European Psychiatry S519

None Declared, S. Sarkhel: None Declared, N. Jyothi: None Declared, A. Kumar: None Declared, N. Sooch: None Declared, A. Shetty Employee of: Sun Pharma, S. Saha Employee of: Sun Pharma, P. Devkare Employee of: Sun Pharma, A. Shetty Employee of: Sun Pharma, D. Patil Employee of: Sun Pharma, P. Ghadge Employee of: Sun Pharma, A. Mane Employee of: Sun Pharma, S. Mehta Employee of: Sun Pharma

EPV0234

Neuropsychiatric Symptoms in Multiple Sclerosis: A Case Report

A. Picallo Vieito¹*, S. Buyo Lagares¹, M. Pardal Iglesias¹, M. Grueiro Cao¹, A. Lagoa Pego¹, C. Ramil López¹, C. Fernández Ovies¹, A. Parada Barcia¹, P. Piñeiro Magro¹, L. González Pereira¹, J. Ricoy Chaín¹ and R. Prieto Perez¹

¹Psychiatry, Hospital Universitario A Coruña, A Coruña, Spain *Corresponding author.

doi: 10.1192/j.eurpsy.2025.1073

Introduction: The relationship between bipolar disorder (BD) and multiple sclerosis (MS) has gained increasing attention due to the complex interplay between neurological and psychiatric symptoms in affected individuals. BD can significantly impair quality of life, and its prevalence in MS patients remains a critical area of investigation.

We present the case of a a 42 year-old woman. She was admitted to the Psychiatric Hospitalization Unit due to a manic episode with psychotic symptoms. Her psychiatric history includes a visit to the Mental Health Unit one year prior for anxiety-depressive symptoms. Notably, she has a diagnosis of Multiple Sclerosis from 2022. **Objectives:** Based on the described clinical case, we aim to review the available literature on the relationship between bipolar disorder and multiple sclerosis.

Methods: A systematic review of the literature was conducted using databases such as PubMed, Scopus, and PsycINFO. Studies published up to 2023 that reported on the prevalence and clinical characteristics of BD in MS patients were included. Data were extracted and synthesized to provide a comprehensive overview.

Results: The review identified 20 relevant studies, with pooled data indicating a prevalence of BD in MS patients ranging from 5% to 20%. Key factors influencing prevalence included demographic variables, such as age and sex, as well as the presence of other psychiatric comorbidities. The literature suggests that inflammatory processes and neurobiological changes in MS may contribute to the development of mood disorders, including BD. Conclusions: There is significant evidence linking bipolar disorder with multiple sclerosis, highlighting the importance of comprehensive mental health assessments in MS patients. Future research should focus on understanding the pathophysiological mechanisms behind this association and developing tailored interventions to improve overall patient outcomes.

Disclosure of Interest: None Declared

EPV0235

Melanopsin-Mediated Pupillary Responses in Bipolar Disorder: A Non-Systematic Review

M. O. Pires¹*, H. J. Gomes², R. M. Freitas³, C. Freitas³ and M. Albuquerque³

¹Department of Psychiatry and Mental Health, Guarda Local Health Unit, Guarda; ²Department of Psychiatry and Mental Health, Nordeste Local Health Unit, Bragança and ³Integrated Responsability Center - Mental Health, Hospital Pedro Hispano, Matosinhos, Portugal *Corresponding author.

doi: 10.1192/j.eurpsy.2025.1074

Introduction: Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are critical regulators of circadian rhythms and various non-image-forming visual functions, such as the pupillary light reflex (PLR), which adjusts the amount of light entering the eye. ipRGCs, through their direct responsiveness to circadian light, influence both circadian entrainment and neurophysiological processes that affect mood regulation. Emerging evidence suggests that melanopsin-mediated PLR may be disrupted in mood disorders, including bipolar disorder (BD) and even patients with increased bipolar disorder-traits. Given the well-documented association between circadian dysregulation and BD pathophysiology, it is hypothesized that changes in ipRGC function may contribute to the neurobiological mechanisms underlying BD.

Objectives: The primary aim of this review is to synthesize and evaluate the existing body of literature on melanopsin-mediated pupillary responses in individuals with bipolar disorder. Specifically, this review seeks to assess the extent to which these responses are altered in BD and to explore the potential utility of melanopsindriven PLR as a biomarker for mood dysregulation and circadian disruption in this patient population.

Methods: A non-systematic review of the literature on the melanopsin-mediated pupillary light reflex in patients with bipolar disorder, through a targeted search of databases.

Results: The reviewed studies demonstrate consistent alterations in melanopsin-mediated pupillary responses in individuals with BD. Several investigations report reduced PLR amplitude and delayed latency in BD patients, with variability depending on mood state. Manic and depressive episodes appear to be associated with distinct patterns of dysregulation, suggesting that melanopsin signaling may be differentially affected by the phase of illness. One study also shows a variation in ipRGCs responses in remitted BD patients, suggesting an alteration of this system throughout the disease. (Madsen *et al.* Int J Bipolar Disord 2021;9,7) These findings align with circadian disruptions commonly observed in BD, further supporting a mechanistic link between ipRGC dysfunction and mood regulation.

Conclusions: Melanopsin-mediated pupillary responses have emerged as a promising avenue of investigation for identifying biomarkers of bipolar disorder, particularly concerning circadian rhythm and mood dysregulation. Despite encouraging preliminary findings, the current literature is limited by methodological heterogeneity and small sample sizes. Future research should standardize assessment protocols and investigate how ipRGC dysfunction contributes to BD pathophysiology, potentially leading to novel treatments targeting circadian regulation and improving clinical outcomes.

Disclosure of Interest: None Declared