ON THE INDEX OF A QUADRATIC FORM

Jonathan Wild, Prince Albert, Sask.

Given a vector space $V = \{x, y, ...\}$ over an arbitrary field. In V a symmetric bilinear form (x,y) is given. A subspace W is called totally isotropic [t.i.] if (x,y) = 0 for every pair x = W, y = W.

Let V_n and V_m be two t.i. subspaces of V; n < m. Lower indices always indicate dimensions . It is a well known and fundamental fact of analytic geometry that there exists a t.i. subspace W_m of V containing $V_n \ [$ cf. Dieudonné: Les Groupes classiques, P. 18]. As no simple direct proof seems to be available, we propose to supply one.

We first consider the case that $V_n \cap V_m = 0$. Thus V_n and V_m span a subspace V_{n+m} . The vectors of V_{n+m} orthogonal to V_n form a subspace W.

Every vector of V_{n+m} , in particular every vector $x \in W$ permits a decomposition x = y + z; $y \in V_n$, $z \in V_m$. Suppose also $x' = y' + z' \in W$; $y' \in V_n$, $z' \in V_m$. Since V_n and V_m are t.i., we have (y,y') = (z,z') = O. By the definition of W, O = (y,x') = (y,y'+z') = (y,y') + (y,z') = (y,z'). Similarly (y',z) = O. Hence (x,x') = (y+z,y'+z') = (y,y') + (y,z') + (z,y') + (z,z') = O + O + O + O = O.

Thus W is t.i. As dim W \geqslant m and $V_n \subset W$, this disposes of our special case.

Assume now $V_n \cap V_m = V_d$. Thus V_n and V_m permit direct decompositions $V_n = V_d + V_{n-d}$, $V_m = V_d + V_{m-d}$. From the above, there exists a t.i. subspace W_{m-d} satisfying

(1) $V_{n-d} \subset W_{m-d} \subset V_{n-d} + V_{m-d}$. Since $V_d \cap (V_{n-d} + V_{m-d}) = 0$, we also have $V_d \cap W_{m-d} = 0$ and (2) $V_n = V_d + V_{n-d} \subset V_d + W_{m-d} = W_m$.

Let $y \in V_d$, $z \in W_{m-d}$. By (1), z = r + s where $r \in V_{n-d}$, $s \in V_{m-d}$. Since y and r [y and s] lie in the t.i. subspace V_n [V_m], we have (y,z) = (y,r) + (y,s) = O + O = O. Thus V_d and W_{m-d} are orthogonal.

By (2), any two vectors x, x' of W_m permit decompositions x = y + z, x' = y' + z' where $y, y' \in V_d$; $z, z' \in W_{m-d}$. From the above (y, z') = (z, y') = 0. Since V_d and W_{m-d} are t.i., we also have (y, y') = (z, z') = 0. Thus (x, x') = (y, y') + (y, z') + (z, y') + (z, z') = 0 and W_m is t.i.