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strategies, which unfortunately either rely on hidden absolutist assumptions, or leave 

comparativists and absolutists on equal footing. 
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1. Absolutism under comparativist fire 

A physical quantity, such as mass,
1
 is a determinable property that is associated with two 

different arrays of determinates: monadic, “absolute” masses (“being 3 kg in mass”) and 

dyadic, “comparative” mass-relations (“being thrice as massive as”) (Dasgupta 2013). 

Absolutism is the view that mass-relations are (metaphysically) dependent on the more 

fundamental distribution of absolute masses among objects. Comparativists deny this and take 

mass to be fundamentally relational: mass-relations are all there (fundamentally) is, mass-

wise; and absolute masses, if real, depend on them. Here, my aim is to defend Absolutism by 

putting Comparativism under the pressure of a new argument, “the squared mass-ratios 

puzzle” (section 2). I show, basically, how the main argument against Absolutism, based on a 

principle of economy, backfires and gets comparativists into deep trouble. To set the scene for 

this argument, it will be useful, in section 1, to replay the comparativist attack on Absolutism. 

Sections 3 and 4 will then be devoted to examining and rejecting possible exit strategies. 

Let me first outline the position known as “Absolutism (about mass)”, before turning to 

the comparativist attack. In speaking of absolute masses, first, I posit a set M of monadic 

properties mi with cardinality ℵ1, i.e. as many absolute masses as positive values in our 

common mass scales. Aristotelian absolutists, like Armstrong (1988), refuse to admit 

uninstantiated absolute masses, while Martens (2021) and Platonist absolutists like Mundy 

(1987) readily do. But nothing in what follows crucially pivots on this in-house dispute.
2
 

Second, I assume that M is endowed with the canonical structure of extensive 

measurement: a total weak order (≿A) and a weakly associative, monotonous concatenation 

relation (∘A), interpreted as addition.
3
 I won’t ask whether these relations supervene on the 

intrinsic nature of the absolute masses (Armstrong 1988) or are genuine, second-order 

relations (Mundy 1987), (Eddon 2013); nor whether absolute masses have a quiddistic 

                                                 

 
1 Throughout the article I use mass as a working example, but the argument could easily be 

extended to any quantity admitting a ratio scale. 

2 Similarly, nothing here depends on how these properties are metaphysically construed, either as 

universals (Armstrong 1988) (Mundy 1987) or as points in a “quality space” (Wolff 2020) (Jacobs 

2023). 

3 For a similar treatment, see (Martens 2021, 2519), (Martens 2022, 3), (Martens 2024, 13). A 

complete axiomatization typically includes an Archimedean condition (Krantz, et al. 1971, 73). 
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identity (Martens 2021) or are only individuated through second-order relations (Wolff 2020), 

(Jacobs 2023). But I will assume that absolute masses have transworld identities, to help 

formulate the inter-world Leibniz rescalings scenarios (see below). 

Absolute masses thus have a structure   = ⟨M, ≿A, ∘A⟩ that allows M to be numerically 

represented by a function φ: M → ℝ
+
, unique up to multiplication by a scalar, interpreted as 

unit change (Krantz, et al. 1971, 74). Following Stevens’ typology, the quantity M is then said 

to have a ratio scale, in which the ratios among mass-values are preserved through the 

admissible transformations φ’ = kφ (k > 0) (1946). In the following, I call “additive” quantities 

that have such ratio scales. Finally, under a fixed φ, mass-values (“3 kg”) are taken to 

represent the corresponding absolute masses mi. 

I take Absolutism to be the conjunction of the three following claims: 

(1A) Absolute masses M are real and form the structure  . 

(2A) In a world W, an object x has its mass in virtue of the absolute mass mi it instantiates. 

Mass-absolute facts of the form “mix” are the fundamental mass-facts. 

This has a nice consequence regarding the distribution of mass-values. Call m a function 

that attributes to any x in W a mass-value in a unit. Once a scaling φ for the absolute masses is 

chosen (by a unit-definition),
4

 then for any x in W and any mi of M, if mix then m(x) = φ(mi). 

(3A) In a world W, mass-relational facts depend on mass-absolute facts. Noting “rixy” the 

fact that x is in the mass-relation ri with y, rixy obtains in virtue of mix and mjy. 

This means that absolutists don’t need primitive mass-relations: with a mosaic of mass-

absolute facts and the structure  , determinate mass-relations among objects come for free. 

Now, call mR the function that attributes to any two x and y in W a real, positive value 

corresponding to just how much more massive x is than y. Then, for a fixed φ, if mix and mjy 

then mR(x,y) = φ(mi)/φ(mj). The mass-ratio mR(x,y) can be directly expressed as the ratio of the 

values for their respective absolute masses. 

                                                 

 
4 This is how absolutists typically interpret unit definitions. The sentence “the unit of mass is the 

mass of this object” is understood as: “this object has the absolute mass mi associated by φ with 

the number “1” (compare with footnote 13). 
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Absolutism is under heavy comparativist attack. Dasgupta (2013) argues that since 

monadic mass-values (“3 kg”) only express disguised mass-relations to a chosen standard, 

absolute masses are metrically undetectable (at least, prior to dynamic considerations)
5
 and 

altogether dispensable. This translates into what Martens calls “Kinematic Comparativism”: 

because mass is a dimensionful quantity, with unit-dependent values, the mass of an object 

“can only be reported or expressed, non-dynamically, in terms of how this magnitude relates 

to the magnitude of another particle having the same determinable property” (2021, 2520). 

From a representational viewpoint, it means that the mass-values m(x) entirely depend on the 

choice of a φ, and are not invariant under φ’ = kφ (k > 0) (passive rescalings, i.e. unit 

changes). Since only the mass-ratios mR(x,y) are preserved, only these ratios should be 

considered as representing something physical, i.e. the mass-relations. Then, by virtue of a 

principle of economy that Martens calls the “Occamist norm” (2021, 2522), absolute masses 

are considered redundant surplus and eliminated from the fundamental ontological furniture. 

There is another way of framing the same argument, that will prove useful later on. Call 

an “initial world” W0 the complete state of a world at a given time, conventionally
6
 chosen as 

“t0”; an “initial world” is typically what is described in the initial conditions of a problem of 

physics: a distribution of fundamental properties and relations on a given set of objects. Since 

they consider absolute masses as fundamental, absolutists hold that two initial worlds W0 and 

W’0 that differ only by a (uniform) doubling of absolute masses fundamentally differ. 

Comparativists deny this. To put this more precisely, define: 

Active Leibniz (Mass) k-rescaling: for all x of W0, with mix, give its counterpart x’ in 

W’0 the absolute mass mj such that φ(mj) = kφ(mi) (k > 0), to the effect that m’(x’) = km(x), 

ceteris paribus.
7
 

                                                 

 
5 Dasgupta would certainly disagree with this clause – see his (2013) and (2020). 

6 Nothing in what follows depends on t0 being the real beginning of W. 

7 The transformation is “active” because it moves the concrete objects within the space of absolute 

masses. It is not a mere “passive” change of unit. Unlike Martens (2021, 2523), I avoid speaking 

of a “multiplication of absolute masses”: first, because it’s still unclear what this could mean 

(Wolff 2020, 149), and second, to prevent Leibniz scalings from being confused with 

automorphisms on the structure of absolute masses. 
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Absolutists hold that active k-rescalings generate distinct initial worlds (Martens 2021). 

Starting from W0, uniformly multiplying all mass-values in the same unit mirrors a 

redistribution of fundamental absolute masses and thus makes for a distinct initial world W’0. 

Comparativists deny this: uniform multiplications of mass-values only make for 

representational differences, i.e. different numerical descriptions (in different units) of 

fundamentally the same initial world. This can be put in the form of a reductio: first, suppose 

an active k-rescaling, yielding two different distributions of mass-values m(.) and m’(.); 

second, if it can be compensated by an appropriate change of units, so that any metric 

difference is cancelled out and the mass-ratios preserved, then the rescaling doesn’t generate a 

distinct initial world (or equivalently, it is actually not an active one). To put this more 

formally, define: 

Passive Absorption: for any active k-rescaling (k > 0), there is a passive rescaling φ → 

φ’ = φ/k such that m’(x’) = φ’(mj) = φ(mj)/k = kφ(mi)/k = km(x)/k = m(x), to the effect that 

the change in mass-values is absorbed by a change of unit. 

Since all active Leibniz k-rescalings correspond to metrical symmetries of mass, i.e. a 

symmetries of its ratio scale, they can all be passively absorbed as mere unit changes. Then, 

define: 

Comparativist Razor: any active rescaling that can be passively absorbed shall not be 

taken as generating fundamentally distinct possible initial worlds. 

The “Razor” is a close cousin to Martens’ “Occamist norm”. It relies on the very same 

principle that only that which is invariant (under admissible transformations) should be 

considered fundamental, this time applied to the world possibilities generated by Leibniz k-

rescalings. It dictates to treat metrical symmetries as “ontic symmetries” (Baker 2020), i.e. 

transformations that leave the fundamental structure of the world untouched.
8
 By applying 

this Razor (or this chainsaw, one might say), comparativists significantly reduce the range of 

possible initial worlds by numerically identifying all those that differ only by Leibniz k-

rescalings. 

                                                 

 
8 See also (Jalloh 2024). 
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Absolutists have several responses at their disposal. Following Jacobs (2024), they can 

argue that absolute masses, although metrically idle, are relevant to (metaphysically) explain 

why mass-relations obey the “Ratio Multiplication Principle” (Roberts 2016): for any x, y, z, 

mR(x,y).mR(y,z) = mR(x,z). Mass-relations behave “as if” they were ratios of underlying 

absolute masses, which would be a conspiracy on a cosmic scale if mass-relations were all 

there (fundamentally) is. Absolutists can also argue that, pace Martens, dimensionfulness 

doesn’t imply “Kinematical Comparativism” (Jacobs 2021) (Tricard forthcoming). Or, 

following Martens, they can fall back on dynamic considerations. 

Taking Newtonian Dynamics (ND) as a sample theory, it is argued that absolute masses 

are indispensable in determining the dynamics of a system (Baker 2020) (Martens 2021). 

Since the equations of ND are traditionally formulated in terms of monadic mass m(x), 

applying an active Leibniz k-rescaling on W0 does generate an (initial) world W’0 that evolves 

differently, in an empirically detectable way. For example, particles that escaped their 

gravitational pull in W0 now collide in W’0. But initial worlds that evolve differently should 

be counted as fundamentally distinct,
9
 which comparativists cannot do. 

In response, comparativists may retort that relying on the text-book version of ND is 

question begging. If one first believes that mass is fundamentally relational, then one can 

argue that a “reduced” version of ND should first be formulated, one that quantifies over 

mass-relations as the fundamental ingredients (Dasgupta 2013), (Roberts 2016), (Jalloh 2024). 

If this can be done – and I will assume it can – then k-rescalings are restored as dynamic 

symmetries, thus taking the wind out of the absolutist argument.
10

 

The dynamic turn in the debate will not play a major role in what follows. My focus is on 

undermining the initial victory of comparativism at the kinematic level, which largely rests on 

the Comparativist Razor. The puzzle I will now present shows how it can be used against 

Comparativism. 

                                                 

 
9 This is an instance of Earman’s “Symmetry Principle 2” that every kinematic symmetry is a 

dynamic symmetry (1989, 46). 

10 (Dasgupta 2020) offers a more refined response, where W0 and W’0 are treated as distinct 

possible worlds in a “looser sense” of “possibility”. (Baker 2013) and (Jacobs 2023) defend 

alternative stories where W0 and W’0’s distinct evolutions are explained by a co-scaling of G. 
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2. The squared mass-ratios puzzle for Comparativism 

Let me first outline the basic tenets of Comparativism. First, consider a set R of mass-

relations ri, also with cardinality ℵ1,
11

 endowed with a total weak order (≿R) and a weakly 

associative, monotonous concatenation relation (∘R). This time, ∘R is interpreted as 

multiplication, which means, intuitively, that mass-relations behave like ratios.
12

 Note also 

that ∘R is a closed operation on R, has an identity element (the mass-relation “being as 

massive as”) and includes an inverse for each mass-relation. Thus, the structure ℛ = ⟨R, ≿R, 

∘R⟩ is a totally ordered group isomorphic to the multiplicative positive reals (Martens 2024). It 

is often assumed that mass-relations are uniquely represented: for any two representation 

functions ψ, ψ’ from R to ℝ
+
, ψ = ψ’. As will shortly become clear, this is the crux of the 

problem that I intend to pose to comparativism. 

I take Comparativism to be the conjunction of these three claims: 

(1C) Mass-relations R are real and form the structure ℛ. 

(2C) In a world W, the mass-relational facts rixy are the only fundamental mass facts. 

This implies that, once a ψ is chosen on R, if rixy then mR(x,y) = ψ(ri). 

(3C) In a world W, absolute masses (if real) depend for their instantiation on the 

underlying network of instantiated mass-relations. 

This requires some clarification, for the status granted to absolute masses in 

Comparativism is not easy to grasp. For sure, Comparativism in its basic form is simply an 

“Anti-realism about absolute masses” (Martens 2024), and there is simply no need of a claim 

such as (3C). But for others like Dasgupta, absolute masses are real but depend on mass-

relations, which raises a problem of metaphysical underdetermination: many distributions of 

absolute masses are compatible with a given network of mass-relations (Martens 2016, 10). 

This is reflected in the fact that, for a fixed ψ, if rixy then there is a function m such that 

                                                 

 
11 This, again, is accepted by Platonist comparativists such as Bigelow and Pargetter (1988) but 

rejected by nominalists like Field (1980). 

12 Unlike Baker and Martens, and for a reason that will soon become clear, I shall refrain from 

calling them “mass-ratios” and save the expression for the numerical ratios. 
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ψ(ri) = m(x)/m(y) that is unique only up to multiplication by k > 0. The choice of m can be 

done by setting m(S) = 1 for some object S that is designated as the mass-standard.
13

 So, if 

mass-values m(x) represent absolute masses, then an object can possess many different 

absolute masses, one for each mass-relations that it bears with any possible standard. So, the 

network of mass-relations seems to metaphysically underdetermine the distribution of 

absolute masses. 

I see three possible options. First, one may adopt a very thin view according to which a x 

has an absolute mass whenever it can be attributed a mass-value m(x), relative to a standard S. 

Just as a same object has several profiles depending on the point of view taken on it, it has 

several “monadic mass-profiles” depending on the chosen comparison point. But 

comparativists may wish to recover a thicker concept of absolute mass, so that an object can 

only have one absolute mass (at the same time). A second option, then, is to adopt Dasgupta’s 

specific brand of structuralism, where absolute mass-facts are collectively grounded on the 

whole relational network (Dasgupta 2014). A third option is the view that Martens coined 

“Regularity Comparativism”, where facts about absolute masses supervene on the entire 

world mosaic, and are selected together with the lawlike dynamic regularities (Martens 2017). 

Since nothing in my argument depends on this, I will take “absolute masses” to refer to 

anything that corresponds to monadic mass-values in a comparative framework, be it nothing 

more than mass-relations, thin monadic profiles or thicker absolute masses. 

So, here is the puzzling case. Suppose a comparativist initial world W0, i.e. a fundamental 

distribution of mass-relations ri among objects and a ψ such that, for any objects x and y, if 

rixy then mR(x,y) = ψ(ri). Then, generate a candidate for a distinct possible world W0* by 

applying: 

Active Leibniz β-power-transformation: for all x, y of W0 with rixy, duplicate them such 

that their counterparts x* and y* in W0* are in a mass-relation rj with ψ(rj) = ψ(ri)
β
 (β > 0), 

to the effect that mR*(x*,y*) = mR(x,y)
β
, ceteris paribus.  

                                                 

 
13 This is how comparativists typically view the unit choice – compare with note 4. See 

(Dasgupta, 2014, 2020) for an alternative approach to unit definitions. 
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With β = 2, this generates W0* by redistributing mass-relations such that all the mass-

ratios are uniformly squared. The question is: are W0 and W0* to be counted as two 

fundamentally different initial worlds? 

The immediate answer is that they obviously are, since W0 and W0* differ in the 

distribution of fundamental mass-relations, in a way that is even metrically detectable: two 

objects that previously were measured as being twice as massive as one another are now 4 

times as massive, and the difference doesn’t seem to depend on representational choices. Also, 

besides being apparently the case, Comparativists are required to treat W0 and W0* as two 

distinct initial worlds for dynamic reasons. Suppose indeed that both worlds obey the same 

comparativist ND in which the laws govern mass-ratios. Then W0 and W0* have different 

dynamic evolutions. Just like scalar multiplications are not dynamic symmetries of an 

absolutist ND, power transformations are not symmetries of a comparativist one. So, if 

Comparativism, with its fundamental ontological furniture, failed to distinguish between W0 

and W0*, the same problem would arise once again, as in the classical doubling scenario of 

Baker (2020) and Martens (2021). 

I claim that, despite appearances, Comparativism precisely fails to do just that. The core 

issue is the assumption that mass-relations have a unique numerical representation, each 

expressed by a single ratio.
14

 This is unproblematic in Absolutism: fundamental absolute 

masses, endowed with a primitive additive structure, admit a ratio scale with invariant mass-

ratios. But in Comparativism, mass-relations are fundamental. Hence, to determine how 

uniquely they are represented, and by which type of scale, one must first and foremost look at 

their primitive structure. So, let me start with that, unfold the problem, before seeing how 

comparatists might respond to it. 

By hypothesis, mass-relations are primitively imposed with a total weak order ≿R and a 

weakly associative, monotonous, multiplicative concatenation relation ∘R, that on R is closed, 

has an identity element and includes an inverse. Given this structure ℛ, they actually admit 

many numerical representations, that are unique only up to power transformations ψ* = ψ
β
 

                                                 

 
14 Or, that they are “kinematically absolute” in Martens’ terms (2024), and admit of an “absolute 

scale” in the language of the Representational Theory of Measurement (Luce, Krantz, et al. 2007, 

113). 
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(β > 0), that form their metrical symmetry group. Define a function ψ* = f(ψ) with f(x) = x
1/β

 

(β > 0). Then: 

(i) ψ(ri) ≥ ψ(rj) iff ψ*(ri) ≥ ψ*(rj), since f is strictly increasing 

(ii) ψ(ri ∘R rj) = ψ(ri)ψ(rj) iff ψ*(ri ∘R rj) = ψ(ri ∘R rj)
1/β

 = ψ(ri)
1/β

ψ(rj)
1/β

 = ψ*(ri)ψ*(rj) 

(iii) ψ* has the same identity element as ψ and includes an inverse for all relations of R 

So ψ* is also an equally good representation of R. Contrary to what is usually assumed, 

mass-relations are uniquely represented only up to power transformations, by what may be 

called “log-ratio scales”,
15

 in which only the ratios logψ(ri)/logψ(rj) are meaningful. 

Given this, one can see the “squared mass-ratios puzzle” unfold. Simply redescribe the 

world W0* by using ψ* instead ψ as the conventional function for the mass-relations. Then for 

all x* and y* that stand in the relation rj: 

mR*(x*,y*) = ψ*(rj) = ψ(rj)
1/β

 = (ψ(ri)
β
)
1/β

 = ψ(ri) = mR(x,y) 

So, by changing the representation from ψ to ψ*, it is possible to describe W0* and W0 

with the same numerical ratios, but in different “scales”: objects in W0* that were previously 

described as being 4 times as massive as one another are now twice as massive, just like in 

W0. The difference between W0* and W0 can be “passively absorbed”. Hence, by virtue of the 

Comparativist Razor, they don’t fundamentally differ. With its own tools, Comparativism is 

prima facie unable to distinguish between the two worlds W0 and W0*. 

To borrow Wüthrich’s (2009) witty term, this is abysmally embarrassing (for 

comparativists). First, remember that, as granted above, comparativists are able to formulate a 

version of ND with active Leibniz k-rescalings as dynamic symmetries. But obviously, power 

transformations are not symmetries even of a comparativist ND. Initial worlds W0 and W0* 

are predicted by the theory to have different dynamic evolutions. Now, comparativists find 

themselves again in the situation of being unable to distinguish two worlds, W0 and W0*, that 

should be counted as distinct for dynamical reasons. 

                                                 

 
15 There is no canonical name for this type of scale; this one is adapted from Stevens’ “log-interval 

scales” (1959) – see below. 
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Here is a second, most undesirable consequence. If all this were true, then (monadic) mass 

would simply not be the additive quantity that we (empirically) know. Remember the function 

m such that, if rixy then mR(x,y) = ψ(ri) = m(x)/m(y). For a fixed “scaling” ψ, m is unique up to 

multiplication by k > 0. But ψ itself admits power transformations of the form ψ* = ψ
β
 (β > 0). 

This implies that, m is unique only up to transformations of the form: m* = km
β
 (k, β > 0). If 

those transformations were admissible, then monadic mass wouldn’t have a ratio scale 

anymore, but what Stevens (1959, 31) calls a “log-interval scale”. In log-interval scales, only 

the ratios of log-intervals (logm(x) – logm(y))/(logm(w) – logm(z)), and not the ratios 

m(x)/m(y), are meaningful. And to measure monadic mass, it would then require to fix not 

one, but two points: the unit (the kilogram) and a free exponent β; mass simply wouldn’t be 

an additive quantity anymore. So, one dimension of the puzzle is: how come empirical, 

monadic masses admit of a ratio scale, if all there fundamentally is the structure ℛ of mass-

relations? This is a metaphysical problem: fundamental mass-relations with their primitive 

structure don’t provide a sufficient ground for monadic masses with a strong ratio scale. 

Comparativists would never accept such damaging consequences. To solve the puzzle, 

they can tackle one of the two premises of the puzzle: 

(a) Mass-relations, given their structure ℛ, admit of a “log-ratio” scale with power 

transformations as their metrical symmetry group. 

(b) Applying the Comparativist Razor, no active transformation that corresponds to a metrical 

symmetry can generate a fundamentally distinct world. 

So, Comparativists can either attack premise (b) and deny that the Comparativist Razor 

applies, or attack premise (a) and insist that mass-relations do have a unique numerical 

representation. Let me consider these strategies in turn. 

3. Is Comparativism an undeclared Absolutism (about mass-relations)? 

One strategy is to accept (a) but deny that (b) the Comparativist Razor applies, insisting 

that an active β-transformation makes for a distinct world possibility. A redistribution of the 

mass-relations makes a fundamental difference even if it preserves their structure. In other 

terms, comparativists now become “absolutists about mass-relations”.
16

 This is Robert’s 

                                                 

 
16 Martens, in a footnote, anticipates this move by saying that comparativists should endow their 
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(2016) expression, which can be confusing since “Absolutism” is defined as the commitment 

to monadic mass properties.
17

 But it is dialectically useful to keep the term in a generalized 

sense, as the claim that two worlds that differ only by a relevant Leibniz transformation (here, 

a power transformation) are numerically distinct, being different in their fundamental, 

substructural ingredients (here, “absolute” mass-relations). Although this sounds like a 

solution, it is a very weak position from a dialectical viewpoint. In fact, why should this 

absolutist move be considered legitimate now, when it comes to mass-relations, when it 

wasn’t earlier with absolute masses? 

First, the very same reason for using the Comparativist Razor applies here. Remember: 

comparativists argued that the metrical symmetries of the ratio scale make mass-values 

representationally redundant and, prior to dynamic considerations, absolute masses 

uneconomical surplus. Since only the mass-ratios were meaningful, only the mass-relations 

that they represent were to be counted as fundamental. The same applies here: the symmetries 

of the “log-ratio” scale make the values of mass-ratios representationally redundant and 

“absolute mass-relations” uneconomical surplus. Then, by virtue of the Razor, comparativists 

should be asked to get rid of them, and to admit relations among mass-relations as the only 

fundamental ingredients, mass-wise (again, before the dynamics dictates otherwise). If not, 

then it is up to them to explain why suspend now their own principle of economy. 

As a matter of fact, comparativists do have a good reason not to apply the Razor. 

According to their own comparativist ND, mass-relations do play a determinative and 

empirically detectable role in the subsequent evolutions of W0 and W0*, so they are right to be 

absolutist about mass-relations. But then, they must justify why dynamic considerations now 

prevail, to make their case, when they did not deem it sufficient to defend the absolutists’ 

absolute masses – or, equivalently, they must explain why they no longer find it necessary to 

seek a reformulation of ND, one that quantifies on relations among mass-relations only. 

Without answers to these questions, they are in a dialectically weak spot. 

                                                                                                                                                         

 
fundamental mass-relations with a quiddistic identity, to avoid precisely the problem that I call the 

“squared mass-ratios puzzle” (2022, 4, fn. 7). However, I don’t think that Quidditism is the only 

way here: the comparativists may very well adopt a “sophisticated” absolutist stance about mass-

relations, only individuated by their second-order relations. 

17 I thank an anonymous reviewer for pointing this out. 
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Comparativists may also argue that the Razor, although legitimate, cannot be applied 

indefinitely without entering into a vicious regress. After all, there is no principled reason to 

stop here: once relations among mass-relations only are admitted at the fundamental level, 

one may look at their own structure, find out that they have non-trivial symmetries too, apply 

the Razor once again and climb the ladder of algebraic abstraction one rung higher, and so on 

ad infinitum. This obviously has to stop somewhere, as recognized by Roberts (2016, 5). But 

why stop here, and be absolutist about mass-relations, and not before as the absolutists 

claimed we should? Again, I am afraid that any good reason for the comparativists to stop 

here will only recycle an equally good reason for the absolutists to stop one step earlier: either 

by relying on dynamic relevance à la Martens, or explanatory relevance à la Jacobs, etc. 

(section 1). 

So, the comparativists cannot without some inconsistency (or bad faith) resist the 

application of their own principle of economy in the at-hand case. Perhaps their hope then lies 

in the other strategy, in attacking the puzzle at its root: the fact that (a) the structure ℛ of 

mass-relations has a “log-ratio” scale with power transformations (ψ* = ψ
β
, β > 0) as its 

metrical symmetries. 

4. Are mass-relations uniquely representable? 

The rejection of (a) is motivated by the persistent idea that mass-relations should be 

“kinematically absolute” (Martens 2024), expressed by unique and constant numerical ratios, 

independent of any free parameter such as a unit choice (Roberts 2016, 6-7). In what follows, 

I consider three ways in which this can be more precisely articulated: by claiming the scale-

independence of mass-relations (4.1), or their kinematic absoluteness (4.2), or by arguing that 

mass-relations actually have more structure than ℛ, so as to suitably restrict their symmetries 

(4.3). 

But let me first make a quick answer, which will set the direction for subsequent, more 

elaborate responses. As it is widely admitted, calling mass-relations “ratios” may be 

misleading (Martens 2016), (Jacobs 2024). As Roberts also admits, “the dyadic relational 

quantity we call ‘mass-ratio’ is (…) a ‘ratio’ by courtesy only. Really, it’s just a fundamental 

2-place relational quantity, (…) for there is nothing for them to be ratios of” (2016, 13). But if 

that is the case, I don’t see where fundamental mass-relations get enough structure to be 

uniquely representable. Calling them “ratios” won’t change the fact that their structure ℛ is 
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not uniquely representable. Surely, one can impose that any function m representing monadic 

masses be such that mR(x,y) = m(x)/m(y). But for mR to be unique, one also has to assume that 

m is a ratio scale (and not a log-interval scale), unique up to scalar multiplications only. That 

is, the monadic masses must be endowed with an additive structure, that nevertheless they 

cannot inherit from more fundamental mass-relations. So, the comparativist must either admit 

that mass-relations are not uniquely representable, and crash into the puzzle, or assume that 

monadic masses are additively structured independently of mass-relations, which is a serious 

concession to absolutists. Let me now unfold this dialectic. 

4.1.Scale-independent mass-relations? 

First, one may argue with Baker (2020) that mass-relations are scale-independent, and if 

it’s the case, that their numerical representation doesn’t rely on any scaling convention and is 

simply unique. As Baker sees it, scale-independence is an ontic notion, closely linked to the 

existence of ontic symmetries. If absolute masses were to be actively and uniformly doubled, 

then the mass-relations would admittedly remain the same. They are independent of how mass 

is “scaled” in reality. Ontic scale-independence is mirrored, on the representational side, by a  

value invariance: “a comparative relation for a quantity like mass is scale-independent iff, 

when the quantity is represented numerically, multiplying its values by a constant cannot 

change whether the relation holds” (2020, 81). Mass-ratios are preserved by any k-rescaling of 

the mass-values, so they represent scale-invariant aspects of reality. 

Yet, Baker plainly relies on the (familiar but) crucial assumption that the admissible 

transformations of the mass-values are of the right, multiplicative sort, that preserves mass-

ratios. If, however, power transformations were allowed, then mass-values could be 

transformed in many ways that do not preserve the ratios. So, what decides the scope of the 

legitimate transformations? The answer, unsurprisingly, is: the structure of what is to be 

transformed, and the usual reason to admit the multiplicative sort only is that monadic masses 

have an additive structure. Now, this is of course unproblematic for absolutists, who posit 

fundamental absolute masses with the suitable structure  . But how could comparatists do 

the same? 

Take basic Comparativism first, i.e. Anti-realism about absolute masses. Fundamental 

mass-relations with the structure ℛ are all there is. And ℛ allows for a transformation group 

much broader than multiplications by a positive scalar (the similarity group). Since there are 
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simply no absolute masses, there is nothing else to rely on to further reduce the group. 

Monadic mass-values can therefore be redistributed according to power transformations: 

m’ = km
β
 (k, β > 0), under which mass-ratios are scale-variant. 

However, comparativists may admit absolute masses, as long as they depend on the 

underlying mass-relations. But to solve the present puzzle, the comparativist needs absolute 

masses be delivered with their additive structure. Since this additive structure puts additional 

constraints on the way absolute masses can be distributed over the network of mass-relations, 

the additive structure excludes certain arrangements that are nevertheless permitted by the 

underlying ℛ structure. Therefore, the latter simply cannot determine the former. 

Here is another, last attempt. The additivity of monadic masses has an empirical meaning. 

The concatenation relation ∘A can be operationally interpreted, for instance, as the placing of 

two massive objects on the same pan of a balance, to compare them with a third. More 

generally, it is an empirical law that monadic masses behave in a regular, additive way 

(Mundy 1987). So, perhaps the required restriction (to multiplicative transformations) can be 

obtained, if not by dependence on the structure of fundamental mass-relations, then by 

“piggy-backing” on the additive behavior of empirical masses. By analogy with Martens’ 

(dynamical) “Regularity Comparativism” (2017), the strategy may be called “Kinematical 

Regularity Comparativism”, where the required kinematic properties of monadic mass, such 

as its additivity, are provided by the regularities selected by the theory that “best 

systematizes” the global mosaic. 

However, on top of the problems from which “Regularity Comparativism” generally 

suffers,
18

 this specific brand of Comparativism has one major explanatory flaw. The additive 

behavior of masses is treated as a brut fact, left unexplained. Of course, any theory is allowed 

some unexplained primitives. But here, the brut, unexplained fact involves entities (absolute 

masses) that are not primitive, but supposedly dependent on mass-relations. And as already 

explained, the structure of mass-relations is not rich enough to force masses to behave in an 

                                                 

 
18 In a nutshell: first, Comparativism is in conflict with the separability thesis of the Humean view 

of the world mosaic – see (Martens 2017, 1232) ; second, “[the piggy-back approach] would make 

life too easy for people who want to get rid of objects and properties that they do not like for some 

whimsical reason” (Arntzenius 2012, 170). 
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additive way.
19

 So, although nothing fundamental forces them to do so, they behave as if 

constrained by a structure of absolute masses. Here, Comparativism is plagued with another 

sort of “cosmic conspiracy” (Jacobs 2024). Or, as Martens notes, “there is an obvious cry for 

inference to the best (i.e. only!) explanation: the comparativist worlds are constrained as if 

there were fictitious absolute masses exactly because there are absolute masses!” (2016, 111). 

Thus, I simply don’t see how comparativists could endow monadic masses with the 

required additive structure, for mass-relations to be scale-independent in Baker’s sense. This 

road to representational uniqueness for mass-relations is closed off. 

4.2.“Kinematically absolute” mass-relations? 

Comparativists may also argue that mass-relations are “kinematically absolute”. Whereas 

absolute masses (if real) can only be numerically reported by being compared one to another 

(Martens 2021, 2520), mass-relations are measured non-comparatively. For instance, the 

relation “being 5 times as massive as” between x and y is detected by balancing, on a pan 

balance, 5 exactly similar copies of y with x, without any standard or comparison point. 

Therefore, just like in the number of fingers of a glove (Martens 2021, 2521), there is really 

something “5-ish” in “being 5 times as massive as”, and this is why mass-relations have a 

unique numerical representation. 

In response, I will argue that mass-relations are indeed kinematically absolute, but again, 

only if absolute masses are posited and endowed with an independent additive structure. 

First, let me consider this commonly-held notion that, in ordinary measurement systems, it 

is actually mass-relations that are measured (Roberts 2016, 4). Is it truly the case? To directly 

measure mass-relations would require to devise an operation that associates a (positive) real 

with any pair of objects (x,y). This simply is not what is done with common mass-

measurement systems: they associate a (positive) real with pairs of (x,S), with “x” the only 

variable and “S” a logical constant, holding for a chosen mass-standard which remains the 

same within a same scaling. In other words, what is operationalized here is monadic mass 

(“the mass of x”) with its traditional ratio scale. To obtain a value for the mass-relation 

between any x and y, one has to make two distinct measurements m(x,S) and m(y,S) within the 

                                                 

 
19 In the next section, I examine the idea, which comes up naturally here, of enriching the 

structure of fundamental mass-relations beyond ℛ, to ground this restriction. 
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same scaling and then take the ratio m(x,S)/m(y,S). This ratio is undeniably constant across all 

change in the standard S. Therefore, the kinematical absoluteness of mass-relations here can 

only be secured if monadic masses are first granted the suitable, additive structure. This brings 

the comparativist back to the previous impasse: it is not possible to grant this without positing 

independently structured absolute masses. 

Comparativists might object that the measurements m(x,S) still stand for mass-relations. 

True enough, they can be expressed by relational predicates: “being k times as massive as S” 

instead of traditional monadic values (“being k S in mass”).
20

 Strictly speaking though, since 

“x” is the only variable in m(x,S), “being k times as massive as S” expresses relational 

properties (of the x) rather than relations. So comparativists would then need to argue that 

these relational properties ultimately depend on the mass-relations (between the x and S), 

rather than on their absolute masses, so that very little is actually gained. 

Yet, one may object that there are ways to uniquely measure mass-relations from (ratios 

of) quantities, such as velocity or acceleration, without assuming additive monadic mass. For 

instance, Martens declares that the structure ℛ of mass-relations “corresponds nicely to 

Weyl’s operational definition of (inertial) mass” (2021, 2519) (2024, 16). So, let’s have a look 

at it, to see if they really provide an operationalization of mass-relations.
21

  

Consider this experimental set-up: two bodies a and b (inertially) moving with inward 

velocities va and vb (top box in Figure 1), before colliding inelastically and coalescing into the 

aggregate a+b, with velocity va+b (bottom box). 

Weyl’ operationalization of mass proceeds first by defining equality and order in mass 

(Weyl 1949, 139): 

                                                 

 
20 I thank an anonymous reviewer for pointing out this objection. 

21 One could also think of Mach’s famous operational definition of inertial mass, which relies on 

(observable) acceleration-ratios and Newton’s third law – see (Jammer 1961, 92). For present 

purpose, it is sufficiently similar to Weyl’s for me to consider only one of them (Jammer 2000, 

10). 
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(1) a is as massive as b iff, with equal (opposite) velocities va = – vb, va+b = 0 

(2) a is more massive than b iff, with va = – vb, va+b ≠ 0 and sign(va+b) = sign(va) 

Then Weyl defines a concatenation operation which “consists simply in joining the two 

bodies” (Weyl 1949, 139), which clearly shows that he is building nothing more than a 

traditional additive scale of monadic masses. As such, this in no way constitutes an 

operationalization of mass-relations. I suspect that Martens actually referred to Jammer’s 

account of Weyl’s ideas (2000, 10). Instead of a concatenation operation, Jammer defines the 

mass-ratios mR(a,b): 

(3) If va+b = 0, mR(a,b) = – vb/va 

This relies on the principles of conservation of mass and momentum: mava + mbvb = 

(ma + mb)va+b, with ma and mb the monadic masses of a, b. By imposing va+b = 0, one easily 

obtains ma/mb = – vb/va. Then, for all x and y, by independently measuring the velocities 

vx and vy, one is able to obtain a unique, positive real value for mR(x,y), thus providing the 

structure of mass-relations with a unique numerical representation. Values for monadic 

masses m(x) can then be defined by choosing a as the mass standard (m(a) = 1), such that for 

all x, m(x) = mR(x,a). And m(x) is unique only up to a multiplicative factor, typical of ratio 

scales. 

So, runs the objection, the Weyl-Jammer definition provides a way to measure and 

uniquely represent mass-relations, without making any explicit assumption about the additive 

structure of monadic masses, but recovering it as a by-product. What more could one ask for? 

First, remark that (pace Martens) the Weyl-Jammer definition is not, strictly speaking, an 

operationalization of the structure ℛ, since it does not provide ways to compare mass-

relations. In fact, because (1) and (2) reduce to (3), it is nothing but a method to measure 

mass-relations derivatively from independent velocity measurements (with their own ratio 

scale). Still, the core of the objection remains: it provides a unique representation of mass-

relations without explicitly assuming an additive structure for monadic mass. 

But it does, implicitly. To see this, let me compare it with another way to measure mass-

relations, which provides them with just the required “log-ratio scale” that fits their structure 
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ℛ. What follows is adapted from what Luce and Tukey (1964) invented under the name 

“Simultaneous Conjoint Measurement”.
22

 The idea is to measure mass and velocity conjointly 

as components of a third quantity, momentum. This is done, basically, by building an ordering 

of momenta that allows to match mass-relations with velocity-relations. First, one must be 

able to order masses (with Weyl’s (1) and (2)) and velocities: 

(4) a goes as fast as b iff if they collide exactly in the middle of the segment defined by 

their initial positions 

(5) a goes faster than b iff, if a is as massive as b, then va+b ≠ 0 and sign(va+b) = sign(va) 

Next, by varying the velocities and masses of bodies a and b, one produces an ordering of 

momentum ≿p: 

(6) a has more momentum than b (pa ≿p pb) iff va+b ≠ 0 and sign(va+b) = sign(va) 

If these qualitative axioms are satisfied, then there are two positive-real-valued functions 

χm et χv such that: 

(7) pa ≿p pb iff χm(a)χv(a) ≥ χm(b)χv(b) 

Such representation functions are unique up to power transformations: χ’m = α1.χm
β
 and 

χ’v = α2.χv
β
 (α1, α2, β > 0). Therefore, a conjoint measurement of mass and velocity yields log-

interval scales for both quantities.
23

 Now, instead of functions for monadic masses and 

velocities, one may want functions for mass- and velocity-relations. To that end, simply 

define mR(x,y) = χm(x)/χm(y) and vR(x,y) = χv(x)/χv(y), such that: 

(8) pa ≿p pb iff mR(a,b) ≥ vR(b,a) 

                                                 

 
22 See (Krantz, et al. 1971, 267) and (Aczél et Luce 2001, 5828) for an application to the present 

case, and (Narens et Luce 1986) for treatment of similar cases. It requires some adaptation 

because Conjoint Measurement was not, originally, designed to operationalize relational 

quantities, but to measure quantities that lack a proper concatenation operation and are very 

common in psychology and in the social sciences (Michell 1990, 68). 

23 Proof in (Krantz, et al. 1971, 258). Additional conditions (independence, double cancellation, 

solvability and an Archimedean condition) are also required – see also (Michell 1990, 68 et sq.). I 

come back to the independence condition below. 
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Such functions are unique up to power transformations of the form mR’ =  mR
β
 and vR’ = 

vR
β
 (β > 0), which characterize them as (what I called) “log-ratio scales”, which is exactly the 

type of scale that suits the structure ℛ. So, I take conjoint measurement of mass-relations 

(and velocity-relations) to provide just the type of operationalization required by their 

assumed structure. 

Three remarks are in order. First, as Luce and Tukey insist, this method provides a 

fundamental measurement of the conjoint quantities (here, mass and velocity). This is the 

main difference with Weyl’s method, where mass is measured derivatively, from velocity. 

Second, since mass (and velocity) can also be fundamentally measured with the traditional 

extensive methods, this means that a same quantity can be fundamentally measured in 

different ways.
24

 So, the question naturally arises of how the conjoint measurements (of mass 

and velocity) χm and χv relate to their extensive measurements m and v. Krantz et al. (1971, 

485) show that:
25

 

(9) χm = γ1.m
β
 and χv = γ2.v

β
 (γ1,γ2,β > 0) 

This means that the traditional ratio scale for monadic mass (velocity), obtained when 

extensively measured, is a special case (with β = 1) of the log-interval scale obtained when it 

is measured conjointly with velocity (mass) (Wolff 2020, 86). This also entails that: 

(10) mR(x,y) = (m(x)/m(y))
β
 and vR(x,y) = (v(x)/v(y))

β
 (β > 0) 

So, the apparently unique mass- and velocity-ratios obtained by taking the ratios of 

monadic masses and velocities is also a special case (with β = 1) of mR(x,y) and vR(x,y) when 

obtained by a conjoint measurement. 

Third, one crucial condition (for the representation and uniqueness theorems) is of 

particular interest. Indeed, it has to be assumed that mass and velocity independently 

contribute to momentum, in the sense that a measure of momentum χp is a non-interactive 

function of χm and χv:
26

 

                                                 

 
24 For a useful classification of the different uses of “fundamental” and “derived” in the literature, 

see (Krantz, et al. 1971, 502).  

25 See also (Narens et Luce 1986, 172) and (Aczél et Luce 2001, 5828) for similar results. 

26 f is noninteractive iff it is a monotonic transformation of an additive function – see (Michell 
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(11) χp = χm
β
χv

β
 (β > 0) 

This differs from the way momentum is traditionally defined, as p = mv, where no free 

exponent β appears. But, as Krantz et al. explain, “this difference is only apparent since we 

could rewrite all physics in terms of p’ = p
β
 = m

 β
v

 β
, where β > 0. It is pure convention that we 

choose β = 1” (1971, 267).
27

 What is not conventional, but physically meaningful, is that the 

exponent is the same for mass and velocity, i.e. that “the ratio of their exponents is 1 rather 

than some other number. This ratio establishes the trading relation (…) between m and v in 

their contributions to momentum” (ibid.). By conventionally setting β = 1, one ensures that 

the conjoint measurements of mass and velocities just match those obtained when both 

quantities are independently measured, and represented by ratio scales – and therefore, that 

mR(x,y) just matches the unique ratios m(x)/m(y) of additive mass. As Narens and Luce write: 

By selecting the exponent β to be 1 (or equivalently, by identifying [χv] with [v]), we have 

by fiat altered what is really a log-interval representation [of momentum] into one that 

appears to be a ratio scale. (This means that in order to force [momentum] actually to be a 

ratio scale, more physical structure than the ordering of the mass-[velocity] pairs is 

needed.) (1986, p. 172)
28

 

This last point allows me to fully meet the challenge posed by the Weyl-Jammer 

operationalization of mass-relations. Remember that it is a method to derivatively measure 

mass-ratios from velocity-ratios. Apparently, it does recover unique mass-ratios (and a ratio 

scale for monadic masses) without making any assumption about the structure of monadic 

masses. But it actually makes an equivalent assumption! In Jammer’s (3), momentum p is 

implicitly defined as mv, i.e. by setting β to 1 in (11). As Narens and Luce suggest, this is 

assuming that momentum has a ratio scale rather than a more general log-interval scale. Now, 

this can be justified in only two ways: either by the (independent) assumption that both 

                                                                                                                                                         

 
1990, 77). 

27 See also (Krantz, et al. 1971, 487), (Narens et Luce 1986, 172) and (Ellis 1966, 118-126). 

28 In the quote, Luce and Narens do speak of the same exponent β as Krantz et al., i.e. the one in 

(9), (9) and (10). But they are actually treating a case of conjoint measurement of mass and 

volume through a density ordering. I adapt the quantity terms (and the symbolism) to suit the case 

at-hand. 
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velocity and mass have ratio scales, or by assuming that momentum actually has an extensive 

structure, with a definable concatenation operation. 

In the first case, assuming that both velocity and mass have ratio scales automatically sets 

β to 1. But clearly, this entails that, even though no extensive structure for masses has been 

explicitly posited in the Weyl-Jammer procedure, the ratio scale for masses is not a by-

product of the measurement, but its precondition. This was presupposed as soon as 

momentum were defined as mv. In the second case, momentum is endowed with more 

structure than it has in conjoint measurement. Actually, the principle of momentum 

conservation that Jammer mobilizes can be interpreted as a concatenation operation: the 

momentum of the aggregate a+b is the sum of a’s and b’s momenta. But this is empirically 

sound only if the masses are also conserved, i.e. the mass of a and b add up to the mass of the 

aggregate. So, this already presupposes that mass has an extensive structure and therefore, 

once again, a ratio scale. 

I conclude that the Weyl-Jammer operationalization of mass-relations only yields unique 

numerical ratios because of a hidden assumption (β = 1) that, one way or another, imposes a 

ratio scale on monadic mass. As discussed in section 4.1, this assumption is not accounted for 

in a comparativist framework: from fundamental mass-relations exhibiting the structure ℛ, it 

simply doesn’t follow that monadic masses have the structure required by ratio scales. 

4.3.Enriching the structure of mass-relations? 

There is one last road to explore: why not enrich the structure ℛ of mass-relations to 

restrict their metrical symmetries from the power group (ψ* = ψ
β
, β > 0) to the identity 

(ß = 1), so that each mass-relation corresponds to a unique real? 

The most straightforward way is, I think, to rely on what is known as “Hölder’s theorem”; 

but it is traditionally formulated in an absolutist framework, so let’s see if it can be twisted for 

comparativist purposes. Basically, one assumes that the monadic masses M satisfy a total 

weak order (≿A), a weakly associative, monotonous, additive concatenation relation (∘A), plus 

two qualitative conditions of order density and unboundedness, to reach “Dedekind-

completeness.” It is then possible to build infinite, additive standard sequences for all mi of 

M: S(mi) = < mi, 2mi, 3mi,… >, so that the ratio mi/mj is uniquely determined as a relation (the 

https://doi.org/10.1017/psa.2025.10179 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10179


“Dedekind cut”) between S(mi) and S(mj). Hölder’s theorem states that the set of such ratios is 

isomorphic to the positive reals, so that each corresponds to a unique real number.
29

 

To twist this adequately, comparativists need to identify the ratios mi/mj with the 

fundamental mass-relations. This implies reversing the order of dependency assumed above, 

where the ratios are determined by additive standard sequences of monadic masses. In the 

reversed view, mass-relations come first and primitively determine pairs of standard 

sequences, so that absolute masses be delivered with their additive structure. 

Yet, on closer analysis, the problem encountered in section 4.1 “appears only to have 

been wished away”.
30

 The fact remains that the underlying ℛ structure is still not rich 

enough to uniquely determine monadic masses with the required additive structure.
31

 Simply 

saying that it does so “primitively” is not illuminating, since it is not clear by virtue of what 

additional primitive structure. 

Returning to the problem: to secure that mass-relations are uniquely represented by the 

positive reals, comparativists need to add more primitive structure to ℛ. Intuitively speaking, 

mass-relations need to be endowed with some sort of a “distance metric” that ℛ, as a 

multiplicative structure, lacks. This is certainly the most promising option for comparativists. 

Since it can be tried in many ways, I go with the simplest, hoping that my general answer will 

also cover the others. 

The idea is to embrace Bigelow & Pargetter’s “three levels theory” of quantities (1988), 

which posits (1) particular objects, standing in (2) whole arrays of mass-relations, themselves 

bearing (3) second-order proportion relations – a theory which (now) qualifies as a brand of 

Comparativism.
32

 That two mass-relations ri and rj stand in the n:m proportion means 

intuitively that ri
m
 (ri

 
concatenated m times) amounts to rj

n
. Together these proportions 

                                                 

 
29 Details can be found in (Hölder 1901, 1996), (Michell 1994). 

30 I am paraphrasing van Fraassen here (1989, 107). 

31 A further reason for this can be found in (Michell 1994, 396): since no constraints are imposed 

on the type of additive operation that can be applied to monadic masses, it may be traditional 

numerical additivity (compatible with a ratio scale), but also many others obtained by 

exponentiation (not compatible with a ratio scale). 

32 Despite Bigelow’s reservations (1988, 72). 
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determine a metric for mass-relations: since “being as massive as”, the identity element, is 

invariantly associated with the number 1, any relation ri standing in the n:1 proportion with it 

is associated with the real n.
33

 

Note, however, that these (second-order) proportions are external, superimposed on mass-

relations.
34

 But given their structure ℛ, the mass-relations can receive many different 

geometries. For instance, ri and rj may stand in the n/m but also in the (n/m)
ß
 proportions 

(ß > 0). It is the same problem, over and over again. Why should one contingent mass-

geometry, the one with ß = 1, be posited rather than another? One good reason is, again, to 

best explain the empirical additive behavior of monadic masses, and this time (compared to 

section 4.1), comparativists are equipped to do so. 

I accept this as consistent way out of the puzzle, one which comparativists can take. But 

note that now, comparativists are far from their initial, economical stand of positing (as 

fundamental) only the mass-relations expressed by the invariant ratios of empirical masses. 

Now, faced with the fact that empirical masses exhibit constant numerical ratios, both 

absolutists and comparativists posit fundamental structures with unobservable ingredients: 

either absolute masses with their structure   (Mundy 1987), or mass-relations with their 

second-order geometry. It is then sufficient for my purpose to conclude that comparativists 

have lost all their initial advantage at the kinematic level. 

  

                                                 

 
33 In Michell’s terms, the (unique) “representation” is backed up by “instantiation”. Contemporary 

comparatists may be reluctant to view real numbers as worldly, scale-independent proportion 

relations, instantiated by physical mass-relations. But if preferred, these proportions relations can 

be replaced by any suitable “qualitative” relations without changing the substance of my response 

below. 

34 They are in Bigelow’s account. But why couldn’t they be internal, supervening on the nature of 

the mass-relations? Armstrong (1988) did try to make numbers qua relations supervene on 

magnitudes qua properties, with no success (Eddon 2007), (Tricard, On Armstrong’s Radical 

Absolutism 2022). I see no reason to expect more success with relations. 

https://doi.org/10.1017/psa.2025.10179 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10179


5. Conclusion  

That comparativists run into the problem I have presented here, and are prima facie unable 

to distinguish between a world W and its duplicate W* where all mass-relations have been 

uniformly squared, is deeply puzzling. Until now, the picture seemed pretty clear. On the table 

were absolute masses, with their ratio scale, and mass-relations, represented by unique 

numerical ratios. Comparativists considered it more economical to posit only the latter, at the 

fundamental level, and to have them mirrored by the constant empirical ratios. What I 

showed, basically, is that comparativists had it too easy by assuming that these ratios were 

unique. As it happens, mass-relations with their structure ℛ admit of many equivalent 

representations depending on the conventional choice of a free exponent. 

To evade the puzzle, comparativists may become absolutist about mass-relations, but then 

have to explain why they have the right to do so. Or they may endow monadic masses with an 

additive structure, which they cannot inherit from the underlying mass-relations, and must 

thus possess primitively – which is precisely what Comparativism initially rejected. Unless, of 

course, they supply their fundamental relations with more primitive, unobservable structure. 

But then, on what grounds do this, if not to account for the constant ratios of monadic masses, 

which Absolutism does just as well? 
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Figure 1: Weyl’s operationalization of mass 
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