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1. Introduction. Many of the techniques and notions used to study various important
theorems in locally convex spaces are not effective for general linear topological spaces. In
[4], a study is made of notions in general linear topological spaces which can be used to replace
barrelled, bornological, and quasi-barrelled spaces. The present paper contains a parallel
study in the context of semiconvex spaces.

In section 2, we look briefly and generally at semiconvex spaces, and answer a question of
S. Simons [11, p. 180]. We then define the notion of an jc-inductive limit of semiconvex spaces
—a concept which plays much the same part in the theory of semiconvex spaces as an inductive
limit does for locally convex spaces. In section 3, we study hyperbarrelled, hyperbornological
and quasi-hyperbarrelled spaces. These respectively replace barrelled, bornological and
quasi-barrelled spaces when semiconvex spaces are being considered. The K-hyperbarrelled
and N-quasi-hyperbarrelled spaces introduced in section 4 are slight generalizations of what
replace countably barrelled and countably quasi-barrelled spaces in a similar situation.
Throughout, we shall use the terminology and notation of [4].
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2. Semiconvex spaces. Let E be a linear space. If A is a non-negative real number, a
subset A of E is called ^.-convex if A + A £ XA. A subset B of E is called a semiconvex subset
if it is /i-convex for some n ^ 0. A linear topology w, say, on E with a base of balanced semi-
convex neighbourhoods of the origin is called a semiconvex topology and (E, u) is known as a
semiconvex linear topological space (l.t.s.) or more shortly as a semiconvex space.

Any locally convex or locally bounded space is a semiconvex space. A subspace of a
semiconvex space is a semiconvex space and so is any product of semiconvex spaces. It is
easy to see from the proof of Theorem 1 of [9], that a separated l.t.s. is a semiconvex space
if and only if it is topologically isomorphic to a subspace of a product of (complete) separated
locally bounded spaces.

Since the upper bound of any set of semiconvex topologies on a linear space is semiconvex,
there exists a finest semiconvex topology on any linear space E. This will be denoted by sc.
A base of neighbourhoods for sc is the family of all balanced semiconvex absorbent subsets of
E. Clearly x(E, E*) is coarser than sc and sc is coarser than the finest linear topology s on E,
the three topologies coinciding when the dimension of E is countable. When the dimension of
E is uncountable %{E, £*), sc and s are distinct. For let G be the sequence space /* and H the
space of all Lebesgue measurable functions on the closed interval [0, 1], with the metrizable
topology corresponding to convergence in measure. Since G and H have the same dimension
(2X<>), they are algebraically isomorphic and we may identify them. That x{G, G*) is strictly
coarser than sc follows from the fact that the topology of /* cannot be coarser than T(G, G*).

o
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As H is not a semiconvex space [8, p. 239], and any continuous nearly open linear image of a
semiconvex space is obviously a semiconvex space, we deduce that the topology of H is not
coarser than sc. Thus sc is strictly coarser than s. If E is any linear space of uncountable
dimension, G may be identified with a linear subspace of E, and from this the assertion follows.

According to S. Simons [11, p. 170], a function/on a linear space £ into the non-negative
real numbers is called an r-pseudometric (0 < r ^ 1) if

(i) there exists x in E such that/(x) # 0,

(ii) f(x+y) £/(*)+/(y) for all x, y in E, and

(iii) /(Ax) = | A |r/(x) for each x in E and A in the scalar field.

By an application of Theorem 1 of [11] we see that if, for each r in 0 < r ^ 1, (/a: ae<J>r) is
the set of all r-pseudometrics on a linear space E and Q> = (J Or, then a base of neighbour-

0<rgl

hoods for sc is the family of sets (J~ 1[0,n~1]: a. e $, n = 1, 2,...). Now, by using (fa: a e O)
in place of invariant pseudometrics q in problem E, page 124 of [7], one can easily show that
for any linear space E, (E, sc) is complete.

The notion of S. Simons for an upper bound space in [11] clearly coincides with that of a
semiconvex space. If E is an uncountably dimensional linear space, then, under its finest
linear topology s, E is not an upper bound space, since J is strictly finer than sc. Let B be a
subset of E such that for every ^-continuous pseudometric / on E,f(B) is bounded. (Any
point of E is such a B.) This trivially implies that for every jc-continuous pseudometric/on
E,f{B) is bounded. Thus by Theorem 6 of [11], B is sc-bounded. Since s, sc have the same
bounded sets, B must be abounded. This answers (in the negative) a question of S. Simons
[11, p. 180].

Let £ be a linear space, and suppose that for each y in an index set T, Ey is a semiconvex
space and uy is a linear map of Ey into E such that the union of the subspaces uy(Ey) spans E.
The upper bound ST, say of all semiconvex topologies on E for which each uy is continuous, is
the finest semiconvex topology on E for which each uy is continuous. We shall call &" the
sc-inductive limit topology on E induced by {Ey\ uy: yeY) and say that {E,9~) is the sc-
inductive limit of {Ey; uy: y e F).

With the notation above, a base of neighbourhoods of the origin for the topology F is the
family °U of all balanced semiconvex subsets of E such that for every U in °U, uy\U) is a
neighbourhood of the origin in Ey for each y in T. Also, a linear map t from (£, &~) into a
semiconvex space is continuous if and only if each t o uy is continuous.

If for a fixed A > 0, each Ey has a base of balanced A-convex neighbourhoods of the origin
and F is countable, then, by Proposition 2.2 of [4], the space (£, 3~) referred to above is the
•-inductive limit of (Ey; uy: yeT). However, since, for an uncountably dimensional linear
space E the topologies z(E, E*), sc and s are distinct and are respectively the inductive limit
topology, jc-inductive limit topology and *-inductive limit topology of some {Ky; uy: yeT)
(each Ky is a copy of the scalar field), we see that an jc-inductive limit of locally convex spaces
need not be locally convex and that a *-inductive limit of locally convex spaces need not be a
semiconvex space.
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3. Hyperbarrelled, hyperbornological and quasi-hyperbarrelled spaces. Let £ be a linear
space and u, v, w semiconvex topologies on £. If every w-closed balanced semiconvex absorbent
subset of E is a w-neighbourhood of the origin, we say that (E, u) is hyperbarrelled. We call
(E, v) hyperbornological if every bounded linear map from (£, v) into any semiconvex space is
continuous. We say that (£, »v) is quasi-hyperbarrelled if every w-closed balanced semiconvex
vv-bornivorous subset is a w-neighbourhood of the origin.

Clearly if (£, M) is ultrabarrelled (ultrabornological, quasi-ultrabarrelled) and w° is the
finest semiconvex topology on E coarser than u, then (£, u°) is hyperbarrelled (hyperborno-
logical, quasi-hyperbarrelled). Also, if (F, v) is hyperbarrelled (hyperbornological, quasi-
hyperbarrelled), then (F, v00) is barrelled (bornological, quasi-barrelled). In particular, every
semiconvex ultrabarrelled (ultrabornological, quasi-ultrabarrelled) space is hyperbarrelled
(hyperbornological, quasi-hyperbarrelled), and every locally convex hyperbarrelled (hyper-
bornological, quasi-hyperbarrelled) space is barrelled (bornological, quasi-barrelled).

Let T be a set of linear maps from an l.t.s. E to an l.t.s. F, and let B be a balanced semi-
convex bornivorous subset of F. The set f] t~i(B) is balanced and semiconvex. It is

absorbent in E if T is pointwise bounded, and bornivorous if T is uniformly bounded on
bounded sets. If B is closed and each member of Tis continuous, f] t~i(B) is also closed.

teT

The following result can be easily deduced from these observations.

THEOREM 3.1. Let T be a set of linear maps from one semiconvex space E to another.
Then Tis equicontinuous if

(a) E is hyperbarrelled and T is a pointwise bounded set of continuous linear maps, or if

(b) E is hyperbornological and T is uniformly bounded on bounded sets, or if

(c) E is quasi-hyperbarrelled and T is a set of continuous linear maps which is uniformly
bounded on bounded sets.

The proof of the following result is straightforward.

THEOREM 3.2. Any sc-inductive limit of hyperbarrelled (hyperbornological, quasi-hyper-
barrelled) spaces is of the same sort. In particular, any sc-inductive limit of semiconvex complete
metric linear spaces has all three properties.

COROLLARY 1. Every quotient by a linear subspace of a hyperbarrelled (hyperbornological,
quasi-hyperbarrelled) space is of the same sort.

COROLLARY 2. Every product of finitely many hyperbarrelled (hyperbornological, quasi-
hyperbarrelled) spaces is of the same sort.

COROLLARY 3. Every countable inductive limit of locally convex hyperbarrelled (hyper-
bornological, quasi-hyperbarrelled) spaces has the same property. In particular, every countable
inductive limit of Frechet spaces has all three properties.

Since a countably infinite dimensional normed linear space is not barrelled, it follows that
a hyperbornological space need not be hyperbarrelled. Let E be an incomplete separated
inductive limit of a sequence of Banach spaces and let x be a point belonging to the completion
£A of E but not in E. As was pointed out in [4], the linear subspace Er of £ spanned by E and
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x is ultrabarrelled, and thus Ex is hyperbarrelled. But it is not hyperbornological, since, by
[10, p. 155], it is not bornological. Let F be a hyperbarrelled space which is not hyper-
bornological and G a hyperbornological space which is not hyperbarrelled. Then, by Corollary
2 of Theorem 3.2, F x G is a quasi-hyperbarrelled space, which, in view of Corollary 1 of the
same theorem, is neither hyperbarrelled nor hyperbornological.

It is easy to show that a linear map from a hyperbarrelled space into a semiconvex space
is nearly continuous. Also, a bounded linear map from a quasi-hyperbarrelled space into a
semiconvex space is nearly continuous. Since, by Corollary 1 of Theorem 3.2, every quotient
by a linear subspace of a hyperbarrelled (quasi-hyperbarrelled) space is of the same sort, we
deduce from a result in page 213 of [6] and the argument preceding Theorem 3.2 of [4] that
every closed (closed bounded) linear map from a hyperbarrelled (quasi-hyperbarrelled) space
into a semiconvex complete metric linear space is continuous. In particular, every closed
(closed bounded) linear map from a hyperbarrelled (quasi-hyperbarrelled) space into a com-
plete separated locally bounded space is continuous.

Let B be a closed balanced semiconvex absorbent subset of a semiconvex space (E, v).
Then B is A-convex for some 1 > 0. Let N be the intersection of (X~"B: n = 1, 2,. . .) and let
k be the quotient map of E onto EjN. The family of sets {k~"k(B)\ n = 1, 2,.. .) is a local
base for a separated locally bounded linear topology w, say, on EjN. By Lemma 3.1 of [4], the
graph of k is closed in (E, v) x (E/N, w)A and k is bounded if B is u-bornivorous. Therefore if
every closed linear map from (E, v) into any complete separated locally bounded space is
continuous, B must be a u-neighbourhood of the origin; this implies that (E, v) is hyper-
barrelled. If alternatively, it is given that every closed bounded linear map from (E, v) into
any complete separated locally bounded space is continuous, then (E, v) is quasi-hyperbarrelled.
Just as in Theorem 4.2 of [4], if every bounded linear map from a semiconvex space E into
any complete separated locally bounded space is continuous, E is hyperbornological. We note
these for further reference.

THEOREM 3.3. A semiconvex space E is hyperbarrelled (hyperbornological, quasi-hyper-
barrelled) if and only if every closed (bounded, closed bounded) linear map from E into any
complete separated locally bounded space is continuous.

LEMMA 3.1. Iff is a closed linear map from a product X Ey of separated linear topological
y6<D

spaces into a complete separated locally bounded space F, then there is a finite subset O0 o/O
such that the restriction offto X(Ey: yeQ>\Q>0) is the zero map.

Proof. It is sufficient to show that for some finite subset $ 0 of <D, if y e ^ j = <J»\<I>o>tnen

the restriction o f / t o £ y is zero. For, if this is so, £ £ y £ /7 ' ( ( ) ) , where fx is the restriction of /
ye<Di

to X Ey. Now/f J(0) is closed in X Ey, since the graph of/^ is closed in X Ey x F. And as

£ Ey is dense in X Ey, it follows that / f^O) = X Ey.
ye<Di ye1>i yG«>i

Let | . . . | denote a quasinorm on F which defines its topology. If there is no finite subset
O0 of <J> such that for every y in $ \$ 0 , / is the zero map on Ey, then, for some sequence
(yf: i = 1,2,...) of distinct members of <I>, there exist points (xy) such that xyi is in Eyi and
\f(xy) | = /. Clearly, (f(xy)) is not bounded in F.

https://doi.org/10.1017/S0017089500000380 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000380


SEMICONVEX SPACES 115

Now, X Ey induces the product topology on G = X(Kyixyi)(Kyi is a copy of the scalar field
y e ©

for each /). Moreover the restriction o f / to the Frechet space G has a graph closed in GXF,
and is therefore continuous by Banach's closed graph theorem. This implies that (/(*,,,)) is
bounded in F. From this contradiction, the result follows.

Since, by Corollary 2 of Theorem 3.2, any finite product of hyperbarrelled (quasi-hyper-
barrelled) spaces is of the same sort, the following result is immediate, on using Lemma 3.1
and Theorem 3.3.

THEOREM 3.4. Any separated product of hyperbarrelled {guasi-hyperbarrelled) spaces is
hyperbarrelled {quasi-hyperbarrelled).

If Eo is a subspace of an l.t.s. E of finite co-dimension, then, as shown in Proposition 3.1
of [4], any closed linear map from Eo into an l.t.s. has a closed linear extension to all of E.
It therefore follows from Theorem 3.3 that any subspace of finite co-dimension of a hyper-
barrelled space is hyperbarrelled. In particular, any hyperplane in a hyperbarrelled space is of
the same sort. Also, any separated semiconvex space is topologically isomorphic to a sub-
space of a product of complete separated locally bounded spaces. Thus any separated semi-
convex space is a subspace of some separated hyperbarrelled space. The proof of the following
result uses these observations and a method due to Komura [10, Theorem 1.1].

THEOREM 3.5. Every separated semiconvex space is a closed subspace of some separated
hyperbarrelled space.

Proof. Let £ be a separated semiconvex space. If F is a separated hyperbarrelled space
containing E, let (ea: ae*P) be a Hamel basis for an algebraic supplement of £ in F. For each
/? in *¥, let Ff be the linear subspace of F spanned by E and (ea: a #/?, <xe*P). Clearly
E = f] Fp, and each Fp is hyperbarrelled. It is easy to show that the map / of E into

G — X Fg, defined as follows, is a topological isomorphism: for each x in E, f(x) = (xp),

where Xp = x for all /? in *¥. So all that remains is to show that f{E) is closed in G. If
(COy: ye<I>) is a net in / ( £ ) converging to (yx) in G, then, for each a (=a 0 , say) in y¥,
(•*«oy

: VS<t>) is a net in E converging to yao in Fao. Since by the definition of/, xasy = x^y
for any <xu<x2 in T, it follows that for each a in "V,yae f] Fa(=E)and that (ya)ef(E). Hence

aeV

/ ( £ ) is closed in G, which, by Theorem 3.4, is hyperbarrelled.
Let (Ey: y e $ ) be a family of separated bornological spaces. If K*1 (K is the scalar field)

is bornological, so is X Er Bourbaki's proof of this assertion in [1, p. 15, exercise 18b] uses
y e *

the fact that a separated locally convex space E is bornological if every bounded linear map
from E into any Banach space is continuous. By using Theorem 3.3 in place of this in
Bourbaki's argument, we see that the result stated above holds with " hyperbornological"
replacing " bornological ". In particular, a countable product of separated hyperbornological
spaces is hyperbornological.

As defined in [4], an l.t.s. is said to be almost convex if every bounded subset is contained
in some bounded set which is closed, balanced and semiconvex. Since every bounded set in
any linear space under its finest linear topology is contained in a closed absolutely convex
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bounded set, we deduce that an almost convex l.t.s. need not be a semiconvex space. The
following result is an analogue of Theorem 5.2 of [4]. The proof is omitted, being similar to
that of the corresponding result in [4].

THEOREM 3.6. A separated sequentially complete almost convex quasi-hyperbarrelled space
is hyperbarrelled.

Let E be a separated almost convex hyperbornological space. By an argument similar to
that after Theorem 5.2 of [4], one can show that the space E is an jc-inductive limit of separated
locally bounded spaces. If £ is sequentially complete, then it is an jc-inductive limit of com-
plete separated locally bounded spaces and is therefore hyperbarrelled.

4. X-hyperbarrelled and K-quasi-hyperbarrelled spaces. We say that a semiconvex space
is ^-hyperbarrelled (^-quasi-hyperbarrelled) if every closed balanced semiconvex absorbent
(bornivorous) subset V is a neighbourhood of the origin whenever it satisfies the following
condition:

V = Q Uy, where, for some X > 0, each Uy is a closed balanced A-convex neighbourhood
y e *

and the cardinal of <D is X.
Clearly any hyperbarrelled (quasi-hyperbarrelled, K-hyperbarrelled) space is K-hyper-

barrelled (X-quasi-hyperbarrelled, K-quasi-hyperbarrelled) for every K. If Ka ^ Kp, then every
Kp-hyperbarrelled (Np-quasi-hyperbarrelled) space is Ka-hyperbarrelled (NVquasi-hyper-
barrelled). By using Theorem 1 (Theorem 2) of [3] we see that every locally convex Ko-
hyperbarrelled (K0-quasi-hyperbarrelled) space is countably barrelled (countably quasi-
barrelled). It therefore follows from example (ii) of [5] that for each K ^ Ko, an N-quasi-
hyperbarrelled space need not be N-hyperbarrelled. Also, by using example (iii) of [5] and
Theorem 3.5, we see that a closed linear subspace of an K-hyperbarrelled (K-quasi-hyper-
barrelled) space need not be of the same sort.

If (/y: yeO) is a family of continuous linear maps from an l.t.s. (E, u) into an l.t.s. F,
then, for every closed balanced semiconvex (A-convex, say) neighbourhood V of the origin in
F, e a c h / ~ l ( F ) is a closed balanced A-convex w-neighbourhood. If (/y: ye<D) is pointwise
bounded, then f] fy

l(V) is absorbent; it is bornivorous if (fy: y eO) is uniformly bounded
y e *

on bounded sets. Using these observations, one can prove the following result.

THEOREM 4.1. Let <J> be an index set of cardinal K, and let (fy: ye O) be a set of continuous
linear maps from one semiconvex space E to another. Then (/y: y e<D) is equicontinuous if

(a) E is ^-hyperbarrelled and (fy: ye $) is pointwise bounded, or if

(b) E is ^-quasi-hyperbarrelled and (fy: ye $) is uniformly bounded on bounded sets.

The following corollary is a direct consequence of the above theorem and J. D. Weston's
main result in [13].

COROLLARY. If(fn) is a pointwise convergent sequence of continuous linear maps from an
^Q-hyperbarrelled space E into a semiconvex space F, then its limit mapping is continuous. If in
addition F is sequentially complete, then (/„) is necessarily pointwise convergent if it is pointwise
bounded on a set which is everywhere dense in E.

Let (E, u) be the sequence space /*. For each x = {xu x2,...) in E, let tn(x) be (xi, x2, •.
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xn, 0, 0, . . .)• Then, as was pointed out in page 256 of [12], (tn) is a sequence of continuous
linear maps from (£, u00) into (E, u) such that, for each x in E, tn(x) converges to x in (E, u).
As the identity map from (E, w°°) into (E, u) is not continuous, it follows from the above corol-
lary that the barrelled normed space (E, M") is not K0-hyperbarrelled. Also, as was shown
just before Theorem 5.1 of [4], (?„) is a sequence of continuous linear maps from (E, x(E, E*))
into (E, u), which is uniformly bounded on bounded sets, but is not equicontinuous. Thus, by
Theorem 4.1, (E,T(E,E*)) is not K0-quasi-hyperbarrelled. This implies that a separated
inductive limit of Banach spaces need not be K0-quasi-hyperbarrelled. However, we have the
following result.

THEOREM 4.2. Any sc-inductive limit ofi$-hyperbarrelled (H-quasi-hyperbarrelled) spaces is
of the same sort.

Proof. Let (F, v) be the sc-inductive limit of (Ea; ux: a.e¥), where each Ea is K-hyper-
barrelled.

Let V = f] Vy, where, for some A > 0, each Vy is a closed balanced A-convex y-neighbour-

hood and the cardinal of <t> is K. Suppose also that V is absorbent; then, for each y in O,
each u~l(V) is a closed balanced A-convex neighbourhood of the origin in Ea. Since Ea is
K-hyperbarrelled, u'1^) is a neighbourhood in Ea. As this is true for all a in ¥ , Fis a v-
neighbourhood. Thus (F, v) is K-hyperbarrelled.

Similarly, any jc-inductive limit of K-quasi-hyperbarrelled spaces is of the same sort.

COROLLARY. Any countable inductive limit of locally convex \i-hyperbarrelled QA-quasi-
hyperbarrelled) spaces is of the same sort.

LEMMA 4.1. If B is a closed balanced semiconvex absorbent subset of a product E = X Ey

of semiconvex spaces, then there is a finite subset O0 of<!> such that X(Ey: ye<b\®0) £ B.

Proof. Let Fy denote Ey under its finest semiconvex topology. By Theorem 3.4, the
space {F, v) = X Fy is hyperbarrelled. Since v is finer than the topology of E, B is u-closed

yell

and must therefore be a ^-neighbourhood of the origin. This gives the result.
In the above lemma, E is the jc-inductive limit of X Ey and X(isy: ye<I>\<t>0). Therefore

B is a neighbourhood of the origin in E if and only if B n X Ey is a neighbourhood of the origin
ye«>o

in X Er Since, by Theorem 4.2, X Ey is K-hyperbarrelled (K-quasi-hyperbarrelled) if each
y 6 <l>o y e $ o

Ey is, Theorem 4.3 follows easily.

THEOREM 4.3. Any product of ^s-hyperbarrelled (^-quasi-hyperbarrelled) spaces has the
same property.

By an argument similar to the one above, one can prove that a product of countably
barrelled (countably quasi-barrelled) spaces is of the same sort.

The method used in the following lemma is a slight modification of that in [7, 22.9].

LEMMA 4.2. In the strong dual of a metrizable locally convex space, any bornivorous set
which is the intersection of a sequence of balanced k-convex neighbourhoods for some X > 0, is
itself a neighbourhood of the origin.
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Proof. Let £ be a metrizable locally convex space with dual E'. We shall suppose that
E' has the strong topology /?(£", E). Let U = f] Un, where each Un is a balanced A-convex

neighbourhood in E', be a bornivorous set in E'. To prove that U is a neighbourhood of the
origin in E', it is sufficient to show that there exists a o(E', 2s)-closed absolutely convex subset
of U which is absorbent in £ ' . By 22.3 of [7], there exists in E' a fundamental sequence (Bn)
of bounded sets such that each Bn is absolutely convex and a(E', £)-compact.

For each n, there is a positive number tn such that tnBn^ X~"~lU. Moreover, the convex
envelope Gn of \J tiBt is a a{E', £)-compact absolutely convex subset of X~l U. Also, for

1 g i g n

each n, there is a a(E', £)-closed absolutely convex neighbourhood Wn which is contained in
X~1 Un. If Vn = Gn + Wn, then Vn is a a{E', £)-closed absolutely convex neighbourhood in E'
and Vn s Un. Let Vbe the intersection of (Fn). Then Kis a CT(£", £)-closed absolutely convex
subset of U. And V is absorbent in £ ' since it absorbs each Bn.

By using an argument similar to that in Theorem 5.2 of [4], one can show that any sequen-
tially complete almost convex K-quasi-hyperbarrelled space is K-hyperbarrelled. It therefore
follows from Lemma 4.2 that the strong dual of any metrizable locally convex space is Ko-
hyperbarrelled, since such a space is necessarily complete. But by [2, pp. 71 and 88], the strong
dual of a metrizable locally convex space need not be quasi-barrelled. It therefore follows
that an K0-hyperbarrelled space need not be quasi-hyperbarrelled.
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