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1. Introduction

Let F map [0, 1] into a Banach space B and let R(F) denote the set of all
limits of Riemann sums of F. The set R(F) need not be convex in general (Naka-
mura and Amemiya (1966)) but is always convex when B is finite dimensional as
first shown by Hartman (1947). A proof of Hartman’s result, based on a descrip-
tion of R(F) when the range of F is finite, was given in Ellis (1959). In this note
this description is refined, the extreme points of R(F) are determined and the
following complete characterization of R(F) is obtained (where N, = {1,2,--:,n}).

TueoReM 1.1. Let F: [0,1] » {x,ieN,} and let E, = {t: F(1) = o},
i€ N,. Then R(F) coincides with the points X', a; «; for which the coefficients a;
satisfy, for each N' = N,,

A

(1.1) m( U Ei)o

ieN’

Xasm ( U Ei)
ieN’ ieN’
In the theorem A° and A4 denote the interior and closure of a set 4 respectively
and m denotes Lebesgue measure. Note that (1.1) implies that

2. The closure of R’'(F)

In Ellis (1959) it was shown that R(F) is the closure of a set denoted by R'(F).
In this section we show that R'(F) is closed.
We first describe the notation. By 2 we denote a partition 0 = f, < t; <
-+ < t, = 1; & a set of intermediary values &,,t; < &, < t;,4, i = 0,1,--,n—1;
tie1 S8 St l@[ = max(t,,,; — t;), the norm of £ and
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n—1
2(2,6) = X F(&)tisy — 1)
i=0

will be called a Riemann sum for F on £. Note that F may be non-measurable.
If Range F is contained in the Banach space B, Pe B will be called a limit of
Riemann sums if for some sequence {Z,,&,},|2,| > 0and | P - £(2,,6,)| > 0
asn — .

Our results are based on the following elementary resuit.

LemMa 2.1. Let U be an arbitrary open subset of [0, 1] and, for 2 any
partition of [0, 1], let A(D) denote the union of those intervals of 9 that fall
inside U. Then as | 2| - 0, m[A(2)] - m(U).

In Ellis (1959) Lemma 2.1 was used in showing that if N’ = N, and Ay{(2)
denotes the union of those intervals of 2 on each of which Range F={o;,ie N'}
then lim g, o m[Ay(2)] exists. We now denote this limit by Ky.. It is easy to
verify that

0 0
.n Ky. = lim m[4,(D)] = m[( U Ei) - U ( U Ei) J

|2-0 ieN’ jeN’ \ieN'\j

From (2.1), K; = K, = m(E?). By induction, for any N':

o
2.2 Y Ky.= m( U Ei) ;
N*cN'’ ieN’
@.2) Y Ky.=1.
N *cN,

For each N’ = N, let cy-;, i€ N’, be any set of non-negative real numbers
satisfying X;_y-cy-s= 1. As in Ellis (1959) let R'(F) be the set of points PeB

of the form
(2.3) P = Z ( Z CN'iKNI)ai
g

= E Z (CN»iKN,oti).

N’'cN, ieN’
In Ellis (1959) it was shown that R(F)=R'(F).
ProrosiTION 2.1. R'(F) is closed and thus every P € R(F) is of the form (2.3).

PrROOF. Let Ry(F) denote the set of points P satisfying (2.3) for which each
cy-1is 0 or 1, a finite set of points. By Day (1962) (Lemma 2, p. 79) the convex hull
of Ry(F) is compact and therefore closed. Since Ry(F) £ R’(F) and R’(F) is convex,
the convex hull of Ry(F) is contained in R'(F). On the other hand it is easy to
verify that each P e R’(F) can be expressed as a convex combination of points in
Ry(F) and thus is contained in and so coincides with the convex hull of Ry(F).
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3. The extreme points of R (F) and Theorem 1.1

We denote by R*(F) the set of points in B for which (1.1) holds for every
N’ < N,. It is easy to verify that R*(F) is convex.

PrOPOSITION 3.1, R*(F) > R(F).
ProoF. From (2.3), if P e R(F),

n
P= X au;:a;,= Y  cyiKy,i€N,.
1 N'eNp3ieN’

Thus, for any N' < N,,
Z a[ = Z ( Z CN"iKN”)

ieN’ ieN’ \N'cN,;ieN”
g Z Z cN"iKN" = 2 KN" =m ( U E,) O,
N"eN’ ieN” N"cN’ ieN’

using (2.2).
On the other hand
[4] —
Za=1- X aiél—m(UEi) =m( UE,-).
ieN P¢N’ igN’ feN’
For {p;,ieN,} any permutation of N, let P = X?_, a,a,, where for each
k<n,

k k 0
2z a,= m( UE,,i) .
i=1

. i=1
Then
2 aPi =m ( U EPI)
i=k+1 i=k+1

and P is a limit of Riemann sums for which «,, is used as intermediary value in
& only when necessary (i.e. on intervals falling inside E,‘L), a,, only where necessary
after the intermediary values o have been assigned, etc. Likewise P is a limit of
Riemann sums for waich o, is used as intermediary value whenever possible,
a,,_, whenever possible after the values «, have been assigned, etc. Let E(F). be
the set of all such P for all permutations of N,

ProPOSITION 3.2. If RangeF = {a;, i€ N,} and the points {a;} are linearly
independent then every point of E(F) is an extreme point of R*(F).

PrOOF. We assume for convenience that P = X a;o;, with

k r k 0 n
Y a= m(UEi) , k=1,2,,n. Let P;= X afa;, j=12,
1 1 1
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be in R*(F) and suppose that P = (P, + P,)/2. The linear independence implies
that a; = (a} + a?)/2, i = 1,2,---,n. Since P;eR*(F), j = 1,2; al > m(E?)
=a, j=1,2 sothata, = al = a. Similarly a; = a}, a?;i = 2,3, ---,n. Thus
P, = P, = P and P is an extreme point of R*(F).

Note that when the set {«;} is not linearly independent, E(F) may contain
points that are not extreme points. For example if B = R, R(F) is a point or line
segment and contains one or two distinct extreme points. However, E(F) may
contain n! distinct points.

PROPOSITION 3.3. For P e R*(F) assume that there exist i, je€ N, with strict
inequality holding in (1.1) for N’ = {i,j} and for every N' < N, that contains
one but not both of i,j. Then P is not an extreme point of R*(F).

Proor. Let P = 3 a,x,, assume the hypotheses satisfied for i, j and let
d > 0 be less than the minimum difference in the inequalities in (1.1) for all N’
in the hypotheses. Define

with

a, = a,r #i,j; k=1,2;
a! = a,+d,a} =a;—d,;
a? = a,—d,a;%= a; +d.

Then, if i,jeN’ = N, or (i,) A N' =&, Zy.af = Xy.a,. k =1,2 and
(1.1) is satisfied for N’. For the remaining N’ < N, (1.1) is a consequence of the
choice of d. Thus P,, P, € R*(F). From the definition, P = (P, + P,)/2. Assume
that P, = P. Then P; — P = d(¢; — ;) = 0, implying that «; = a;, a contra-
diction.

ProPOSITION 3.4. E(F) contains the extreme points of R*(F).
Proor. The proof is trivial for n = 2. Assume that n > 2, that P
= 21 a,0, € R¥F) and that, for every N’ = N,,,
o *
m( U E,) < X a,.
reN’ reN’

By complementation

2z a,<m(UE,).

reN’ reN’

The hypotheses of Proposition 3.3 are satisfied for any pair i, j and thus P is not
an extreme point.
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Excluding this case there is a maximal N’ € N, with

(3.1) Za,=m(rUE,)°; Za,=m(UEi).

reN’ eN’ r¢N’ r¢N’

For convenience of notation we assume that N' = N,, 1 £ k < n. We first show
that if n — k = 3 then P is not an extreme point of R*(F).

We note that with each point in R*(F) and each N’ = N, we can associate
numbers Ky. by (2.1) (in terms of the sets E,). These numbers will satisfy (2.2)
and (2.2)’ and, by complementation,

(3.2) m(_U—E—,) = S{Ky.: N*N N’ # &5}

reN’

Let N* = N,\N,. Then

S a+ >:a,>m( U E,)°= T Ky

reN* reNg reNxuNs® N’cNpuN*
Y Ky + X{Ky.: N' < (N, UN*; NN N* # &}
N’cNg

since = holds by (1.1) and equality would contradict the maximality of N,. Thus
Y a, > EZ{Ky.:N' < (N, UN®; NNN* # ¥}

reN¢

3.3) > % Ky = m( U E)

N'cN+* reN®
Now let N € Ny, & # N* = N,\N,, N* = N* U N*' Then
0
(4) m( U E) = 3 = % Ky +Z{Kp:N' < N*;NUN* # &)
reN# N’'cN# N'eN”

< X a+ X a,

ieN” ieN*

using (3.3). It follows that if i, je N,\N, and N* = {i,j} or contains one but
not both of i, j, then

m(rU E,)o< 2 a,.

eN# reN#
Wwith N* = N’ U N*, N* # F as before;
N,\N#* = (N, \N“) U [(NV,\N)\N*],
(3.4) holds for N,\N* and
2 a=1- z a,<1—m( U )E,)°=m(_U—E,.).

reN# reN,\N# re N, \N# reN#

Proposition 3.3 then implies that P is not an extreme point.
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Thus if P is an extreme point of R*(F), k is either n — 1 or n — 2. Assume
that kK = n — 2. Then

ayoy +a,=mE,_UE,) = Z{Ky:N' = N, N (n —1,n) # &}
= X{Ky:(n—1,n) c N'}+ Z{Ky.:neN',n—1¢N'}
+ X{Ky.:n—1eN';n¢N'},
=A+A4,+4,_,,

defining 4, A, and 4,_;.

From (3.2) A+ A4,=m(E), i=n~1,n Thus if A=0, a,; +a,
= m(E,_,) + m(E)) and (1.1) implies that a; = m(E)), i = n — 1, n. This contra-
dicts the assumption that k = n — 2. Thus we may assume that 4 # 0.

Assuming that 4 # 0 let P = X7_,aa,, i = 1,2; where @} = a,, i = 1,2;
r<n-—1; ay = A+ Al | = A,_y;a> = A4, a’_, = A+ A,_;. Then
P,eR¥*(F), i =1,2 and there exists 4, 0 <A <1 with a,=A,+14;
a,_; = A,y + ({1 — DA. It follows that P = AP, + (1 — A)P,, showing that P is
not an extreme point.

We have shown that the assumption that P is an extreme point of R*(F)
implies that for some n,<n, a, = m(E,), X, a, = m(U,,, E,)° Similar
considerations applied to X, ., a, show that if P is an extreme point of R*(F)
there exists n, # n, with a, + a,, = m(E, | E,,) and, continuing this process,
that P € E(F).

COROLLARY. The set of extreme points of R*(F) is contained in E(F) and
coincides with E(F) when the set {o;,i€ N,} is linearly independent.

PROPOSITION 3.5. R*(F) is compact.

Proor. The part B of R" defined by the points (a;,dy, -, a,), a; = 0;
% a; = 1 is compact. The subset B* of B for which the additional inequalities
in (1.1) are satisfied is compact as a closed subset of B.
If the function ¢ mapping B x II'j (¢} = R" x B" into B is defined by the
formula

(ay;az, -+ a,, 04,05, ) = Xz Ay
i=1

(Bourbaki (1953), Proposition 1, p. 80) then ¢ is continuous and R*(F) is com-
pact as the image of the compact subset B* x IT{o;}.

Proor oF THEOREM 1.1. Since R*(F) is a compact, convex subset of the
locally convex space B it is the closed convex hull of its extreme points by the
Krein-Mil’man Theorem (Day (1962), Theorem 1, p. 78) and thus of E(F) since
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E(F) contains the set of extreme points of R*(F). Since Ry(F) = E(F)and R(F)isthe
closed convex hull of Ry(F), R*(F) = R(F) and thus R(F) and R*(F) coincide.
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