the p-adic valuation of α (p-adic valuation of α does not depend on
choice of v) and tH(D) for the unique integer i such that griDK is nonzero. If D has dimension d > 1,
then we write tN (D) = tN (∧dD) and tH(D) = tH(∧dD). Recall that a filtered (ϕ,N)-module is
called weakly admissible if tH(D) = tN (D) and for any (ϕ,N)-submodule D′ ⊂ D, tH(D′) � tN (D′),
where D′

K ⊂ DK is equipped with the induced filtration.
The aforementioned result of Colmez and Fontaine [CF00] is that the functor

Dst,∗ : V → (Bst ⊗Qp V )G

establishes an equivalence of categories between the category of semi-stable p-adic representations
of G and the category of weakly admissible filtered (ϕ,N)-modules.

In the sequel, we will instead use the contravariant functor Dst(V ) := Dst,∗(V ∨), where V ∨ is
the dual representation of V . The advantage of this is that the Hodge–Tate weights of V are exactly
the i ∈ Z such that griDst(V )K 
= 0. A quasi-inverse to Dst is then given by

Vst(D) := Homϕ,N (D,Bst) ∩HomFil·(DK ,K ⊗K0 Bst). (2.1.2)

Convention 2.1.1. Here we use slightly different notation from [Bre02] and [CF00]: Dst here is
D∗

st in [Bre02] and [CF00]; Vst here is V ∗
st in [Bre02] and [CF00]. Also we will use Tst to denote

T ∗
st in [Bre02] and [Bre99a] later. The reason for using such notation is that we will always use

contravariant functors instead of covariant functors in this paper. Removing ‘∗’ from the superscript
looks more neat and convenient.

A filtered (ϕ,N)-module is called positive if Fil0D = D. In this paper, we only consider positive
filtered (ϕ,N)-modules. We denote the category of positive filtered (ϕ,N)-modules by MF(ϕ,N)
and the category of positive weakly admissible filtered (ϕ,N)-modules by MFw(ϕ,N).

2.2 Breuil’s theory on filtered (ϕ,N)-modules over S

Throughout the paper we will fix a uniformizer π ∈ OK , and E(u) ∈ W (k)[u] the Eisenstein
polynomial of π. We denote by S the p-adic completion of the divided power envelope of W (k)[u]
with respect to Ker(s), where s : W (k)[u] → OK is the canonical surjection by sending u to π.
For any positive integer i, let FiliS ⊂ S be the p-adic closure of the ideal generated by the divided
powers γj(u) = E(u)j/j! for all j � i. There is a unique continuous map ϕ : S → S which extends
the Frobenius on W (k) and satisfies ϕ(u) = up. We define a continuous W (k)-linear derivation
N : S → S such that N(u) = −u. It is easy to check that Nϕ = pϕN and ϕ(FiliS) ⊂ piS for
0 � i � p− 1, and we write ϕi = p−iϕ|FiliS and c1 = ϕ1(E(u)). Note that c1 is a unit in S. Finally,
we put SK0 := S ⊗Zp Qp and FiliSK0 := FiliS ⊗Zp Qp.

Let MF(ϕ,N) be a category whose objects are finite free SK0-modules D with:

(i) a ϕSK0
-semi-linear morphism ϕD : D → D such that the determinant of ϕD is invertible in

SK0 (the invertibility of the determinant does not depend on the choice of basis);
(ii) a decreasing filtration over D of SK0-modules, i.e. Fili(D), i ∈ Z, such that Fil0(D) = D and

that FiliSK0Filj(D) ⊂ Fili+j(D);
(iii) a K0-linear map (monodromy) N : D → D such that

(1) for all f ∈ SK0 and m ∈ D, N(fm) = N(f)m + fN(m),
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(2) Nϕ = pϕN ,
(3) N(FiliD) ⊂ Fili−1(D).

We call objects in MF(ϕ,N) filtered (ϕ,N)-modules over S. Let D ∈ MF(ϕ,N) be a filtered
(ϕ,N)-module. We can associate an object D ∈MF(ϕ,N) by the following:

D := S ⊗W (k) D (2.2.1)

and

• ϕ := ϕS ⊗ ϕD : D → D,
• N := N ⊗ Id + Id⊗N : D → D,
• Fil0(D) := D and by induction:

Fili+1D := {x ∈ D | N(x) ∈ FiliD and fπ(x) ∈ Fili+1DK},
where fπ : D � DK is defined by λ⊗ x → s(λ)x.

For a D ∈MF(ϕ,N), Breuil associated a Qp[G]-module Vst(D). Several period rings have to be
defined before we can describe this functor. Let R = lim←−OK̄/p, where the transition maps are given
by Frobenius. By the universal property of Witt vectors W (R) of R, there is a unique surjective
map θ : W (R)→ ÔK̄ to the p-adic completion ÔK̄ , which lifts the projection R → OK̄/p = ÔK̄/p
onto the first factor in the inverse limit. We denote by Acris the p-adic completion of the divided
power envelope of W (R) with respect to the Ker(θ), and write B+

cris := Acris[1/p].
For each n � 0, fix πn ∈ K̄ a pnth root of π such that πp

n+1 = πn. Write π = (πn)n�0 ∈ R, and
let [π] ∈W (R) be the Teichmüller representation. We embed the W (k)-algebra W (k)[u] into W (R)
by u → [π]. Since θ([π]) = π this embedding extends to an embedding S ↪→ Acris, and θ|S is the
map s : S → OK sending u to π. The embedding is compatible with Frobenius endomorphisms. As
usual, we denote by B+

st the ring obtained by formally adjoining the element ‘log[π]’ to B+
cris, and

by B+
dR the Ker(θ)-adic completion of W (R)[1/p]. Choose a generator t of Zp(1) ⊂ Acris. Such t can

be constructed by t := log([ε]) for ε = (εi)i�0 ∈ R, where εi is a primitive pith root of unity such
that εp

i+1 = εi. We denote B+
st[1/t] by Bst.

Let Âst be the p-adic completion of the divided power polynomial algebra Acris〈X〉. We endow
Âst with a continuous G-action, a Frobenius ϕ, a monodromy operator N and positive filtration
Fili as the following.

For any g ∈ G, let ε(g) = g([π])/[π] ∈ Acris. We extend the natural G-action and Frobenius on
Acris to Âst by putting g(X) = ε(g)X + ε(g)− 1 and ϕ(X) = (1 + X)p− 1. We define a monodromy
operator N on Âst to be a unique Acris-linear derivation such that N(X) = 1 + X. For any i � 0,
we define

FiliÂst =
{ ∞∑

j=0

ajγj(X), aj ∈ Acris, lim
j→∞

aj = 0, aj ∈ Fili−jAcris, 0 � j � i

}
.

Finally, [Bre97, § 4.2], we have an isomorphism S
∼→ (Âst)G compatible with all structures given by

u → [π](1 + X)−1. Therefore, Âst is an S-algebra.
For any D ∈MF(ϕ,N), one can associate a Qp[G]-module

Vst(D) := HomS,Fil·,ϕ,N(D, Âst[1/p]).

The following theorem is one of main results in [Bre97].

Theorem 2.2.1 (Breuil). The functor D : D → S ⊗W (k) D defined in (and below) (2.2.1) induces
an equivalence between the category MF(ϕ,N) andMF(ϕ,N) and there is a natural isomorphism
Vst(D) � Vst(D) as Qp[G]-modules.
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From now on, we always identify Vst(D) with Vst(D) as the same Galois representations, and
denote MFw(ϕ,N) the essential image of D restricted to MFw(ϕ,N).

2.3 The Main Theorem
Theorem 2.2.1 shows that the knowledge of filtered (ϕ,N)-modules over S is equivalent to that
of filtered (ϕ,N)-modules. It turns out that integral structures can be more conveniently defined
inside filtered (ϕ,N)-modules over S. However, when working on integral p-adic Hodge theory via
S-modules, the following technical restriction always has to be assumed.

Assumption 2.3.1. Fix a positive integer r � p−2. The filtration on the weakly admissible filtered
(ϕ,N)-module D is such that Fil0 DK = DK and Filr+1DK = 0. Equivalently, the Hodge–Tate
weights of the semi-stable p-adic Galois representation under consideration are always contained in
{0, . . . , r}.
Remark 2.3.2. (1) Conjecture 1.0.1 has been proved for r = 0 in [Bre02, § 3.1]. So we only consider
the case r > 0 from now on (r = 0 will cause a little trouble only in the end).

(2) Up to the twist of the (ϕ,N)-module of a power of the cyclotomic character, all modules
whose filtration length does not exceed r satisfy the above assumption.

Following [Bre02, § 2.2], we define the integral structures inside D to correspond to the Galois
stable Zp-lattices.

Definition 2.3.3. Let D be a weakly admissible filtered (ϕ,N)-module satisfying Assumption 2.3.1
and D := D(D) ∈MFw(ϕ,N). A quasi-strongly divisible lattice of weight r in D is an S-submodule
M of D such that:

(1) M is S-finite free and M[1p ] ∼→ D;

(2) M is stable under ϕ, i.e. ϕ(M) ⊂M;

(3) ϕ(FilrM) ⊂ prM where FilrM :=M∩ FilrD.

A strongly divisible lattice of weight r in D is a quasi-strongly divisible lattice M in D such that
N(M) ⊂M.

It will be more convenient and explicit to describe the category of (quasi-)strongly divisible
lattices by projective limits of torsion objects. Let ′Modϕ,N

/S denote the category whose objects are
4-tuples (M,FilrM, ϕr, N), consisting of:

(1) an S-moduleM;

(2) an S-submodule FilrM⊂M containing FilrS ·M;

(3) a ϕ-semi-linear map ϕr : FilrM → M such that for all s ∈ FilrS and x ∈ M we have
ϕr(sx) = (c1)−rϕr(s)ϕr(E(u)rx);

(4) a W (k)-linear morphism N :M→M such that

(a) for all s ∈ S and x ∈M, N(sx) = N(s)x + sN(x),
(b) E(u)N(FilrM) ⊂ FilrM,
(c) the following diagram commutes.

FilrM
E(u)N

��

ϕr ��M
c1N

��
FilrM ϕr ��M

(2.3.1)
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Morphisms are given by S-linear maps preserving the Fil and commuting with ϕr and N . A sequence
is defined to be short exact if it is short exact as a sequence of S-module, and induces a short exact
sequence on the Fil.

We denote by ′Modϕ
/S the category which forgets the operation N in the definition of ′Modϕ,N

/S .

Objects in ′Modϕ
/S are called filtered ϕ-modules over S. Let Mod FIϕ,N

/S (respectively Mod FIϕ/S) be

the full subcategory of ′Modϕ,N
/S (respectively ′Modϕ

/S) consisting of objects such that:

(1) as an S-module M is isomorphic to
⊕

i∈I S/pniS, where I is a finite set and ni is a positive
number;

(2) ϕr(M) generates M over S.

Finally we denote by Modϕ,N
/S (respectively Modϕ

/S) the full subcategory of ′Modϕ,N
/S (respectively

′Modϕ
/S) such that M is a finite free S-module and, for all n,

(Mn,FilrMn, ϕr, N) ∈ Mod FIϕ,N
/S (respectively (Mn,FilrMn, ϕr) ∈ Mod FIϕ/S),

whereMn =M/pnM, FilrMn = FilrM/pnFilrM, and ϕr, N are induced by modulo pn.

Note that Âst ∈ ′Modϕ,N
/S . For any M ∈Modϕ,N

/S , define

Tst(M) := Hom′Modϕ,N
/S

(M, Âst).

Proposition 2.3.4 (Breuil).

(1) If M is a quasi-strongly divisible lattice in D with D ∈ MFw(ϕ,N), then (M,FilrM, ϕr) is
in Modϕ

/S where ϕr := ϕ/pr.

(2) The category of strongly divisible lattices of weight r is just Modϕ,N
/S . In particular, for any

M ∈ Modϕ,N
/S , there exists a D ∈ MFw(ϕ,N) such that D(D) �M⊗Zp Qp as filtered (ϕ,N)-

modules over S. Furthermore, Tst(M) is a G-stable Zp-lattice in Vst(D).

Proof. Part (1) is the consequence of Proposition 2.1.3 in [Bre99a]. Note that, though Proposi-
tion 2.1.3 only deals with strongly divisible modules, the proof does not need monodromy at all.
So the same assertion is valid for quasi-strongly divisible lattices. Part (2) is Theorem 2.2.3 and
Proposition 2.2.5 in [Bre02].

From now on, we use Modϕ,N
/S to denote the category of strongly divisible lattices of weight r and

regard M̃odϕ
/S as a full subcategory of Modϕ

/S , where M̃odϕ
/S denotes the category of quasi-strongly

divisible lattices. Now we can state our Main Theorem.

Theorem 2.3.5 (Main Theorem). If 0 � r � p − 2, the functor M → Tst(M) establishes an
anti-equivalence of categories between the category of strongly divisible lattices of weight r and
the category of G-stable Zp-lattices in semi-stable p-adic Galois representations with Hodge–Tate
weights in {0, . . . , r}.
Remark 2.3.6. In fact, there exists a weak version of Conjecture 1.0.1. Fix a D insideMFw(ϕ,N).
Consider the restriction of the functor Tst, namely,

Tst|D : {strongly divisible lattices in D} → {G-stable Zp-lattices in Vst(D)}.
The weak version claims that all functors Tst|D are equivalences. It is obvious that Conjecture 1.0.1
implies the weak one. On the other hand, from the weak version, one can deduce the essentially
surjectivity of Tst. Therefore, if the full faithfulness of Tst has been known, then the weak version
and the strong version are equivalent. [Car05] and [Bre98a] used this ideal to prove some special
cases of Conjecture 1.0.1.
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3. Construction of quasi-strongly divisible lattices

Let T be a G-stable Zp-lattice in a semi-stable Galois representation V with Hodge–Tate weights
in {0, . . . , r}. In this section, we will use the theory from [Kis06] to prove that there exists a quasi-
strongly divisible lattice M ∈ Modϕ

/S to correspond to T |G∞ . As we will see later, M provides the
ambient module for the strongly divisible lattice corresponding to T .

3.1 (ϕ,N∇)-modules
We equip K0[[u]] with the endomorphism ϕ : K0[[u]] → K0[[u]] which acts via the Frobenius on K0,
and sends u to up. Suppose that I ⊂ [0, 1) is a subinterval. We set OI the subring of K0[[u]] whose
elements converge for all x ∈ K̄ such that |x| ∈ I. Put O = O[0,1). By [Bre97, Lemma 2.1], S can
be identified as the subring of K0[[u]] whose elements have the form

∞∑
n=0

wi
ui

q(i)!
, wi ∈W (k), lim

i→∞
wi = 0, (3.1.1)

where q(i) is the quotient in the Euclidean division of i by e. Therefore, for any real number µ
satisfying p−1/((p−1)e) < µ � 1, we have natural inclusions S[1/p] ↪→ O[0,µ) ↪→ SK0 compatible with
Frobenius. Set c0 = E(0)/p ∈ K0 and

λ =
∞∏

n=0

ϕn(E(u)/pc0) ∈ O.

We define a derivation N∇ := −uλ d/du : O → O and denote by the same symbol the induced
derivation OI → OI , for each I ⊂ [0, 1).

By a ϕ-module over O we mean a finite free O-module M , equipped with a ϕ-semi-linear,
injective map ϕ : M → M . A (ϕ,N∇)-module over O is a ϕ-module M over O, together with a
differential operator NM

∇ over N∇. That is, for any f ∈ O and m ∈M , we have

NM
∇ (fm) = N∇(f)m + fNM

∇ (m).

Here ϕ and NM
∇ are required to satisfy the relation NM

∇ ϕ = (1/c0)E(u)ϕNM
∇ . We will usually write

N∇ for NM
∇ if this will cause no confusion. The category of (ϕ,N∇)-modules over O has a natural

structure of a Tannakian category. We denote by Modϕ,N∇
/O the category of (ϕ,N∇)-modules M of

height r, in the sense that the cokernel of 1⊗ϕ : ϕ∗M →M is killed by E(u)r for our fixed positive
integer r, where ϕ∗M := O ⊗ϕ,O M .

In [Kis06, § 1.2], Kisin constructed a functor D : Modϕ,N∇
/O → MF(ϕ,N). Let M be an object in

Modϕ,N∇
/O . Define the underlying K0-vector space of D(M) as M/uM , and the operator ϕ and N are

induced by ϕ, N∇ on M . The construction of filtration on D(M) is somewhat not straightforward.
First we define a decreasing filtration on ϕ∗M by

Filiϕ∗M := {x ∈ ϕ∗M | 1⊗ ϕ(x) ∈ E(u)iM}.
Fix any real number µ such that p−1/e < µ < p−1/pe. Lemma 1.2.6 in [Kis06] showed that there
exists a unique O[0,µ)-linear, ϕ-equivariant isomorphism

ξ : D(M)⊗K0 O[0,µ)
∼→ ϕ∗M ⊗O O[0,µ). (3.1.2)

The required filtration on D(M)K is defined to be the image filtration under the composite

D(M)⊗K0 O[0,µ) → D(M)⊗K0 O/E(u)O ∼→ D(M)⊗K0 K = D(M)K .

Theorem 1.2.8 in [Kis06] shows that the functor D induces an exact equivalence between the category
Modϕ,N∇

/O and MF(ϕ,N).
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3.2 A functor from Modϕ,N∇
/O to MF(ϕ,N)

Combining the functor D in § 3.1 with the functor D in § 2.2 together, we obtain a functor D ◦D
from Modϕ,N∇

/O toMF(ϕ,N). It will be convenient to give another description of D◦D for later use.

Let M be an object in Modϕ,N∇
/O . Define DO(M) := SK0 ⊗ϕ,O M , a ϕSK0

-semi-linear endomor-
phism ϕDO(M) := ϕSK0

⊗ ϕM (as usual, we will drop the subscript of ϕDO(M) if no confusion will
arise) and decreasing filtration on DO(M) by

Fili(DO(M)) := {m ∈ DO(M) | (1⊗ ϕ)(m) ∈ FiliSK0 ⊗O M}. (3.2.1)

Note that ϕ(λ) is a unit in SK0, and we can define N on DO(M) by

N := N ⊗ 1 +
p

ϕ(λ)
1⊗N∇.

We can naturally extend N∇ from O to SK0. Note that for any f ∈ SK0 we have

N(ϕ(f)) =
p

ϕ(λ)
ϕ(N∇(f)).

Thus it is easy to check that N is a well-defined derivation of DO(M) over the derivation N of SK0

defined by N(u) = −u.

Proposition 3.2.1. The derivation N is well defined on DO(M) and (DO(M), ϕ,Fili, N) is an
object in MF(ϕ,N).

Proof. Let D = DO(M). We check that Frobenius, filtration and monodromy defined on D satisfy
the required properties listed in § 2.2.

Since E(u)r kills the cokernel of 1 ⊗ ϕ : O ⊗ϕ,O M → M , we see that the determinant of
ϕM is a divisor of E(u)rd, where d is the O-rank of M . Thus the determinant of ϕD is a divisor
of ϕ(E(u))rd = prdcrd

1 , and therefore is invertible in SK0. Using (3.2.1), one easily checks that
FiliSK0 · FiljD ⊂ Fili+jD. Now it suffices to check that the monodromy N satisfies the required
properties.

To see that Nϕ = pϕN , for any s ∈ SK0 and m ∈M , we have

Nϕ(s ⊗m) = N(ϕSK0
(s)⊗ ϕM (m))

= N(ϕSK0
(s))⊗ ϕM (m) +

p

ϕ(λ)
ϕSK0

(s)⊗N∇(ϕM (m))

= pϕSK0
(N(s))⊗ ϕM (m) +

p

ϕ(λ)
ϕ(E(u))
ϕ(c0)

ϕSK0
(s)⊗ ϕM (N∇(m))

= pϕD
(

N(s)⊗m +
p

ϕ(λ)
s⊗N∇(m)

)
= pϕ(N(s⊗m)).

To check that N(FiliD) ⊂ Fili−1D, note that

N∇(E(u)i) = −uiE(u)i−1E′(u)λ = E(u)i
(
−uiE′(u)

ϕ(λ)
pc0

)
.

Thus N∇(FiliSK0 ⊗O M) ⊂ FiliSK0 ⊗O M . Now let x =
∑

i si ⊗mi ∈ FiliD. We claim that

E(u)(1 ⊗ ϕM )(N(x)) =
c0p

ϕ(λ)
N∇((1⊗ ϕM )(x)). (3.2.2)

In fact, since

E(u)N =
c0p

ϕ(λ)
N∇ and N∇ϕ =

E(u)
c0

ϕN∇,
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we have

E(u)(1 ⊗ ϕM )(N(x)) = E(u)
(∑

i

N(si)⊗ ϕM (mi) +
p

ϕ(λ)
si ⊗ ϕM (N∇(mi))

)

=
c0p

ϕ(λ)

(∑
i

N∇(si)⊗ ϕM (mi) + si ⊗N∇(ϕM (mi))
)

=
c0p

ϕ(λ)
N∇

(∑
i

si ⊗ ϕM (mi)
)

.

This proves the claim (3.2.2). Finally, to prove that N(x) ∈ Fili−1D, it suffices to show that
(1⊗ ϕM )(N(x)) ∈ Fili−1SK0 ⊗O M . But (3.2.2) has shown us that

E(u)(1 ⊗ ϕM )(N(x)) ∈ FiliSK0 ⊗O M.

Then we reduce our proof to the following lemma.

Lemma 3.2.2. Let x ∈ S (respectively Acris). If E(u)jx ∈ Filj+iS (respectively E([π])jx ∈
Filj+iAcris) then x ∈ FiliS (respectively x ∈ FiliAcris).

Proof. We have a natural embedding

S
u→[π]
↪→ Acris ↪→ B+

dR

with respect to filtration. By definition, FilnB+
dR = E([π])nB+

dR for all n � 0. Thus, if E([π])jx ∈
Fili+jB+

dR then x ∈ FiliB+
dR, as required.

Corollary 3.2.3. The following equivalences of categories commute.

MF(ϕ,N) D ��MF(ϕ,N)

Modϕ,N∇
/O

D

��
DO

�������������

Proof. Let M ∈ Modϕ,N∇
/O and D = DO(M). Proposition 3.2.1 has shown that DO(M) ∈MF(ϕ,N).

By Theorem 2.2.1, there exists a unique D ∈ MF(ϕ,N) such that DO(M) = D(D). It suffices to
check that D � D(M). There exists an isomorphism iS : SK0 ⊗ϕ,O M � D ⊗K0 SK0 inMF(ϕ,N).
Modulo u both sides, we get a K0-linear isomorphism i : D(M) � D. It is obvious that i is
compatible with ϕ and N structures on both sides. To see that i is compatible with filtration, recall
that the filtration on D(M) depends on the construction of the unique O[0,µ)-linear, ϕ-equivariant
morphism ξ in (3.1.2):

ξ : D(M)⊗K0 O[0,µ)
∼→ ϕ∗M ⊗O O[0,µ),

where µ is any fixed real number such that p−1/e < µ < p−1/pe. Choose µ such that p−1/((p−1)e) <
µ < p−1/pe. By (3.1.1), O[0,µ) is a subring of SK0. Then we have an isomorphism

ϕ∗M ⊗O O[0,µ) ⊗ SK0 �M ⊗O,ϕ SK0 = DO(M).

So ξ ⊗O[0,µ)
SK0 and iS induce an SK0-linear, filtration compatible isomorphism

(D(M)⊗K0 O[0,µ])⊗ SK0 � D ⊗K0 SK0.

Both sides define filtration on D(M) and D by modulo E(u) respectively. Therefore, filtration on
D(M) and D coincide.
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3.3 Finite ϕ-modules of finite height and finite Zp-representations of G∞

Recall that S = W (k)[[u]] with the endomorphism ϕ : S → S which acts on W (k) via Frobenius
and sends u to up. In this subsection, we first recall the theory in [Fon90] on finite ϕ-modules
over S of finite height and associated finite Zp-representations of G∞. Then we study the rela-
tions between finite ϕ-modules over S of finite height and filtered ϕ-modules over S, and their
associated finite representations of G∞. These results have been essentially done in [Bre98c] and
[Kis, § 1.1].

Denote by ′Modϕ
/S the category of S-modules M equipped with a ϕ-semi-linear map ϕM : M→

M such that the cokernel of the S-linear map: 1 ⊗ ϕM : S ⊗ϕ,S M → M is killed by E(u)r. (We
always drop the subscript M of ϕM if no confusion will arise.) We give ′Modϕ

/S the structure of
exact category induced by that on the abelian category of S-modules. We denote by Mod FIϕ/S
the full category of ′Modϕ

/S consisting of those M such that as an S-module M is isomorphic
to

⊕
i∈I S/pniS, where I is a finite set and ni is a positive integer. Finally we denote by Modϕ

/S

the full subcategory of ′Modϕ
/S consisting of those M which are S-finite free.

Recall that [π] ∈ W (R) was constructed in § 2.2. We embed S ↪→ W (R) by u → [π]. This
embedding is compatible with Frobenius endomorphisms. Denote by OE the p-adic completion of
S[1/u]. Then OE is a discrete valuation ring with the residue field the Laurent series ring k((u)). We
write E for the field of fractions of OE . If FrR denotes the field of fractions of R, then the inclusion
S ↪→ W (R) extends to OE ↪→ W (FrR). Let Eur ⊂ W (FrR)[1/p] denote the maximal unramified
extension of E contained in W (FrR)[1/p], and Our its ring of integers. Since FrR is easily seen to
be algebraically closed, the residue field Our/pOur is the separable closure of k((u)). We denote by
Êur the p-adic completion of Eur, and by Ôur its ring of integers. The completion Êur is also equal
to the closure of Eur in W (FrR)[1/p]. We write Sur = Ôur ∩W (R) ⊂W (FrR). We regard all these
rings as subrings of W (FrR)[1/p].

Recall that K∞ =
⋃

n�0 K(πn) and G∞ = Gal(K̄/K∞). We have that G∞ continuously acts on
Sur and Ôur and fixes the subring S ⊂W (R). Denote by Reptor(G∞) the category of finite length
Zp-representations of G∞. For an M ∈ Mod FIϕ/S, one can associate a finite length Zp-representation
of G∞ by [Fon90, B.1.8]:

TS : M→ HomS,ϕ(M,Sur[1/p]/Sur).

In [Fon90, §B.1.8.4] and [Fon90, §A.1.2], Fontaine has proved that the functor TS : Mod FIϕ/S →
Reptor(G∞) is an exact functor. If M �⊕m

i=1 S/pniS as finite S-modules, then

TS(M) �
m⊕

i=1

Z/pniZ

as finite Zp-modules. As the consequence, if M ∈ Modϕ
/S is a finite free S-module with rank d, and

we define

TS(M) = HomS,ϕ(M,Sur),

then TS(M) is a continuous finite free Zp-representation of G∞ with Zp-rank d.
As in [Bre98c] or [Kis, § 1.1], we define a functorMS : Mod FIϕ/S → ′Modϕ

/S as follows. We have
a map of W (k)-algebra S → S given by u → u, so we regard S as an S-algebra. We will denote
by ϕ the map S ↪→ S obtained by composing this map with ϕ on S. Given an M ∈ Mod FIϕ/S, set
M =MS(M) := S ⊗ϕ,SM.

One has the map 1⊗ ϕ : S ⊗ϕ,SM→ S ⊗SM. Set

FilrM = {y ∈M | (1⊗ ϕ)(y) ∈ FilrS ⊗S M ⊂ S ⊗S M}
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and define ϕr : FilrM→M as the composite

FilrM 1⊗ϕ �� FilrS ⊗S M
ϕr⊗1 �� S ⊗ϕ,SM =M.

This gives M the structure of an object in ′Modϕ
/S . We have the following result similar to

Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis].

Proposition 3.3.1 (Breuil, Kisin). The functorMS : Mod FIϕ/S → ′Modϕ
/S defined above induces

an exact and fully faithful functorMS : Mod FIϕ/S → Mod FIϕ/S . This functor is an equivalence of
categories between the full subcategories consisting of objects killed by p.

Proof. Lemma 2.2.1 in [Bre98c] and Proposition 1.1.11 in [Kis] proved the case r = 1. The idea of
the proof can be easily extended for 0 � r � p − 2. In particular, the equivalence of subcategories
consisting of p-torsion objects is again (almost) verbatim the proof of Theorem 4.1.1 in [Bre99a].

Corollary 3.3.2. The functor MS : Mod FIϕ/S → ′Modϕ
/S induces an exact and fully faithful

functorMS : Modϕ
/S → Modϕ

/S .

Remark 3.3.3. In fact, the functorMS can be proved to be an equivalence [CL07].

Note that Acris is an object in ′Modϕ
/S by defining ϕr := ϕ/pr on FilrAcris. For anyM ∈ Modϕ

/S ,
one can define a finite free continuous Zp-representation of G∞:

Tcris :M→ Hom′Modϕ
/S

(M, Acris) (3.3.1)

as in [Bre99a, § 2.3.1]. Let M ∈ Modϕ
/S and M = MS(M) ∈ Modϕ

/S . For any f ∈ TS(M) =
HomS,ϕ(M,Sur), consider the natural embedding ι : Sur ↪→ Acris. It is easy to check that
ϕ(ι ◦ f) ∈ Tcris(M) = Hom′Modϕ

/S
(M, Acris). Therefore, we get a natural map HomS,ϕ(M,Sur) →

Hom′Modϕ
/S

(MS(M), Acris).

Lemma 3.3.4. The natural map TS(M)→ Tcris(MS(M)) defined above is an isomorphism of finite
free Zp-representations of G∞.

Proof. It suffices to show that, for any M ∈Mod FIϕ
/S

, the natural map

HomS,ϕ(M,Sur[1/p]/Sur)→ Hom′Modϕ
/S

(MS(M), Acris[1/p]/Acris) (3.3.2)

is an isomorphism of finite Zp[G∞]-modules. Note that the left-hand side of (3.3.2) is an exact functor
on Mod FIϕ/S. The right-hand side is also an exact functor from the facts thatMS is exact (Propo-
sition 3.3.1) and Ext1′Modϕ

/S
(M, Acris[1/p]/Acris) = 0 for any M ∈ Mod FIϕ/S (Lemma 2.3.1.3

in [Bre99a]). Thus by the standard dévissage, it suffices to prove (3.3.2) for the case that p kills M,
and this is Proposition 4.2.1 in [Bre99b].

3.4 G∞-stable Zp-lattices in a semi-stable Galois representation
A (ϕ,N)-module over S is a finite free ϕ-module M ∈ Modϕ

/S, equipped with a linear endomorphism

N : M/uM ⊗Zp Qp → M/uM ⊗Zp Qp such that Nϕ = pϕN . We denote by Modϕ,N
/S the category

of (ϕ,N)-module over S, and by Modϕ,N
/S ⊗Zp Qp the associated isogeny category.1 The following

theorem is one of the main results (cf. Corollary 1.3.15) in [Kis06].

1Recall that, if C is an additive category, then the associated isogeny category D has the same objects and
HomD(A, B) = HomC(A, B) ⊗Z Q for all objects A and B.

72

https://doi.org/10.1112/S0010437X0700317X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700317X


On lattices in semi-stable representations

Theorem 3.4.1 (Kisin). There exists a fully faithful ⊗-functor Θ from the category of positive
weakly admissible filtered (ϕ,N)-modules MFw(ϕ,N) to Modϕ,N

/S ⊗Zp Qp.

Let M ∈ Modϕ,N
/S and M = M⊗SO. Then there exists a D ∈ MFw(ϕ,N) such that M = Θ(D)

if and only if there exists a differential operator N∇ on M such that (M,ϕ,N∇) ∈ Modϕ,N∇
/O ,

D(M) � D in MF(ϕ,N) and N∇ modu = N on M/uM⊗Zp Qp. Such N∇ (if it exists) is necessarily
unique.

Remark 3.4.2. (1) The above theorem is valid without any restriction of the maximal Hodge–Tate
weight. Here we only consider the case of Hodge–Tate weights in {0, . . . , r} with r � p− 2.

(2) The second paragraph of the above theorem is not the same as that of Corollary 1.3.15
in [Kis06]. However, they are equivalent (see Lemma 1.3.10 and Lemma 1.3.13 in [Kis06]), and our
description of Theorem 3.4.1 will be more convenient.

Furthermore, Kisin proved (cf. Proposition 2.1.5 in [Kis06]) that there exists a canonical bijection
(without restriction of maximal Hodge–Tate weights)

η : TS(M)⊗Zp Qp
∼→ Vst(D), (3.4.1)

which is compatible with the action of G∞ on the two sides. For our purpose to connect strongly
divisible lattices, we reconstruct (3.4.1) in a slightly different way.

Let D ∈ MFw(ϕ,N) be a weakly admissible filtered (ϕ,N)-module under our Assumption 2.3.1,
M = Θ(D) and (M,ϕ,N∇) ∈ Modϕ,N∇

/O as in Theorem 3.4.1. Let D = D(D) (recall that D(D) :=
S⊗W (k) D in § 2.2). By Corollary 3.2.3, we have D = SK0⊗ϕ,O M = SK0⊗ϕ,SM =MS(M)⊗Zp Qp,
whereMS is the functor defined in Corollary 3.3.2. Then we have a natural map of Zp[G∞]-modules

HomS,ϕ(M,Sur) ∼→ Hom′Modϕ
/S

(MS(M), Acris) ↪→ Hom′Modϕ
/S

(D, B+
cris). (3.4.2)

The first map is an isomorphism by Lemma 3.3.4. Recall that

Vst(D) = Hom′Modϕ,N
/S

(D, Âst[1/p]).

The canonical projection Âst → Acris defined by sending γi(X) to 0 induces a natural map:

Hom′Modϕ,N
/S

(D, Âst[1/p])→ Hom′Modϕ
/S

(D, B+
cris). (3.4.3)

We claim that the above map is a bijection. Let us accept the claim and postpone the proof in
Lemma 3.4.3. Recall that Theorem 2.2.1 has shown that there exists a canonical isomorphism
Vst(D) � Vst(D) as Qp-representations of G. Therefore, combining (3.4.2) and (3.4.3), we have a
natural injection

η : TS(M) ⊗Zp Qp ↪→ Vst(D)
of Qp[G∞]-modules and thus dimQp(Vst(D)) � rankS(M) = dimK0(D). An elementary argu-
ment [CF00, Proposition 4.5] showed that weak admissibility of D implies that dimQp(Vst(D))
has to be dimK0(D). Hence the map η is a bijection.

Lemma 3.4.3. The natural map defined in (3.4.3) is a bijection.

Proof. We follow the idea of Lemma 2.3.1.1 in [Bre99a]. For any f ∈ Hom′Modϕ,N
/S

(D, Âst[1/p]), let

f0 be its image of the map in (3.4.3). For any x ∈ D where D = D ⊗W (k) S, since N i(x) = 0 for i
big enough, we can easily check that

f(x) =
∞∑
i=0

f0(N i(x))γi(log(1 + X)), (3.4.4)
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where γi(x) = xi/i! is the standard divided power. So if f0 = 0, we have f = 0 because D
generates D. Thus (3.4.3) is injective. To prove the surjectivity, let f0 ∈ Hom′Modϕ

/S
(D, B+

cris). For
any y ∈ D, define

f(y) =
∞∑
i=0

f0(N i(y))γi(log(1 + X)).

To see that f is well defined, note that f(y) converges in B+
cris[[X]], and if x ∈ D then f(x) converges in

Âst[1/p] because N i(x) = 0 for i big enough. By a standard computation, we can easily check that
f : D → B+

cris[[X]] is S-linear. Therefore f : D → Âst[1/p] is well defined. It suffices to check
that f preserves Frobenius, monodromy and filtration. Since f0 preserves all these structures, it
is a straightforward calculation to check that f preserves Frobenius, monodromy and filtration,
combining with the facts that ϕ(log(1+X)) = p log(1+X), N(log(1+X)) = 1, N j(FiliD) ⊂ Fili−jD
and log(1 + X) ∈ Fil1Âst.

Remark 3.4.4. (1) Let Vcris(D) := Hom′Modϕ
/S

(D, B+
cris). The above lemma gives a natural transfor-

mation which makes the following diagram commutative.

MF(ϕ,N)
		

�����������

�����������

Vcris �� RepQp
(G∞)

MF(ϕ,N)
Vst �� RepQp

(G)

��

(2) From the above proof, we see that the lemma is always valid without any restriction of the
maximal Hodge–Tate weight.

One advantage of using (ϕ,N)-module over S is that we can classify all G∞-stable Zp-lattices
inside semi-stable representations. Let RepZp

(G∞) denote the category of continuous finite free
Zp-representations of G∞.

Lemma 3.4.5 (Kisin).

(1) Let V be a semi-stable representation with Hodge–Tate weights in {0, . . . , r}. For any G∞-
stable Zp-lattice T ⊂ V , there always exists an N ∈ Modϕ

/S such that TS(N) � T .

(2) The functor TS : Modϕ
/S → RepZp

(G∞) is fully faithful.

Proof. These are easy consequences of Lemma 2.1.15 and Proposition 2.1.12 in [Kis06]. We remark
that the lemma is valid without restriction of r.

Recall that M̃odϕ
/S denotes the category of quasi-strongly divisible lattices of weight r. Let

M∈ M̃odϕ
/S be a quasi-strongly divisible lattice. By Definition 2.3.3, there exists a D ∈MFw(ϕ,N)

such that M ⊂ D and D � D(D) with D weakly admissible. Let V := Vst(D) be the semi-stable
Galois representation. Then we can associate a G∞-stable Zp-lattice in V as the following:

M → Tcris(M) = Hom′Modϕ
/S

(M, Acris) ↪→ Hom′Modϕ
/S

(D, B+
cris) � Vst(D) = V.

Recall that the isomorphism Vst(D) ∼→ Hom′Modϕ
/S

(D, B+
cris) has been established in Lemma 3.4.3.

Therefore Tcris induces a functor from M̃odϕ
/S to Repst

Zp
(G∞), where Repst

Zp
(G∞) denotes the category

of G∞-stable Zp-lattices in semi-stable Galois representations with Hodge–Tate weights in {0, . . . , r}.

Proposition 3.4.6. The functor Tcris induces an anti-equivalence between M̃odϕ
/S and Repst

Zp
(G∞).
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Proof. We first prove the essential surjectivity of the functor. Let M = Θ(D) as in Theorem 3.4.1 and
D = D(D). By Corollary 3.2.3 and Theorem 3.4.1, we see that D = M⊗S,ϕSK0 and TS(M) is a G∞-
stable Zp-lattice in V via η. Suppose that T ⊂ V is a G∞-stable Zp-lattice. Then by Lemma 3.4.5,
there exists an N ∈ Modϕ

/S, such that T � TS(N). We claim that M ⊗Zp Qp � N ⊗Zp Qp. In
fact, since TS(M) and TS(N) are G∞-stable Zp-lattices in V , there exist G∞-equivariant maps
f : TS(M) → TS(N) and g : TS(N) → TS(M) such that f ◦ g = pnId. By full faithfulness
of TS, there exists F : N → M and G : M → N such that G ◦ F = pnId. Hence the claim
follows. Now put N = MS(N). We see that N is a quasi-strongly divisible lattice in D, and, by

Lemma 3.3.4, Tcris(N ) = T . This proves that the functor is essential surjective. LetM,N ∈ M̃odϕ
/S

and f : Tcris(N ) → Tcris(M) a morphism of Zp[G∞]-module. From the above proof, there exist
M,N ∈ Modϕ

/S such that TS(M) = Tcris(M) and TS(N) = Tcris(N ). Since TS is fully faithful
(Lemma 3.4.5(2)), there exists f : M → N a morphism in Modϕ

/S such that TS(f) = f . Then by
Corollary 3.3.2 and Lemma 3.3.4, we have Tcris(MS(f)) = f . It suffices to show thatM =MS(M)
and N =MS(N). Therefore, we reduce the proof to the following lemma.

Lemma 3.4.7. Fix a D ∈MFw(ϕ,N). LetM,M′ be two quasi-strongly divisible lattices contained
in D. If Tcris(M) = Tcris(M′) then M =M′.

We postpone our proof of this lemma till after Lemma 5.3.1.

We may summarize our discussion in this subsection into the follow commutative diagram.

Modϕ
/S

� � MS ��
� �

TS




Modϕ

/S
Tcris �� RepZp

(G∞)

M̃odϕ
/S

��

��

Tcris

∼ �� Repst
Zp

(G∞)
��

��

3.5 Full faithfulness of Tst

Now suppose that T is a G-stable Zp-lattice in a semi-stable Galois representation V . By Proposition
3.4.6, there exists a quasi-strongly divisible lattice M in D such that Tcris(M) = T |G∞ and there
exists an M ∈ Modϕ

/S such thatM =MS(M).

Proposition 3.5.1. Let the notation be as the above. If N(M) ⊂M, then (M, ϕ,FilrM, N) is a
strongly divisible lattice in D and Tst(M) = T .

Proof. Clearly M is a strongly divisible lattice in D. It suffices to prove that Tst(M) = T . By
Proposition 2.3.4,

Tst(M) = Hom′Modϕ,N
/S

(M, Âst) ⊂ Vst(D) � Vst(D) = V

is a G-stable Zp-lattice. As in (3.4.3), the canonical projection Âst → Acris defined by sending
γi(X)→ 0 induces a natural map

Tst(M) = Hom′Modϕ,N
/S

(M, Âst)→ Hom′Modϕ
/S

(M, Acris) = Tcris(M). (3.5.1)
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Then we have the following commutative diagram.

Hom′Modϕ,N
/S

(M, Âst)

(3.5.1)

��

� � �� Hom′Modϕ,N
/S

(D, Âst[1/p])


 (3.4.3)

��
Hom′Modϕ

/S
(M, Acris) � � �� Hom′Modϕ

/S
(D, B+

cris)

T
� � �� V

Thus it suffices to show that (3.5.1) is an isomorphism of Zp-modules. This has been proved
in [Bre99a, § 2.3.1].
Corollary 3.5.2. The functor Tst in Conjecture 1.0.1 (Breuil’s conjecture) is fully faithful.

Proof. Let M, M′ be strongly divisible lattices, D = M⊗Zp Qp, D′ = M′ ⊗Zp Qp and Tst(M),
Tst(M′) be G-stable Zp-lattices in Vst(D), Vst(D′) respectively. Suppose that f : Tst(M)→ Tst(M′)
is a morphism of Zp[G]-modules. Tensoring by Qp, there exists an f : D′ → D such that Vst(f) =
f ⊗Zp Qp. It suffices to show that f(M′) ⊂M. Select an n such that pnf(M′) ⊂M. Then g := pnf

is a morphism of strongly divisible lattices and Tst(g) = pnf . Note that (3.5.1) is an isomorphism
of Zp[G∞]-modules. So if g is regarded as a morphism of quasi-strongly divisible lattices, we have
Tcris(g) = Tst(g) = pnf . On the other hand, by Proposition 3.4.6, Tcris is fully faithful, and there
exists a morphism g′ :M′ →M in Modϕ

/S such that Tcris(g′) = f . Therefore png′ = g = pnf. Then
f = g′ and f(M′) = g′(M′) ⊂M.

Also we reduce the proof of the essential surjectivity of Tst to the following lemma.

Lemma 3.5.3. With notation as above, if T is G-stable then N(M) ⊂M.

We will devote the next two sections to prove this lemma. Combining with Proposition 3.5.1,
Corollary 3.5.2 and Proposition 3.4.6, we prove the Main Theorem (Theorem 2.3.5) and the following
result.

Theorem 3.5.4. The functor Tcris induces an anti-equivalence between the category of quasi-
strongly divisible lattices of weight r and the category of G∞-stable Zp-lattices inside semi-stable
Galois representations with Hodge–Tate weights in {0, . . . , r}. Furthermore, a quasi-strongly divis-
ible lattice M is strongly divisible if and only if Tcris(M) is G-stable.

4. Cartier dual and a theorem to connect M with Tcris(M)

In this section, we extend a theorem of Faltings (cf. [Fal99, Theorem 5]) to a more general setting to
connect filtered ϕ-modules over S with their associated Zp-representations of G∞. This theorem is
one of the technical keys to prove Lemma 3.5.3. For this purpose, we need a more explicit structure
of FilrM and a notion of Cartier dual for M ∈ Modϕ

/S . Luckily, such a Cartier dual is available
from the thesis of Caruso [Car05]. In the following two sections, we always regard W (k)[u] and S
as subrings of Acris via u → [π], and denote the identity matrix by I.

4.1 Structure of filtration of quasi-strongly divisible lattice
Lemma 4.1.1. Let A be a d × d matrix with coefficients in W (k)[u]. Suppose that there exists
matrices B′ and C with coefficients in S and FilpS respectively such that AB′ = E(u)rI + C. Then
the following hold.

76

https://doi.org/10.1112/S0010437X0700317X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700317X


On lattices in semi-stable representations

(1) There exists a matrix B with coefficients in S such that AB = E(u)rI.

(2) Let ai ∈ Acris for i = 1, . . . , d. If (a1, . . . , ad)A is in FilrAcris, then there exist bi ∈ Acris and
ci ∈ FilpAcris for i = 1, . . . , d such that

(a1, . . . , ad) = (b1, . . . , bd)B + (c1, . . . , cd).

Proof. Note that, for any f ∈ S, we can always write f = f0 + f1 with f0 ∈ W (k)[u] and f1 ∈
FilpS. So B′ = B0 + B1 with the coefficients of B0 in W (k)[u] and the coefficients of B1 in FilpS.
Therefore, E(u)rI = AB0 + C1 with the coefficients of C1 in W (k)[u] ∩ FilpS = E(u)pW (k)[u].
Thus C1 = E(u)pC2 with the coefficients of C2 in W (k)[u]. Now we have E(u)rI = AB0 +E(u)pC2.
Since E(u)n → 0 p-adically in S when n→∞, so I −E(u)p−rC2 is invertible. Thus we obtain

E(u)rI = AB0(I − E(u)p−rC2)−1. (4.1.1)

Let B = B0(I − E(u)p−rC2)−1 and we settle part (1).
For part (2), write (a1, . . . , ad) = (b′1, . . . , b

′
d) + (c1, . . . , cd) with b′i ∈W (R) and ci ∈ FilpAcris for

i = 1, . . . , d. It suffices to prove that there exists bi ∈ Acris such that (b′1, . . . , b′d) = (b1, . . . , bd)B.
Note that

(a1, . . . , ad)A = (b′1, . . . , b
′
d)A + (c1, . . . , cd)A ∈ FilrAcris.

Then (b′1, . . . , b′d)A ∈ FilrAcris ∩ W (R) = E(u)rW (R). So there exists bi ∈ W (R) such that
(b′1, . . . , b′d)A = E(u)r(b1, . . . , bd). Multiplying by B on both sides, we get (b′1, . . . , b′d)AB = E(u)r

(b1, . . . , bd)B. Finally, (b′1, . . . , b′d) = (b1, . . . , bd)B as required.

Proposition 4.1.2. Let M∈ Modϕ
/S . There exists α1, . . . , αd ∈ FilrM such that:

(1) FilrM =
⊕d

i=1 Sαi + (FilpS)M;

(2) E(u)rM⊆⊕d
i=1 Sαi and (ϕr(α1), . . . , ϕr(αd)) is a basis of M.

Proof. Considering M/pM, by Proposition 2.2.1.3 in [Bre99a], M/pM has a ‘base adaptée’, i.e.
there exist a basis (e1, . . . , ed) of M and α1, . . . , αd ∈ FilrM such that

FilrM/p FilrM =
d⊕

i=1

S1ᾱi + FilpS1(M/pM) (4.1.2)

such that (ᾱ1, . . . , ᾱd) = (ur1 ē1, . . . , u
rd ēd) with 0 � ri � er, where S1 = S/pS and ᾱi, ēi is the

image of αi, ei in M/pM respectively. Let

M̃ =
d⊕

i=1

Sαi + (FilpS)M.

Then M̃ ⊂ FilrM. We claim that the natural map

f : M̃/FilpSM→ FilrM/FilpSM
is surjective. To see the claim, note that S/FilpS ∼→W (k)[u]/(E(u)p) is Noetherian. By Nakayama’s
lemma, it suffices to show that f mod p is a surjection. Note that

FilrM/FilpSMmod p = (FilrM)1/(FilpSM)1,

where (FilrM)1 = FilrM/p FilrM and (FilpSM)1 = FilpSM/p FilpSM. By (4.1.2), we see that
f mod p is surjective and thus prove the claim. Then

FilrM = M̃ =
d⊕

i=1

Sαi + (FilpS)M. (4.1.3)
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Let (α1, . . . , αd) = (e1, . . . , ed)A where A is a d×d matrix with coefficients in S. Write A = A0 +
A1 with the coefficients of A0 in W (k)[u] and the coefficients of A1 in FilpS. Replacing (α1, . . . , αd)
by (e1, . . . , ed)A0, we can always assume that the coefficients of A are in W (k)[u]. By (4.1.3), there
exist d × d matrices B′, C with coefficients in S, FilpS respectively such that E(u)rI = AB′ + C.
Then by Lemma 4.1.1, there exists a B with coefficients in S such that AB = E(u)rI. Therefore
E(u)rM ⊂⊕d

i=1 Sαi. Since ϕr(FilrM) generates M and one always has p|ϕr(FilpS), we see that
(ϕr(α1), . . . , ϕr(αd)) is a basis of M.

Let D ∈MF(ϕ,N) be a filtered (ϕ,N)-module over S. Following [Bre97, § 3], we define

Filr(Acris ⊗S D) =
r∑

i=0

Im(Filr−iAcris ⊗S FiliD), (4.1.4)

where Im(Filr−iAcris ⊗S FiliD) is the image of Filr−iAcris ⊗S FiliD in Acris ⊗S D. We also define
Filr(Acris ⊗SM) = Filr(Acris ⊗S D) ∩ (Acris ⊗SM).

Corollary 4.1.3. With the notation as in Proposition 4.1.2, we have

Filr(Acris ⊗SM) =
d⊕

i=1

Acris ⊗ αi + FilpAcris ⊗SM.

Proof. Since we always have Filr−iS · FiliD ⊂ FilrD, it is easy to see that

Filr(Acris ⊗S D) = Acris ⊗S FilrD.

Then the corollary follows the fact that FiliM = FiliD ∩M.

By the above corollary, we can ϕAcris
-semi-linearly extend ϕr ofM to

ϕr : Filr(Acris ⊗SM)→ Acris ⊗SM
and we see that (Acris ⊗SM,Filr(Acris ⊗SM), ϕr) is an object in ′Modϕ

/S .

4.2 Cartier dual on Modϕ
/S

In this subsection, we recall the construction of Cartier dual on Modϕ
/S

from [Car05]. Let M ∈
Modϕ

/S . Define M∗ := HomS(M, S),

FilrM∗ := {f ∈M∗ | f(FilrM) ⊂ FilrS}
and

ϕr : FilrM∗ →M∗, for all x ∈ FilrM, ϕr(f)(ϕr(x)) = ϕr(f(x)).

Note that ϕr(f) is well defined because ϕr(FilrM) generates M.

Theorem 4.2.1 (Caruso). The functorM→M∗ induces an exact anti-equivalence on Modϕ
/S and

(M∗)∗ =M.

Proof. Proposition V 3.3.1 in [Car05] proved the theorem on the category of strongly divisible
lattices. The same proof also works on Modϕ

/S if we ignore monodromy.

Example 4.2.2. Let S∗ be the Cartier dual of S. Then S∗ is the S-rank-1 quasi-strongly divisible
lattice with FilrS∗ = S and ϕr(1) = 1.
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4.3 Application to Galois representations
Let M ∈ Modϕ

/S and M∗ be its Cartier dual. The canonical perfect pairing M×M∗ → S in the
construction of Cartier dual is compatible with filtration and Frobenius on both sides. Taking
the Cartier dual on both sides, and noting that (M∗)∗ �M by Theorem 4.2.1, we have a map

i : S∗ →M∗ × (M∗)∗ �M∗ ×M.

Since i is compatible with filtration and Frobenius, i induces a pairing

ĩ : Hom′Modϕ
/S

(M, Acris)×Hom′Modϕ
/S

(M∗, Acris)→ Hom′Modϕ
/S

(S∗, Acris). (4.3.1)

Lemma 4.3.1. The above pairing induces a perfect paring of Zp-representations of G∞:

Tcris(M)× Tcris(M∗)→ Tcris(S∗) � Zp(r). (4.3.2)

Proof. It suffices to show that the pairing (4.3.2) is perfect by modulo p. The proof of this assertion
is contained in the proof of Theorem V 4.3.1 in [Car05]. Although the hypotheses of Theorem V 4.3.1
require er < p−1, the statement is always valid for any e if we only consider the pairing induced by
filtered ϕ-modules over S killed by p, as explained in Caruso’s remark in the end of the proof.

We use A∗
cris to denote Acris with noncanonical filtration FilrA∗

cris = Acris and Frobenius
ϕr(1) = 1.

Lemma 4.3.2. There are natural isomorphisms of Zp[G∞]-modules:

HomAcris,Filr,ϕ(A∗
cris, Acris ⊗SM∗) � Filr(Acris ⊗SM∗)ϕr=1 � Hom′Modϕ

/S
(M, Acris).

Proof. While the first isomorphism is totally trivial to check, the second isomorphism needs some
arguments. Let α1, . . . , αd ∈ FilrM constructed in Proposition 4.1.2, (e1, . . . , ed) = (ϕr(α1), . . . ,
ϕr(αd)) a basis ofM and (e∗1, . . . , e∗d) the dual basis. Write (α1, . . . , αd) = (e1, . . . , ed)A where A is
a d × d matrix with coefficients in S. By the argument after formula (4.1.3), we may assume that
all the coefficients of A are in W (k)[u]. By Lemma 4.1.1, there exists a matrix B with coefficients
in S such that AB = BA = E(u)rI. Put (α∗

1, . . . , α
∗
d) = (e∗1, . . . , e

∗
d)B

t (here t means transpose). It
is easy to check that α∗

i ∈ FilrM∗ for i = 1, . . . , d.
Forgetting filtration and Frobenius structure for a while, sinceM is S-finite free, we can identify

Acris ⊗SM∗ with HomS(M, Acris) by sending
∑d

i=1 ai ⊗ e∗i to
∑d

i=1 aie
∗
i . For any

f ∈ Filr(Acris ⊗SM∗) = Acris ⊗S FilrM∗ (Corollary 4.1.3),

write f =
∑

i ai⊗fi with ai ∈ Acris and fi ∈ FilrM∗. Then for any x ∈ FilrM, f(x) =
∑

i aifi(x) ∈
FilrS · Acris ⊂ FilrAcris. That is, f is a map from M to Acris preserving filtration. On the other
hand, let f be an S-linear map from M to Acris preserving filtration. Then f(αi) ∈ FilrAcris for
all i = 1, . . . , d. Denote ai = f(ei), i = 1, . . . , d. We have (a1, . . . , ad)A ∈ FilrAcris where A is the
matrix constructed in the first paragraph. By Lemma 4.1.1, we have

(a1, . . . , ad) = (b1, . . . , bd)B + (c1, . . . , cd)

with bi ∈ Acris and ci ∈ FilpAcris for i = 1, . . . , d. So we have

f =
d∑

i=1

aie
∗
i =

d∑
i=1

biα
∗
i +

d∑
i=1

cie
∗
i ∈ Filr(Acris ⊗SM∗).

Therefore, we have that f ∈ HomS(M, Acris) preserves filtration if and only if f ∈ Filr(Acris⊗SM∗).
Now suppose that f ∈ HomS(M, Acris) also preserves Frobenius, that is, f(ϕr(x)) = ϕr(f(x)) for
all x ∈ FilrM. Then

ϕr(f)(ei) = ϕr(f)(ϕr(αi)) = ϕr(f(αi)) = f(ϕr(αi)) = f(ei), ∀ i = 1, . . . , d.
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Therefore, ϕr(f) = f . On the other hand, if f ∈ Filr(Acris⊗SM∗)ϕr=1, reversing the above argument
shows that f ∈ Hom′Modϕ

/S
(M, Acris).

By the above lemma, we get

Tcris(M) � Filr(Acris ⊗SM∗)ϕr=1 ↪→ Acris ⊗SM∗. (4.3.3)

So we also have Tcris(M∗) ↪→ Acris ⊗SM.
From now on, we choose a generator t of (Fil1Acris)ϕ1=1 to identify Tcris(S∗) with Zp(1). We will

use a specific generator in § 5 and still denote it by t. See the discussion after Lemma 5.1.2.

Corollary 4.3.3. The following diagram commutes.

Tcris(M)× Tcris(M∗) � � ��

(4.3.2)
��

Acris ⊗SM∗ ×Acris ⊗SM

��
Zp(r)

1�→tr �� Acris

(4.3.4)

Here the top row is induced by (4.3.3) and the right column is induced by the canonical pairing
M×M∗ → S.

Proof. This follows from the fact that (4.3.2) is induced by taking the dual of the canonical pairing
M×M∗ → S.

Now we can construct the following theorem to compare M⊗S Acris with T∨
cris(M)⊗Zp Acris.

Theorem 4.3.4. There exist Acris-linear injections

ι∗ : T∨
cris(M)(r) ⊗Zp A∗

cris → Acris ⊗SM, ι : Acris ⊗SM→ T∨
cris(M)⊗Zp Acris,

such that ι and ι∗ are compatible with G∞-actions, Frobenius and filtration. Furthermore, ι ◦ ι∗ =
Id⊗ tr.

Remark 4.3.5. (1) Suppose that M is further a strongly divisible lattice. Let D =M⊗Zp Qp and
D ∈ MFw(ϕ,N) such that D = D(D). In [Bre97], Breuil extended the classical isomorphism

D ⊗K0 Bst � V ∨
st (D)⊗Qp Bst

to the B̂st-version: ιS : D ⊗S B̂st � V ∨
st (D) ⊗Qp B̂st where B̂st := Âst[1/p, 1/t]. Note that Bst is a

B̂st-algebra after modulo X. It is not hard to see that ιS ⊗B̂st
Bst � ι ⊗Acris

Bst. Therefore, ι may
be seen as an integral version of ιS .

(2) There exists a geometric interpretation of the above theorem. Conjecturally, the log-
crystalline cohomology M of a scheme X over OK (with some hypotheses) satisfies the axioms
of strongly divisible modules, whereas the étale cohomology is closely related to Tcris(M). In the
above situation, the morphism in Theorem 4.3.4 should correspond to an integral version of period
isomorphism between these cohomologies. See [Bre02, § 4] for the exposé of this direction.

(3) If M comes from an M ∈ Modϕ
/S, i.e. M =MS(M), then we have a similar result to the

above theorem without restriction of r; see [Liu, § 5.3] for details.

Proof of Theorem 4.3.4. We use the same idea as the proof of Theorem 5(ii) in [Fal99]. First an
easy computation shows that Tcris(M) = HomAcris,Filr ,ϕ(Acris ⊗SM, Acris). Then we get a map

ι̃ : Tcris(M)×Acris ⊗SM→ Acris. (4.3.5)

Therefore, we get a natural map

ι : Acris ⊗SM→ T∨
cris(M)⊗Zp Acris,
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and it is easy to check that ι preserves G∞-actions, Frobenius and filtration. On the other hand, by
(4.3.3) and Lemma 4.3.1, we get

ι∗ : Tcris(M∗)⊗Zp A∗
cris = T∨

cris(M)(r)⊗Zp A∗
cris ↪→ Acris ⊗SM,

and Lemma 4.3.2 shows that the above map is compatible with G∞-actions, Frobenius and filtration.
Combining ι∗ with (4.3.5), it suffices to show that the following diagram commutes.

Tcris(M) × Tcris(M∗)⊗Zp A∗
cris

Id×ι∗ ��

(4.3.2)⊗Id
��

Tcris(M)×Acris ⊗SM
(4.3.5)

��
Zp(r)⊗Zp A∗

cris
1�→tr �� Acris

Note that we have an injection Tcris(M) ↪→ Acris⊗SM∗ by (4.3.3). So the commutativity of the above
diagram follows the commutativity of diagram (4.3.4), and this is proved in Corollary 4.3.3.

Let α1, . . . , αd ∈ FilrM as in Proposition 4.1.2 and e1, . . . , ed ∈ M a basis of M. Let e1, . . . , ed

be a basis of T∨
cris(M). By Theorem 4.3.4, we have

ι(α1, . . . , αd) = (ed, . . . , ed)C,

where C is a d× d matrix with coefficients in FilrAcris.

Lemma 4.3.6. There exists a d× d matrix C ′ with coefficients in Acris such that the coefficients of
C ′C − trI are all in FilpAcris.

Proof. Forgetting G∞-actions, Frobenius and filtration structures, we may identify T∨
cris(M)⊗ZpAcris

with T∨
cris(M)(r)⊗Zp A∗

cris as finite free Acris-modules. In particular, we regard (e1, . . . , ed) as a basis
of T∨

cris(M)(r). Then ι∗ ◦ ι makes sense and ι∗ ◦ ι = tr ⊗ Id by Theorem 4.3.4. Therefore, we get

tr(α1, . . . , αd) = ι∗ ◦ ι(α1, . . . , αd) = ι∗(e1, . . . , ed)C. (4.3.6)

Note that FilrA∗
cris = Acris, so that (e1, . . . , ed) ∈ Filr(T∨

cris(M)(r)⊗Zp A∗
cris), and then ι∗(e1, . . . , ed)

is in Filr(M⊗S Acris). By Corollary 4.1.3, we have

ι∗(e1, . . . , ed) = (α1, . . . , αd)C ′ + (e1, . . . , ed)D, (4.3.7)

where e1, . . . , ed is a basis of M, and C ′ and D are d × d matrices with coefficients in Acris and
FilpAcris respectively. Write (α1, . . . , αd) = (e1, . . . , ed)A with A a d× d matrix. Combining (4.3.6)
and (4.3.7), we have

trA = AC ′C + DC.

By Proposition 4.1.2, there exists a d × d matrix B with coefficients in S such that AB = BA =
E(u)rI, so we get E(u)r(trI−C ′C) = BDC. Note that the coefficients of C and D are in FilrAcris and
FilpAcris respectively. Thus the coefficients of E(u)r(trI −C ′C) are in Filr+pAcris. By Lemma 3.2.2,
the coefficients of C ′C − trI are all in the FilpAcris.

5. The proof of Lemma 3.5.3

In this section, we will show how to recover monodromy N on M by the G-action on T and
then prove Lemma 3.5.3. Recall that T is a G-stable Zp-lattice in a semi-stable p-adic Galois
representation V , M = MS(M) the quasi-strongly divisible lattice such that Tcris(M) = T |G∞
(Proposition 3.4.6) and D :=M⊗Zp Qp ∈MFw(ϕ,N) satisfying V � Vst(D). We first construct a
G-action on Acris ⊗S D by using N on D.
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5.1 G-action on Acris ⊗S D
We already have a natural semi-linear G∞-action on Acris ⊗S D induced from the G∞-action on
Acris. We extend this to a G-action by using N on D. For any σ ∈ G, recall that ε(σ) = σ([π])/[π].
For any a⊗ x ∈ Acris ⊗S D, define

σ(a⊗ x) =
∞∑
i=0

σ(a)γi(−log(ε(σ)))⊗N i(x), (5.1.1)

where γi(x) = xi/i! is the standard divided power. Note that if σ ∈ G∞, then log(ε(σ)) = 0 and
σ(a ⊗ x) = σ(a) ⊗ x. Thus G-action defined above (if it is well defined) is compatible with the
natural G∞-action on Acris ⊗S D.

Lemma 5.1.1. The above action is a well defined Acris-semi-linear G-action on Acris ⊗S D and
compatible with Frobenius and filtration.

Proof. In fact, this result has been explicitly or nonexplicitly used in several papers, e.g. [Fal99,
§ 4]. To see that the series on the right side of (5.1.1) converges, note that D = D ⊗W (k) S and N
is nilpotent on D. It suffices to show that γi(−log(ε(σ))) → 0 when i → ∞. This is a well-known
result. See for example, [Fon94a, § 5.2.4].

For any f(u) ∈ S, x ∈ D and σ, τ ∈ G, we need to check that:

(1) σ(1⊗ f(u)x) = σ(f([π])⊗ x) = f(σ([π]))⊗ σ(x);
(2) σ(τ(1 ⊗ x)) = (σ ◦ τ)(1⊗ x);
(3) the G-action preserves filtration and commutes with ϕ.

It is fairly standard direct calculations to check these equations combined with the facts that
Fil1S ·N(FiliD) ⊂ FiliD, log(ε(σ)) ∈ Fil1Acris and Nϕ = pϕN in D.

One the other hand, given the G-action on Acris ⊗S D defined via (5.1.1), we want to define a
certain logarithm of the G-action to recover N . (We should be careful at this point because the
G-action is not linear.) A technical result is needed to define such a logarithm.

For any field extension F over Qp, denote Fp∞ =
⋃∞

n=1 F (ζpn) with ζpn a pnth primitive root of
unity. Thus K∞,p∞ =

⋃∞
n=1 K( pn√

π, ζpn) is Galois. So we have the following field extensions.

K∞,p∞

���
��

K∞

�����
Kp∞

HK
������

K

������

Let HK = Gal(Kp∞/K) ⊂ Gal(Qp,p∞/Qp) � Z×
p . So HK may be identified as a closed subgroup

of Z×
p .

Lemma 5.1.2. The following hold:

(1) Kp∞ ∩K∞ = K;
(2) Gal(K∞,p∞/K∞) � HK and Gal(K∞,p∞/Kp∞) � Zp(1);
(3) Gal(K∞,p∞/K) = Gal(K∞,p∞/Kp∞)�Gal(K∞,p∞/K∞) � Zp(1)�HK , and HK acts on Zp(1)

by the cyclotomic character.

Proof. We only need to prove part (1). For any n � 0, let Fn = K(πn) ∩Kp∞ and denote K(πn)
by Kn. We prove that Fn = K by an induction on n. The case n = 0 is trivial. Now suppose that
Fn = K and Fn+1 
= K. We first show that ζp ∈ K. Note that

[Fn+1 ·Kn : Kn] | [Kn+1 : Kn] = p and Fn+1 ·Kn 
= Kn.
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We have [Fn+1·Kn : Kn] = p and Fn+1·Kn = Kn+1. Since Fn+1 is abelian over K and Fn+1∩Kn = K,
Kn+1/Kn is Galois and Gal(Kn+1/Kn) � Gal(Fn+1/K). Let σ ∈ Gal(Kn+1/Kn) be a nontrivial
element; then σ(πn+1)/πn+1 ∈ Kn+1 is a nontrivial pth root of unity. So ζp ∈ Kn+1. Note that

[Kn(ζp) : Kn] � p− 1 and [Kn(ζp) : Kn] | [Kn+1 : Kn] = p.

We have Kn(ζp) = Kn and ζp ∈ Kn. By the induction that Fn = K, we get ζp ∈ K.
Now Gal(Kp∞/K) is a closed subgroup of Gal(Qp,p∞/Qp(ζp)) � 1+pZp. Note that p > 2. By tak-

ing p-adic logarithm, we see that 1+pZp � Zp as pro-p-groups. Hence any closed subgroup of 1+pZp

has the form 1+pnZp. Since [Fn+1 : K] = p, there exists an m such that Gal(Kp∞/K) � 1+pmZp �
Gal(Qp,p∞/Qp(ζpm)) and Gal(Kp∞/Fn+1) � 1 + pm+1Zp � Gal(Qp,p∞/Qp(ζpm+1)). Therefore ζpm ∈
K, ζpm+1 
∈ K and Fn+1 = K(ζpm+1). In particular, Gal(Kn+1/Kn) � Gal(K(ζpm+1)/K(ζpm)) �
Z/pZ. Choose σ ∈ Gal(Kn+1/Kn) such that σ(ζpm+1) = ζpζpm+1. Then σ(πn+1) = ζb

pπn+1 for some
b ∈ (Z/pZ)×. Write

ζpm+1 =
p−1∑
i=0

aiπ
i
n+1 with ai ∈ OKn .

Then

ζpζpm+1 = σ(ζpm+1) = σ

(p−1∑
i=0

aiπ
i
n+1

)
=

p−1∑
i=0

aiζ
bi
p πi

n+1.

Thus we have a0 = ζpa0 and a0 = 0. Then ζpm+1 is not a unit. This is a contradiction. Therefore
Fn+1 has to be K.

Remark 5.1.3. The above lemma fails if p = 2 in general. For example, let K = Q2 and π = 2. Then
Q2(
√

2) ⊂ Q2(ζ8). On the other hand, if Q2(ζ4) ⊂ K, then Gal(K2∞/K) ⊂ Gal(Q2,2∞/Q2(ζ4)) �
1 + 4Z2. The above strategy by p-adic logarithm also works here and we still have K2∞ ∩K∞ = K.

Fix a topological generator τ of Gal(K∞,p∞/Kp∞). The above lemma shows that −log(ε(τ)) is
a generator of (Fil1Acris)ϕ1=1. So from now on, we fix t := −log(ε(τ)). Note that τ acts trivially on
ε(τ), thus on t. Therefore, for any n � 0 and x ∈ D, an easy induction on n shows that

(τ − 1)n(x) =
∞∑

m=n


 ∑

i1+···+in=m, ij�1

m!
i1! · · · in!


 γm(t)⊗Nm(x). (5.1.2)

In particular, (τ − 1)n(x) ∈ FilnB+
cris ⊗S D and ((τ − 1)n/n)(x) → 0 p-adically as n → ∞ (in fact,

it is easy to show that γn(t)/n→ 0 p-adically, see [Fon94a, § 5.2.4]). So we can define

log(τ)(x) =
∞∑

n=1

(−1)n−1 (τ − 1)n

n
(x) (5.1.3)

and a direct computation shows that

log(τ)(x) = t⊗N(x). (5.1.4)

5.2 A Qp-version of Theorem 4.3.4
Let D ∈ MFw(ϕ,N) be a weakly admissible filtered (ϕ,N)-module and

D = D(D) := D ⊗W (k) S ∈MFw(ϕ,N).

By Lemma 3.4.3, the map

Vst(D) = Hom′Modϕ,N
/S

(D, Âst[1/p])→ Hom′Modϕ
/S

(D, B+
cris) (5.2.1)
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induced by the canonical projection Âst → Acris defined by sending γi(X) → 0 is an isomorphism
compatible with G∞-action. On the other hand,

Hom′Modϕ
/S

(D, B+
cris) � HomAcris,Fil·,ϕ(Acris ⊗S D, B+

cris). (5.2.2)

By Lemma 5.1.1, we have a natural G-action on Acris ⊗S D via (5.1.1). So there exists a G-action
on the right side of (5.2.2) defined by

σ(f)(x) = σ(f(σ−1(x))) for any x ∈ Acris ⊗D.

Combining (5.2.1) with (5.2.2) together, we have the next result.

Lemma 5.2.1. The map

Vst(D) = Hom′Modϕ,N
/S

(D, Âst[1/p])→ HomAcris,Fil·,ϕ(Acris ⊗S D, B+
cris)

induced by (5.2.1) and (5.2.2) is a G-equivariant isomorphism.

Proof. Lemma 3.4.3 has proved that the above map is a Qp-linear bijection. So we only need
to check the G-equivariance. For any f ∈ Hom′Modϕ,N

/S
(D, Âst[1/p]), let f0 ∈ Hom′Modϕ

/S
(D, B+

cris)

be its image of the map defined in (5.2.1). It suffices to check, for any x ∈ D, σ ∈ G, that
σ(f)0(x) = σ(f0(σ−1(x))). Using (3.4.4) and the fact that σ(X) = ε(σ)X + ε(σ) − 1, we have

σ(f(x)) =
∑
i�0

σ(f0(N i(x)))γi(log(1 + σ(X)))

=
∑
i�0

σ(f0(N i(x)))
i∑

j=0

γi−j(log(ε(σ)))γj(log(1 + X)).

Modulo X, we then get

σ(f)0(x) =
∑
j�0

σ(f0(N j(x)))γj(log(ε(σ)))

= σ

(
f0

(∑
j�0

γj(log(σ−1ε(σ))) ⊗N j(x)
))

= σ(f0(σ−1(x))).

Corollary 5.2.2. The B+
cris-linear injections

ι⊗Zp Qp : Acris ⊗S D → V ∨
st (D)⊗Zp Acris,

ι∗ ⊗Zp Qp : V ∨
st (D)(r)⊗Zp A∗

cris → Acris ⊗S D,

are compatible with G-actions, where ι and ι∗ are constructed as in Theorem 4.3.4.

5.3 Proof of the Main Theorem

We use the same notation as in § 3.5 and Lemma 3.5.3. Recall that T is a G-stable Zp-lattice
in a semi-stable p-adic Galois representation V , and M the quasi-strongly divisible lattice such
that Tcris(M) = T |G∞ (Proposition 3.4.6). Also recall that τ is the fixed topological generator of
Gal(K∞,p∞/Kp∞) discussed in § 5.1. We will use Lemma 4.3.6 and Corollary 5.2.2 to prove that N
is stable on M in two steps. The first step is to show that Acris ⊗S M is G-stable in Acris ⊗S D.
More generally, we have the following lemma.
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Lemma 5.3.1. We use the notation as in Theorem 4.3.4. Let M,M′ ∈ Modϕ
/S . Suppose that we

have the commutative diagram

Acris ⊗SM′

f

��

ιM′ �� T∨
cris(M′)⊗Zp Acris

f
��

Acris ⊗SM ιM �� T∨
cris(M)⊗Zp Acris

(5.3.1)

where f and f are Acris-linear or τ -semi-linear morphisms compatible with Frobenius and filtration.
Then we have that, if p|f , then p|f.
Proof. We only prove the lemma in the case that f and f are Acris-linear. The proof for the τ -semi-
linear case is totally the same.

Let d′ be the S-rank ofM′, and α′
1, . . . , α

′
d′ ∈ FilrM′ such that ϕr(α′

1), . . . , ϕr(α′
d′) is a basis of

M′. Since f preserves filtration, f(α′
1, . . . , α

′
d′) ∈ [Filr(Acris ⊗SM)]d. By Corollary 4.1.3, we have

Filr(Acris ⊗SM) =
d⊕

i=1

Acris ⊗ αi + FilpAcris ⊗SM (5.3.2)

with (e1, . . . , ed) = (ϕr(α1), . . . , ϕr(αd)) a basis of M. Therefore there exist d × d′ matrices X,
W with coefficients in Acris, FilpAcris respectively such that

f(α′
1, . . . , α

′
d′) = (α1, . . . , αd)X + (e1, . . . , ed)W. (5.3.3)

We claim that the coefficients of X are in Fil1Acris + pAcris.
To see the claim, applying ιM on both sides of (5.3.3), we have

ιM ◦ f(α′
1, . . . , α

′
d′) = ιM(α1, . . . , αd)X + ιM(e1, . . . , ed)W = (e1, . . . , ed)(CX + W ′),

where e1, . . . , ed is a basis of T∨
cris(M) as in Lemma 4.3.6 and C, W ′ are matrices with coefficients

in Acris, FilpAcris respectively such that ιM(α1, . . . , αd) = (e1, . . . , ed)C and ιM(e1, . . . , ed)W =
(e1, . . . , ed)W ′. On the other hand, since diagram (5.3.1) is commutative and p|f , all the coefficients
of CX + W ′ are in pAcris. By Lemma 4.3.6, there exists a matrix C ′ such that the coefficients of
C ′C − trI are in FilpAcris. Thus the coefficients of trX are in FilpAcris + pAcris. To show the claim,
it suffices to show that if x ∈ Acris and trx ∈ pAcris + FilpAcris then x ∈ Fil1Acris + pAcris. Recall
that R = lim←−OK̄/p constructed in § 2.2. For any (ai)i�0 ∈ R with ai ∈ OK̄/p, let âi ∈ OK̄ be a
lift of ai, then a(0) = limn→∞(ân)p

n
is well defined and independent of the choice of âi. We define

the valuation on R by vR((ai)i�0) = v(a(0)) where v(·) is the standard valuation of OK̄ (§§ 1.2.2
and 1.2.3 in [Fon94a]). Let FiliR be the image of Fili(W (R)) under the reduction mod p. We see
that Fil1R = {x ∈ R | vR(x) � 1} and Acris/(pAcris + FilpAcris) � R/FilpR. Let x̄ and t̄ be the
image of x and t in R/FilpR respectively. Note that

vR(t̄) = vR

(
τ(π)
π
− 1

)
=

p

p− 1
.

Since t̄rx̄ ∈ FilpR, vR(t̄rx̄) � p. But

vR(t̄r) =
rp

p− 1
< p− 1

because r � p− 2. Therefore, vR(x̄) � 1 and x ∈ Fil1Acris mod p.
Now since f is compatible with Frobenius, by (5.3.3) we have

f((ϕr(α′
1), . . . , ϕr(α′

d′))) = ϕr((α1, . . . , αd)X + (e1, . . . ed)W )
= (e1, . . . , ed)ϕ(X) + ϕ(e1, . . . , ed)ϕr(W ).
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Since the coefficients of X are in Fil1Acris + pAcris, we have p|ϕ(X). Note that p|ϕr(W ) because the
coefficients of W are in FilpAcris. Finally, since ϕr(α′

1), . . . , ϕr(α′
d′) is a basis ofM′, we get p|f.

Proof of Lemma 3.4.7. It suffices to prove that M′ ⊂ M. Choose the smallest integer n such that
pnM′ ⊂M. Then pn :M′ →M is a morphism in Modϕ

/S . Use Lemma 5.3.1 for f = pn and f = pn.
Then we see that n has to be 0.

Combining Theorem 4.3.4 with Corollary 5.2.2, we have the commutative diagram

Acris ⊗S D
ι⊗ZpQp

�� V ∨
st (D)⊗Zp Acris

Acris ⊗SM
��

��

ι �� T∨
cris(M)⊗Zp Acris

��

��
(5.3.4)

where the top row map is compatible with G-action and the bottom row map is compatible with
G∞-action. We claim that Acris⊗SM is stable under G. To check that this, it suffices to check that
Acris⊗SM is stable under τ . Since T∨ = T∨

cris(M) is a G-stable Zp-lattice, we see that T∨⊗Zp Acris

is stable under τ . Choose n such that pnτ(Acris ⊗SM) ⊆ Acris ⊗SM. Now using Lemma 5.3.1 for
f = pnτ on Acris ⊗SM and f = pnτ on T∨

cris(M)⊗Zp Acris, we have τ(Acris ⊗SM) ⊆ Acris ⊗SM.
Now we begin the second step to show thatM is stable under N . By (5.1.4), for any x ∈M, we

have t⊗ N(x) = log(τ)(x). We claim that t ⊗N(M) ⊂ Acris ⊗S M by proving that log(τ)(M) ⊂
Acris ⊗SM. It suffices to show that

(τ − 1)n

n
(M) ⊂ Acris ⊗SM

for all n � p. Let (α1, . . . , αd) ∈ FilrM constructed in Proposition 4.1.2, and (e1, . . . , ed) =
(ϕr(α1), . . . , ϕr(αd)) a basis of M. Using (5.1.2), we see that

(τ − 1)n(α1, . . . , αd) ∈ [FilnB+
cris(Acris ⊗SM)]d.

Since τ(M) ⊂ (Acris ⊗SM), we get

(τ − 1)n(α1, . . . , αd) ∈ [FilnAcris(Acris ⊗SM)]d.

Therefore, we obtain

(τ − 1)n(e1, . . . , ed) = ϕr((τ − 1)n(α1, . . . , αd)) ∈ [ϕr(FilnAcris) · ϕ(Acris ⊗SM)]d.

Now it suffices to check that, for any n � p and x ∈ FilnAcris, we have ϕr(x)/n ∈ Acris. We
can further reduce the problem to check if ϕ(E(u)m)/prnm! ∈ S for all m � n � p. Note that
c1 = ϕ(E(u))/p is a unit in S. So it is equivalent to show that pm−r/nm! ∈ Zp for all m � n � p and
we include the computation in the lemma below. Thus we prove the claim that t⊗N(x) ∈ Acris⊗SM.

Lemma 5.3.2. If m � n � p > 2 and r < p− 1, then m− r − vp(nm!) � 0.

Proof. Since n � p, we have vp(n) � n/p � m/p. Hence

d = m− vp(nm!) � m− m

p− 1
− m

p
=

m(p2 − 3p + 1)
p(p− 1)

� p2 − 3p + 1
p− 1

= p− 2− 1
p− 1

.

Since d is an integer, it follows that d � p− 2 � r.

Finally, suppose that we have

N((e1, . . . , ed)) = (e1, . . . , ed)W
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with the coefficients of W in SK0. Select the smallest number n such that all the coefficients of pnW
are in S. Then pnN(M) ⊂M. Since E(u)N(FilrD) ⊂ FilrD, we have

E(u)pnN((α1, . . . , αd)) = (α1, . . . , αd)X + (e1, . . . , ed)Y (5.3.5)

with the coefficients of X, Y in S, FilpS respectively. On the other hand, note that t ⊗ N(M) ⊂
Acris⊗SM and t⊗N(FilrM) ⊂ Filr(Acris⊗SM) because there exists γ ∈ Acris such that t−E([π])γ ∈
FilpAcris. We have

tN((α1, . . . , αd)) = (α1, . . . , αd)X ′ + (e1, . . . , ed)Y ′ (5.3.6)

with the coefficients of X ′, Y ′ in Acris, FilpAcris respectively. Combining (5.3.5) with (5.3.6), we have

A(tX − E(u)pnX ′) = tY − E(u)pnY ′,

where (α1, . . . , αd) = (e1, . . . , ed)A. By Proposition 4.1.2, there exists a d× d matrix B with coeffi-
cients in S such that BA = AB = E(u)rI, and we have

E(u)r(tX − E(u)pnX ′) = tBY − E(u)pnBY′.

Note that the right-hand side is in Fil1Acris · FilpAcris. By Lemma 3.2.2, we get that E(u)r−1(tX −
E(u)pnX ′) ∈ FilpAcris. Modulo FilpAcris + pAcris both sides, we get the coefficients of E(u)r−1tX
are in FilpAcris + pAcris (here we may assume that n � 1). Almost the same argument as in the
proof of Lemma 5.3.1 shows that the coefficients of X are in Fil1S + pS.

Now consider the following:

c1p
nN((e1, . . . , ed)) = c1p

nN(ϕr(α1), . . . , ϕd(αd))
= pnϕr(E(u)N((α1, . . . , αd)))
= ϕr((α1, . . . , αd))ϕ(X) + ϕ((e1, . . . , ed))ϕr(Y ).

But p|ϕ(X) and p|ϕr(Y ) in Acris. This contradicts the selection of n unless n = 0. That is, W has
all its coefficients in S and then N(M) ⊂M.
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(1997), 191–224.

Bre98a C. Breuil, Cohomologie étale de p-torsion et cohomologie cristalline en réduction semi-stable, Duke
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