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1. Introduction. In [1] J. Lindenstrauss and M. A. Perles studied the extreme points
of the set of all linear operators T of norm =s 1 from a finite dimensional Banach space X
into itself. In particular they studied the question "When do these extreme points form a
semigroup?".

Let X be a Banach space. Then S(X) denotes the unit ball of X and B(X) denotes
the unit ball of all operators from X into itself (with the usual operator norm). Let ext A
denote the set of extreme points of a set A. The two principal theorems of [1] are:

THEOREM 1. The following three assertions, concerning a finite dimensional Banach
space X, are equivalent:

(1) xeextS(X), TeextB(X)^>Tx eextS(X);
(2) T1)T2GextB(X)4>T1T2eextB(X);
(3) {T,}i"-i e ext B(X)^>||T1 . . . T j | = 1, for m = 1,2,. . . .

THEOREM 2. Let X be a Banach space of dimension =£4. Then X has properties (1) to
(3) of Theorem 1 if and only if one of the following conditions holds:

(i) X is an inner product space;
(ii) S(X) is a polytope with the property that for every facet K of S(X), S(X) is the

convex hull of KU-K.

In 5 dimensions they give an example of a polytope S(X) which satisfies (ii) of
Theorem 2 but for which X does not have properties (1) to (3) of Theorem 1. However,
they conjecture that any finite dimensional Banach space X which has properties (1) to (3)
of Theorem 1 also satisfies (i) or (ii) of Theorem 2. The purpose of this note is to prove
this conjecture for Banach spaces X of dimension at most 6. The methods probably work
for higher dimensions but are limited by the large number of cases which need to be
considered.

2. Pre-requisites. We state here the definitions and results of [1] which we shall use.

DEFINITION. Let pext B(X) denote the subset of B(X) consisting of all finite products
of elements of extB(X) and let clpextB(X) denote its closure.

In [1] it was shown that if X satisfies Theorem 1 then

cl pext B(X) = ext B(X).

DEFINITION. Let k(X) =min{dim TX: Ted pext B(X)}.

Let X be a Banach space of dimension n. Then X has properties (1) to (3) of
Theorem 1 if and only if fc(X)>0. If k(X) = n then X is an inner product space, and if
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fc(X) = 1 then S(X) is a polytope with the property that, for every facet K of S(X), S(X)
is the convex hull of K U — K. The conjecture of Lindenstrauss and Perles therefore is that
there does not exist X with 1< k{X)< n. In [1] it was shown that fc(X)/ n - 1 or n - 2
which, of course, proves Theorem 2.

Furthermore it was shown that the following result holds.

LEMMA 1. Let X have properties (1) to (3) of Theorem 1 and let Kk{X)<n. Say
k(X) = k. Then ext S(X) is closed and is the union of an infinite number of k-dimensional
ellipsoids, say extS(X) = U Xa where Xa is a k-dimensional ellipsoid. Also there is a

seA

projection Pa in ext B(X) from X to Xa and the restriction of every Te ext B(X) to Xa is an
isometry.

Since fc(X) = fc(X*), Lemma 1 also holds for X*, say extS(X*) is the union of an
infinite number of fc-dimensional ellipsoids {Xf}PsB. The various projections Pa induce
circumscribing fc-dimensional elliptic cylinders to S(X), say {C0}3eB, where Q is the polar
of X%, /3eJ3. Consequently {Q}peB is also infinite and closed in the obvious sense. Also
each Xa(aeA) lies on the boundary of each ( )

3. Additional lemmas. If, using the notation of the previous section, we consider a
fc-dimensional ellipsoid Xo of the collection {Xa}aeA, we may consider Xo as a base for C3

and let Lp denote the (n - fc)-subspace of generators of Cp, i.e.

C3 = X0+L(3,/3e.B.

Then, if x€X0, (x + Lp)r\S(X) is a face of S(X) of dimension at most n-fc. The
collection {Cp}peB is closed and infinite, and consequently it contains a limit cylinder

Q o = Xo + L^.

Our first objective is to establish Lemma 3 which asserts that for each xeX0,
(x + LpJ D S(X) has dimension less than n-fc. To do this, we need to establish

LEMMA 2. Let Ym = {x:(x-ym)'Am(x-ym)s£am} (am>0) be a closed convex elliptic
cylinder in En, where x'Amx is a positive semi-definite quadratic form, m = 1, 2,
Suppose that there exist n + l affinely independent points x , , . . , x n + 1 which lie on the
boundary of each Ym, m = 1,2, Then there exist a subsequence M and a closed convex
n-dimensional set Y such that

(i) y m n B - > y n B a s m ^ « > through M for any closed ball B,
(ii) X j , . . . , xn+i lie on the boundary of Y and at least one of the line segments [x,, x,]

does not lie in the boundary of Y.

Proof. By using the Blaschke selection theorem and a standard diagonalisation
argument we choose a subsequence M and a closed convex n-dimensional set V such that
Ymr\B-*Y(lB as m-»°° through M for any closed ball B. We suppose that Lemma 2 is
false, i.e., that [xf, x,] lies on the boundary of Y for l=£i</s£n + l. As x 1 ; . . . ,xn+, are
affinely independent, conv(xlv.. ,xn+i) meets the interior of Y. Consequently we may
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pick a (d + l)-membered subset (2=sd=£n), say x1? . . . , x d + 1 , so that conv(x,,... ,xd+1)
meets the interior of Y but conv(xfl,...,«(_) is contained in the boundary of Y for
l s£ i ,< . . .< i d «sd + l.

Let D be the affine space spanned by xu ..., xd+1. Then Df) Ym-*conv(x1,..., xd+i)
as w-»oo in M. Consequently DO Ym is bounded for sufficiently large m in M, and so
D fl Ym is a d-dimensional ellipsoid for sufficiently large m in M But then DDYm is
centrally symmetric and so conv(x!,..., xd+1) is centrally symmetric, which is not so. This
contradiction establishes Lemma 2.

LEMMA 3. The subset Xo~k = {x: (x+L0o) D S(X) has dimension n — k} of XQ is empty.

Proof. We suppose that the lemma is false. Let yoeXS~k. Then (yo + L p j n S W
contains n - k +1 affinely independent extreme points y 0 , . . . , yn_k. Each of these extreme
points y0, • • •, yn-k is contained in (at least) one k-dimensional ellipsoid, X o , . . . , Xn_k

respectively say, from amongst the collection {Xa}aeA.
Now CPo = Xo + Lft) is a limit cylinder of the collection {C&}P£B, and so we can choose

distinct cylinders
C X L , m = 0 ,1 ,2 , . . .

so that Cem-^C^ as m-»°°. The set Ym = (y0 + L(3o)n(X0 + L3m) is the intersection of the
flat yo+ift, with the elliptic cylinder X0+LPm and consequently Ym is also an elliptic
cylinder (possibly an ellipsoid) in yo+L^.

By Lemma 2, there exist a subsequence M and a closed convex (n — fe)-dimensional
set Y in yo+L^ so that

(i) y m n B - » Y n B a s m - > « i through M for any closed ball B in yo+Leo,
(ii) y 0 , . . . , yn_k lie on the relative boundary of Y and at least one of the line

segments [y,, y j does not lie in the boundary of Y.
We may suppose, without loss of generality, that [y0, y j does not lie in the relative

boundary of Y. Now, by continuity there exists a neighbourhood U of y0 in Xo such that
U is contained in X[pk. Let xm be that point of Xo such that y, and xm lie on the same
face of Cm, i.e., xm = (y1 + L3m)nX0. Then, since C^-^C^ as m-»°°, xm-»y0 as m-»<».
Also, if xm =y0 for all but finitely many meM then the line segment [y1;yo] lies on the
same face of CPmr\(yo+L0o)= Ym for all but finitely many meM. So \yu y0] is on the
boundary of Y, which yields a contradiction. Consequently, we may suppose that xm^y0

for all meM.
There will be a hyperplane of support, say Hm, to X0 + LPm, and hence to S(X), which

contains both xm and yt. Then (yo + L^nHn is a hyperplane in yo + L^ which supports
(y0 + L^) f~l S(X) at y,. Since [y0, y j does not lie in the relative boundary of Y, (y0+L^) n
Hm may be supposed to converge to a hyperplane (yo+L^flH, and Hm converges to H,
which supports Y at y, and yoi(yo+L^HH.

Now consider a line segment tyo>
zi] passing through the relative interior of (yo +

L j n S ( X ) , where za e relbdy{(y0 + L&) n S(X)} and zY is chosen so close to y1 as to
ensure that the hyperplane H cuts the line through [zi,y0] in a point bl5 where bj,Z!,y0

occur in that order. Consequently, we may suppose that for meM, Hm cuts the line
through [zi,y0] in a point bm, where bm, zu y0 occur in that order.
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Consider next the 3-dimensional subspace Gm generated by zu y0 and xm. In Gm the
2-plane Hm C\ Gm contains bm and xm and is tangent to Xo D Gm. Consequently Hm D Gm

strictly separates the point y0 from the ray

So €m does not meet the face (xm + Lft))nS(X). But

£0 = lim €m = {y0 +1(x, -y0), t > 0}

meets (yo + L ^ f l S(X) in a relatively interior point z = (z1+y0)/2. So there exists a finite
set qt, . . . , q p of extreme points of S(X) in (yo+LpJr\S(X) whose convex hull is
(n - fc)-dimensional and contains z as a relatively interior point. Let Xat,..., X^ be
ellipsoids amongst {Xa}aeA such that q; e Xai (i -1,..., p), and let q™ = K., H (xm + L^)
(i = 1 , . . . , p). Then q["—»qj as m—*°° (i = 1 , . . . , p) and so, for sufficiently large m in M,
zm =xm + (z1-y0)/2 lies in the relative interior of the (n - fc)-dimensional set
conv(q7,. • •, q|T) which is contained in (\m+LeJf\S(X). This contradicts the previous
result that €m does not meet (xm + L3o)nS(X) and completes the proof of Lemma 3.

The next lemma uses an extension of the methods used to prove Proposition 4.3 of
[1].

LEMMA 4. Let Xbe a finite dimensional Banach space with 0 < k(X) < n. If [a, b] is an
edge of S(X) then there must be at least 2 members of {Xa}aeA which contain b.

Proof. If the lemma is false, then there is an edge [a, b] of S(X) such that b is
contained in exactly one member Xr of {Xa}aeA. Let Z be the 2-dimensional subspace of
X spanned by [a,b] and let k = k{X). Then, if B(Ek,X) denotes the set of linear
operators of norm at most 1 from Ek to X, there exists TeB(Ek,X) such that

with a2 + j32 = ||y|| = 1, j3#0 and Te( =0 for i>2 (here {eJjLi denotes the usual coordinate

basis of Ek). Let T= £ A;Tf with A; > 0 (i = 1 , . . . , a), £ A, = 1 and T( e ext B(Ek, X)
i = l i = l

(J = 1 , . . . , q). Then, since Tf takes extreme points to extreme points (see Lemmas
3.11-13 of [1]), T j e ^ a o r b f o r i = l , . . . , q. We assume that 7 ^ = a for j = l , . . . , p and

p q

T j e ^ b for i = p + l,...,q. Then we have 1 / 2 = ^ A ( = Y. K and T; is an isometry
i= l i=p+l

from Ek to Xj for i = p + 1 , . . . , q. Let

and
X

AjT^aex
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Then y = (yo+yi)/2, and consequently y0 and y1 lie on the boundary of S(X). Also yt lies
on the relative boundary of X, and so

Since /3^0, y ^ ±b.
Since Xx meets the subspace spanned by a, b only at ±b, it follows that a, b, y0, yt

span a 3-dimensional subspace F. Using the methods of Lemma 3.8 of [1], we see that
there exists VeextB(X) such that V(a)=V(b) = b. Consequently, if M denotes the
(k + l)-dimensional subspace generated by Xt and b - a , V(S(X)C\M) = Xx. So the
cylinder

C = {(FnX,) + ((b-a),( real}

supports FflS(X) and contains F(~)X1 on its boundary; further, [a, b] is contained in a
generator of C.

Similarly, considering [y0, y j and WeextB(X) with W(yo) = W(y,) = b, we see that
there exists a cylinder

which supports FO S(X) and contains FC\X1 on its boundary; also [y0, y j is contained in
one of the generators of C. Since Oe lin (a, b, (yo+yi)/2), yi - y 0 is parallel to b - a only if
y, = ±b, which is impossible. So C" is not C and again Oe lin (a, b, (yo + yi)/2) only if yx is
±b, which is impossible. This establishes Lemma 4.

LEMMA 5. Let C be a convex body in E" such that ext C is contained in Lj U L2, where
Lx and L2 are hyperplanes. Then, if y belongs to (ext QHiL^Lz), there is an edge of C
which contains y.

Proof. The result is trivial when n = 2 and, proceeding by induction, it is enough to
find a proper face F of C which contains y but which is not contained in Lx.

Let H be a hyperplane of support to C at y. If L, n L 2 ^ 0 , we may suppose, by
taking a projective transformation if necessary, that HDLj contains a translate of
L2(~\LX. Then, if II denotes the orthogonal projection of En along Lx Pi L2, y is an
extreme point of the 2-dimensional convex body IIC. The point Ily is not in IIL2 and
extllC is contained in I ILJUILLJ . So there exists an edge F* of IIC which contains Ily
but which is not contained in IILj. Then F= CTlII"1./7* is the required face of C.

If L, n L2 = 0 i.e., Lj is parallel to L2, then it is possible to choose H so that H^ Lx.
Then we project along HC\L{ and argue as before.

LEMMA 6. Let X be a 6-dimensional Banach space with k(X) = 2. Then there are no
points on S(X) which lie on two distinct members of {.*„}„ eA. Consequently S(X) does not
contain any edges.

Proof. We suppose that the lemma is false. Let Xu X2 be two ellipses of {Xa}aeA

which intersect. Without loss of generality we may suppose that
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and

which intersect in the point (0, 1, 0, 0, 0, 0)'. Then the cylinders {C3}peB which arise from
the dual ellipses {X^}peB of S(X*) meet the 3-dimensional space x4 = x5 = x6 = 0 in
cylinders of the form

and hence their generators contain one of (1, 0, ±1, 0, 0, 0)'. This means that each of the
ellipses X | is orthogonal to one of ( l , 0 ,± l , 0,0,0)' and hence the extreme points of
S(X*) are contained in two 5-dimensional subspaces L*, L*. Consequently, if X? is one
of the collection {X|}peB such that Xf C\(L*\Lf)/ 0 , then, using Lemma 5, if y*€
Xf D(L*\L*) there exists an edge of S(X*) which contains y*. So, using Lemma 4, there
exists an ellipse of {Xf}^eB, different from Xf, which contains y*.

Let y*> yf be distinct points of X ^ n ^ X I ^ ) and let Xf, Xf be distinct from X? and
contain yf, yf respectively. We now disregard the special forms, assumed previously, for
.X"] and X2 and we may instead assume that

X%:x\ + xl = \, x3 = x4 = x5 = x6 = 0,

Xf:x? + x | = l, x2 = x3 = xs = x6 = 0,

and hence that

y? = (0,1,0,0,0,0)',

y* = (1,0,0,0,0,0)'.

Then each cylinder arising from the ellipses in {XQ}aeA meets the 4-dimensional
subspace x5 = x6 = 0 in a cylinder of the form

So each cylinder arising from {Xtt}aeA contains amongst its generators one of the four
2-dimensional subspaces

and not all of these cylinders can share a common generator. This means that the extreme
points of S(X) are contained in at least two and at most four 4-dimensional subspaces
Lf i , . . . , Ltj and Lfi D . . . C\ LH is the 2-dimensional subspace L : xx = x2 - x3 = x4 = 0. We
may suppose that

for otherwise Lk is redundant. For each Lik we may pick X1( X2, X3 as Xf, Xf, Xf were
chosen above, and we deduce that the cylinders arising from {Xf}PeB contain, amongst
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their generators, one of four 2-dimensional subspaces Lifc>1,..., LikA, at most one of
which can be L and all of which lie in Lik.

We may classify the cylinders arising from the {X|}peB into a finite number of classes
according to which of the 2-dimensional spaces LikA,..., LikA are contained amongst its
generators (fe = 1 , . . . , j). It is only in the class (if it exists) in which L occurs as the
2-dimensional subspace for each k that a 3-dimensional subspace of generators is not
determined.

In S(X*), this means that the extreme points of S(X*) are contained in finitely many
3-dimensional subspaces Mx,..., Mp and at most one 4-dimensional subspace N. Now
M i , . . . , Mp can contain at most two members each of {X|}peB, and so there are only
finitely many X | that are not wholly contained in N.

There are two 5-dimensional subspaces N1; N2 which contain ext S(X*) and we may
suppose that (ext S(X))n(Ni\N)^ 0 and hence is infinite. By Lemmas 4, 5 it follows that
for each point ye (ext S(X))f|(N!\JV) there are at least two members of {X*}peB which
contain y. Consequently, there are infinitely many {X|}peB which are not contained in N.
This contradiction establishes Lemma 6.

LEMMA 7. Let X be a 5- or 6-dimensional Banach space. Then k(X)^2.

Proof. We only prove the lemma in the harder 6-dimensional case. We choose
C0o = Xo + Lft) as in Lemma 3 with k(X) = 2, and deduce that the subset

XI = {x: (x + LJ DS(X) has dimension 4}

of Xo is empty.
If (x + Lft))nS(X) has dimension 3, let H be the affine hull of (x+LPo)nS(X). Any

cylinder CP=XO+LP, with L^^L^, meets H in a cylinder Hf\C0 which is either the
product of an ellipse and a line or the product of a line segment and a plane. The extreme
points of (x + L3o)DS(X) must lie on the relative boundary of HDCP and so (x + L^jn
S(X) must contain edges of S(X), which contradicts Lemma 6.

So, (x + Lft))nS(X) is either the single point x or a 2-dimensional ellipse, for each
xeX0. Since {Xa}aeA is infinite, (x+L3o)nS(X) is an ellipse, except for possibly two
opposite points of Xo.

Consider next a sequence of distinct cylinders CPm = XQ + L ^ (m = 0,1,2, . . .) , which
converge to C^ as m-»°°, and an ellipse jB = (x + L3o)nS(X). Unless x + LPm contains E,
the projection of E along LPm, into Xo, must be an ellipse on Xo and so must coincide with
Xo. But, as m—><*>, this projection must converge to x, which would be impossible. So we
conclude that there exists M(x), such that if m3=M(x), x + LPm contains E. So L3m contains
the 2-dimensional subspace D(x) = lin{E-x}. As S(X) is 6-dimensional and Xo is only
2-dimensional, we must be able to choose x1; x2, x3 in Xo such that Dix^), D(x2), D(x3)
arise from ellipses (xf +Lfio)r\S(X) (i = 1, 2, 3) and span the 4-dimensional subspace L^.
Then, if m 2» max M(x,), L3m = L^ and so C0m = C^, which contradicts the fact that the

cylinders {C3m}^=0 are distinct.
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LEMMA 8. Let X be a 6-dimensional Banach space. Then k(X)7i3.

Proof. We suppose that k(X) = 3. Then, using Lemma 3, ( x + L j n S ( X ) is at most
2-dimensional for all x e Xo. If two ellipses do not coincide then they meet in at most four
points. So, if (x + Lpjn S(X) is not an ellipse then it is either a single point, an edge or a
2-dimensional convex set whose boundary consists of at most four edges. Hence, as
{Xa}aeA is infinite, for almost all x in Xo, ( x + L j n S ( X ) is a 2-dimensional ellipse.

We may suppose that Xo is the 3-sphere

and that one of these ellipses (x + L J n S ( X ) is

(x 4 - l ) 2 + x | = l, x ^ l , x2 = x6 = 0,

where x = (l, 0, 0, 0, 0, 0)'.
Consider any 3-cylinder arising from {-Xp}peB intersected with the 5-dimensional

subspace x6 = 0. This has equation

(X! + ajx4 + p^f + (x2 + a2x4 + j32x5)
2 + (x3 + a3x4 + /33x5)

2 = 1.

If we consider the subset lying in the 2-dimensional affine subspace

we obtain

which must be equivalent to

(x 4 - l ) 2 + x 2 = l .

3 + j3 =So a1 = -l, (31 = 0, a2 = a3 = 0, /32 + j33 = l . Hence if we write /32 = cosA, /33 = sinA the
3-cylinder, intersected with x6 = 0, then has the form

(xj - x4)2 + (x2 + x5 cos A)2 + (x3 + x5 sin A)2 = 1,
or

x2 + x2 + xf+ x4 + x § - l —2xjX4 = — 2xs(x2cos A + x3sin A).

If there is an extreme point of S(X) in the 5-dimensional subspace x6 = 0 which does not
lie in either x5 = 0 or x2 = x3 = 0, then A can take one of two values A1; A2 in [0, 2TT]. Say

y=(yi> y2.y3.y4. ys.ye)'
with

Then the two sets of 2-dimensional generators for the cylinders are given by

Xj = x4, x2 = -x s cosA 1 , x3 = -x 5 s inA 1

and
X! = x4, x2 = -x s cosA 2 , x3 = -x 5 s inA 2 .
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So both sets of generators lie in the 3-space

where c is a constant determined by y. Hence the two sets of generators intersect, i.e., all
the cylinders {Cp}peB have a common generator, which is impossible.

So any point of ext S(X) in x6 = 0 must lie in either the set x5 = 0, or in x2 = x3 = 0, or
in both. Each of the 3-spheres meets x6 = 0 in at least a 2-sphere. If one of these
3-spheres X,,, other than Xo, meets x5 = 0, x6 = 0 in a 2-sphere, then Xo and X,, intersect.
Otherwise, any two 3-spheres of {Xa}aeA meet the 3-dimensional subspace x2 = x3 = x6 =
0 in at least a 2-sphere and so intersect. So we may suppose, in any event, that there are
two 3-spheres X,, X2 of the collection {Xa}aeA which intersect. If X1 is

x2 + x2 + x 2 = l , JC4 = X5 = X6 = 0,

then we may suppose that the other 3-sphere X2 is one of

(i) X2 + X3 + X 4 = l , X1 = X5 = X6 = 0 ,

(ii)

Consider first case (i). Any cylinder arising from {X |} P G B meets the 4-dimensional
subspace x5 = x6 = 0 in a cylinder of the form

In the 3-dimensional subspace X[ = x5 = x6 = 0, this reduces to

a 2x4 + (x2 + a2x4)
2 + (x3 + a3x4)2 = 1,

which must be equivalent to
x | + x | + x 4 = l .

So a, = ± 1, a2 = a3 = 0, i.e., all the cylinders have one of (± 1, 0, 0, 0,0, 0)' amongst their
generators. Dually, this means that the extreme points of S(X*) are contained in two
5-dimensional subspaces Lx and L2. So the cylinders arising from {Xa}aeA give rise to
faces of S(X*) whose extreme points are (almost always) disconnected. So these faces
cannot (almost always) be ellipses, which gives the required contradiction in case (i).

Consider next X2 as in (ii). Any cylinder arising from {X|}peB meets x6 = 0 in a
cylinder of the form

which, when also Xi = x2 = 0, has the form

(a,x4 + PtXsf + (a2x4 + /32x5)
2 + (x3 + a3x4 + /33x5)

2 =

which must be
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Consequently,

Let a] = cos A., a2 = sin A, /3x = cos p, /32 = sin p. Then

cos A cos p+sin A sin p = 0,
that is,

cos (A - p) = 0.

So p = A + 3ir/2 or p = A + TT/2. Hence the cylinder has the form

(XJ + A^COS A + x5sin A)2^-(x2 + x4sin A-x5 cos A)2 + xf = 1,
or

(xt + x4 cos A - x5 sin A)2 + (x2 + x4 sin A + xs cos A)2 + xf = 1.

i.e., either

x2 + X2 + x | + x2 + x 2 - l = - 2 sin A(x1xs + x2x4)-2cos A(x1x4-x2x5), (1)
or

x2 + x + x | + x |+ x | + . t 2 - l = 2sin A(x1x5-x2x4)-2cos A(xiX4 + x2x5). (2)

If (1) occurs and there exists yi = (yn, yi2, yi3, y14, yi5, 0)' in extS(X) such that at
least one of ynyi5 + yi2yi4 or yuyi4~yi2yis is non-zero, then A can take at most two
values in [0, 2TT]. Consequently, the generators of the cylinders {C3}3eB arising from
{X|}0eB contain at least one of four 2-dimensional subspaces. Hence the extreme points
ext S(X*) of S(X*) lie in the union of at most four 4-dimensional subspaces. So the
cylinders arising from {.X^}aeA giye f i s e t o faces of S(X*) whose extreme points are
(almost always) disconnected. So these faces cannot (almost always) be ellipses, which
gives a contradiction.

So, if (1) occurs, then, for all extreme points in ext S(X),

U (3)

and, if (2) occurs,

XjX5-x2x4 = 0, x1x4 + x2x5 = 0. (4)

We deal only with the case when (1), and hence (3), occurs; the argument when (2), and
hence (4), occurs is similar.

From (3) we obtain

(x2 + x2)x5 = 0.

Hence either xx = x2 = 0 or x5 = 0. If xx ^ 0 and x5 = 0, then x4 = 0. If x2 £ 0 and x5 = 0,
then x4 = 0. Consequently, either x1 = x2 = 0, or x4 = x5 = 0. So, if Xa is a 3-sphere
amongst {Xa}aeA, but different from Xx and X2, then Xa meets one of XUX2 in a
2-sphere and we are again in case (i), which completes the proof of Lemma 8.

Combining Lemmas 7 and 8 and Proposition 4.4 of [1] (which says that if dim X=n,
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n-\ or n-2) we obtain

THEOREM 3. Let X be a Banach space of dimension at most six. Then X has properties
(1) to (3) of Theorem 1 only if one of the following conditions holds:

(i) X is an inner product space;
(ii) S(X) is a polytope with the property that for every facet K of S(X), S(X) is the

convex hull of K U —K.
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