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Abstract: Comparativists (about mass) eliminate absolute masses from the fundamental
ontological picture by virtue of a principle of economy, the “Comparative Razor”, which
requires that only mass-relations, that are invariant under (metrical) symmetries be considered
fundamental. | show how this weapon backfires. If mass-relations are endowed with a
standard (multiplicative) concatenation structure, power-transformations become (metrical)
symmetries, leaving comparativists prima facie unable to distinguish a possible world and its
duplicate where mass-relations are uniformly squared. Then, | considered possible exit
strategies, which unfortunately either rely on hidden absolutist assumptions, or leave

comparativists and absolutists on equal footing.
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1. Absolutism under comparativist fire

A physical quantity, such as mass,* is a determinable property that is associated with two
different arrays of determinates: monadic, “absolute” masses (“being 3 kg in mass”) and
dyadic, “comparative” mass-relations (“being thrice as massive as”) (Dasgupta 2013).
Absolutism is the view that mass-relations are (metaphysically) dependent on the more
fundamental distribution of absolute masses among objects. Comparativists deny this and take
mass to be fundamentally relational: mass-relations are all there (fundamentally) is, mass-
wise; and absolute masses, if real, depend on them. Here, my aim is to defend Absolutism by
putting Comparativism under the pressure of a new argument, “the squared mass-ratios
puzzle” (section 2). | show, basically, how the main argument against Absolutism, based on a
principle of economy, backfires and gets comparativists into deep trouble. To set the scene for
this argument, it will be useful, in section 1, to replay the comparativist attack on Absolutism.

Sections 3 and 4 will then be devoted to examining and rejecting possible exit strategies.

Let me first outline the position known as “Absolutism (about mass)”, before turning to
the comparativist attack. In speaking of absolute masses, first, | posit a set M of monadic
properties m; with cardinality N;, i.e. as many absolute masses as positive values in our
common mass scales. Aristotelian absolutists, like Armstrong (1988), refuse to admit
uninstantiated absolute masses, while Martens (2021) and Platonist absolutists like Mundy

(1987) readily do. But nothing in what follows crucially pivots on this in-house dispute.’

Second, | assume that M is endowed with the canonical structure of extensive
measurement: a total weak order (Za) and a weakly associative, monotonous concatenation
relation (op), interpreted as addition.® T won’t ask whether these relations supervene on the
intrinsic nature of the absolute masses (Armstrong 1988) or are genuine, second-order

relations (Mundy 1987), (Eddon 2013); nor whether absolute masses have a quiddistic

! Throughout the article | use mass as a working example, but the argument could easily be
extended to any quantity admitting a ratio scale.

2 Similarly, nothing here depends on how these properties are metaphysically construed, either as
universals (Armstrong 1988) (Mundy 1987) or as points in a “quality space” (Wolff 2020) (Jacobs
2023).

® For a similar treatment, see (Martens 2021, 2519), (Martens 2022, 3), (Martens 2024, 13). A
complete axiomatization typically includes an Archimedean condition (Krantz, et al. 1971, 73).
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identity (Martens 2021) or are only individuated through second-order relations (Wolff 2020),
(Jacobs 2023). But | will assume that absolute masses have transworld identities, to help

formulate the inter-world Leibniz rescalings scenarios (see below).

Absolute masses thus have a structure A = (M, Za, oa) that allows M to be numerically
represented by a function ¢: M — R”, unique up to multiplication by a scalar, interpreted as
unit change (Krantz, et al. 1971, 74). Following Stevens’ typology, the quantity M is then said
to have a ratio scale, in which the ratios among mass-values are preserved through the
admissible transformations ¢’ = ke (k > 0) (1946). In the following, I call “additive” quantities
that have such ratio scales. Finally, under a fixed ¢, mass-values (“3 kg”) are taken to

represent the corresponding absolute masses m;.
| take Absolutism to be the conjunction of the three following claims:
(1) Absolute masses M are real and form the structure A.

(2a) In a world W, an object x has its mass in virtue of the absolute mass mj it instantiates.
Mass-absolute facts of the form “m;x” are the fundamental mass-facts.

This has a nice consequence regarding the distribution of mass-values. Call m a function
that attributes to any x in W a mass-value in a unit. Once a scaling ¢ for the absolute masses is

chosen (by a unit-definition),” then for any x in W and any m; of M, if mix then m(x) = p(m;).

(3a) In a world W, mass-relational facts depend on mass-absolute facts. Noting “rixy” the

fact that x is in the mass-relation r; with y, rixy obtains in virtue of mjx and m;y.

This means that absolutists don’t need primitive mass-relations: with a mosaic of mass-
absolute facts and the structure A, determinate mass-relations among objects come for free.
Now, call mg the function that attributes to any two x and y in W a real, positive value
corresponding to just how much more massive x is than y. Then, for a fixed o, if mix and m;y
then mg(x,y) = o(m;)/e(m;). The mass-ratio mg(x,y) can be directly expressed as the ratio of the

values for their respective absolute masses.

* This is how absolutists typically interpret unit definitions. The sentence “the unit of mass is the
mass of this object” is understood as: “this object has the absolute mass m; associated by ¢ with

the number “1” (compare with footnote 13).
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Absolutism is under heavy comparativist attack. Dasgupta (2013) argues that since
monadic mass-values (“3 kg”) only express disguised mass-relations to a chosen standard,
absolute masses are metrically undetectable (at least, prior to dynamic considerations)® and
altogether dispensable. This translates into what Martens calls “Kinematic Comparativism”:
because mass is a dimensionful quantity, with unit-dependent values, the mass of an object
“can only be reported or expressed, non-dynamically, in terms of how this magnitude relates
to the magnitude of another particle having the same determinable property” (2021, 2520).
From a representational viewpoint, it means that the mass-values m(x) entirely depend on the
choice of a ¢, and are not invariant under ¢’ =k (k > 0) (passive rescalings, i.e. unit
changes). Since only the mass-ratios mg(x,y) are preserved, only these ratios should be
considered as representing something physical, i.e. the mass-relations. Then, by virtue of a
principle of economy that Martens calls the “Occamist norm” (2021, 2522), absolute masses

are considered redundant surplus and eliminated from the fundamental ontological furniture.

There is another way of framing the same argument, that will prove useful later on. Call
an “initial world” W, the complete state of a world at a given time, conventionally® chosen as
“to”’; an “initial world” is typically what is described in the initial conditions of a problem of
physics: a distribution of fundamental properties and relations on a given set of objects. Since
they consider absolute masses as fundamental, absolutists hold that two initial worlds W, and
W’ that differ only by a (uniform) doubling of absolute masses fundamentally differ.

Comparativists deny this. To put this more precisely, define:

Active Leibniz (Mass) k-rescaling: for all x of Wy, with mix, give its counterpart X’ in
W, the absolute mass m; such that o(m;) = ke(m;) (k > 0), to the effect that m’(x”) = km(x),

ceteris paribus.’

® Dasgupta would certainly disagree with this clause — see his (2013) and (2020).

® Nothing in what follows depends on t, being the real beginning of W.

" The transformation is “active” because it moves the concrete objects within the space of absolute
masses. It is not a mere “passive” change of unit. Unlike Martens (2021, 2523), | avoid speaking
of a “multiplication of absolute masses”: first, because it’s still unclear what this could mean
(Wolff 2020, 149), and second, to prevent Leibniz scalings from being confused with

automorphisms on the structure of absolute masses.
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Absolutists hold that active k-rescalings generate distinct initial worlds (Martens 2021).
Starting from W,, uniformly multiplying all mass-values in the same unit mirrors a
redistribution of fundamental absolute masses and thus makes for a distinct initial world W~.
Comparativists deny this: uniform multiplications of mass-values only make for
representational differences, i.e. different numerical descriptions (in different units) of
fundamentally the same initial world. This can be put in the form of a reductio: first, suppose
an active k-rescaling, yielding two different distributions of mass-values m(.) and m’(.);
second, if it can be compensated by an appropriate change of units, so that any metric
difference is cancelled out and the mass-ratios preserved, then the rescaling doesn’t generate a
distinct initial world (or equivalently, it is actually not an active one). To put this more

formally, define:

Passive Absorption: for any active k-rescaling (k > 0), there is a passive rescaling ¢ —
¢’ = ¢/k such that m’(x”) = ¢’(m;) = e(m;)/k = ke(m;)/k = km(x)/k = m(x), to the effect that
the change in mass-values is absorbed by a change of unit.

Since all active Leibniz k-rescalings correspond to metrical symmetries of mass, i.e. a
symmetries of its ratio scale, they can all be passively absorbed as mere unit changes. Then,

define:

Comparativist Razor: any active rescaling that can be passively absorbed shall not be

taken as generating fundamentally distinct possible initial worlds.

The “Razor” is a close cousin to Martens’ “Occamist norm”. It relies on the very same
principle that only that which is invariant (under admissible transformations) should be
considered fundamental, this time applied to the world possibilities generated by Leibniz k-
rescalings. It dictates to treat metrical symmetries as “ontic symmetries” (Baker 2020), i.e.
transformations that leave the fundamental structure of the world untouched.® By applying
this Razor (or this chainsaw, one might say), comparativists significantly reduce the range of
possible initial worlds by numerically identifying all those that differ only by Leibniz k-

rescalings.

® See also (Jalloh 2024).
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Absolutists have several responses at their disposal. Following Jacobs (2024), they can
argue that absolute masses, although metrically idle, are relevant to (metaphysically) explain
why mass-relations obey the “Ratio Multiplication Principle” (Roberts 2016): for any X, v, z,
mg(X,y).mgr(Y,z) = mg(x,z). Mass-relations behave “as if” they were ratios of underlying
absolute masses, which would be a conspiracy on a cosmic scale if mass-relations were all
there (fundamentally) is. Absolutists can also argue that, pace Martens, dimensionfulness
doesn’t imply “Kinematical Comparativism” (Jacobs 2021) (Tricard forthcoming). Or,

following Martens, they can fall back on dynamic considerations.

Taking Newtonian Dynamics (ND) as a sample theory, it is argued that absolute masses
are indispensable in determining the dynamics of a system (Baker 2020) (Martens 2021).
Since the equations of ND are traditionally formulated in terms of monadic mass m(x),
applying an active Leibniz k-rescaling on W, does generate an (initial) world W’ that evolves
differently, in an empirically detectable way. For example, particles that escaped their
gravitational pull in Wy now collide in W’,. But initial worlds that evolve differently should
be counted as fundamentally distinct,® which comparativists cannot do.

In response, comparativists may retort that relying on the text-book version of ND is
question begging. If one first believes that mass is fundamentally relational, then one can
argue that a “reduced” version of ND should first be formulated, one that quantifies over
mass-relations as the fundamental ingredients (Dasgupta 2013), (Roberts 2016), (Jalloh 2024).
If this can be done — and | will assume it can — then k-rescalings are restored as dynamic

symmetries, thus taking the wind out of the absolutist argument.*°

The dynamic turn in the debate will not play a major role in what follows. My focus is on
undermining the initial victory of comparativism at the kinematic level, which largely rests on
the Comparativist Razor. The puzzle I will now present shows how it can be used against

Comparativism.

° This is an instance of Earman’s “Symmetry Principle 2 that every kinematic symmetry is a
dynamic symmetry (1989, 46).

19 (Dasgupta 2020) offers a more refined response, where W, and W’y are treated as distinct
possible worlds in a “looser sense” of “possibility”. (Baker 2013) and (Jacobs 2023) defend

alternative stories where Wy and W’y’s distinct evolutions are explained by a co-scaling of G.
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2. The squared mass-ratios puzzle for Comparativism

Let me first outline the basic tenets of Comparativism. First, consider a set R of mass-
relations ri, also with cardinality X;,"* endowed with a total weak order (=g) and a weakly
associative, monotonous concatenation relation (og). This time, og is interpreted as
multiplication, which means, intuitively, that mass-relations behave like ratios.”” Note also
that or is a closed operation on R, has an identity element (the mass-relation “being as
massive as”) and includes an inverse for each mass-relation. Thus, the structure &£ = (R, Zg,
oRr) is a totally ordered group isomorphic to the multiplicative positive reals (Martens 2024). It
is often assumed that mass-relations are uniquely represented: for any two representation
functions v, y’ from R to R, y =y’. As will shortly become clear, this is the crux of the

problem that I intend to pose to comparativism.
| take Comparativism to be the conjunction of these three claims:
(1c) Mass-relations R are real and form the structure .
(2c) In a world W, the mass-relational facts rixy are the only fundamental mass facts.
This implies that, once a y is chosen on R, if rixy then mg(x,y) = y(r;).

(3c) In a world W, absolute masses (if real) depend for their instantiation on the

underlying network of instantiated mass-relations.

This requires some clarification, for the status granted to absolute masses in
Comparativism is not easy to grasp. For sure, Comparativism in its basic form is simply an
“Anti-realism about absolute masses” (Martens 2024), and there is simply no need of a claim
such as (3¢c). But for others like Dasgupta, absolute masses are real but depend on mass-
relations, which raises a problem of metaphysical underdetermination: many distributions of
absolute masses are compatible with a given network of mass-relations (Martens 2016, 10).

This is reflected in the fact that, for a fixed v, if rixy then there is a function m such that

1 This, again, is accepted by Platonist comparativists such as Bigelow and Pargetter (1988) but
rejected by nominalists like Field (1980).
12 Unlike Baker and Martens, and for a reason that will soon become clear, | shall refrain from

calling them “mass-ratios” and save the expression for the numerical ratios.
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y(ri) = m(x)/m(y) that is unique only up to multiplication by k > 0. The choice of m can be
done by setting m(S) = 1 for some object S that is designated as the mass-standard.™® So, if
mass-values m(x) represent absolute masses, then an object can possess many different
absolute masses, one for each mass-relations that it bears with any possible standard. So, the
network of mass-relations seems to metaphysically underdetermine the distribution of

absolute masses.

| see three possible options. First, one may adopt a very thin view according to which a x
has an absolute mass whenever it can be attributed a mass-value m(x), relative to a standard S.
Just as a same object has several profiles depending on the point of view taken on it, it has
several ‘“monadic mass-profiles” depending on the chosen comparison point. But
comparativists may wish to recover a thicker concept of absolute mass, so that an object can
only have one absolute mass (at the same time). A second option, then, is to adopt Dasgupta’s
specific brand of structuralism, where absolute mass-facts are collectively grounded on the
whole relational network (Dasgupta 2014). A third option is the view that Martens coined
“Regularity Comparativism”, where facts about absolute masses supervene on the entire
world mosaic, and are selected together with the lawlike dynamic regularities (Martens 2017).
Since nothing in my argument depends on this, I will take “absolute masses” to refer to
anything that corresponds to monadic mass-values in a comparative framework, be it nothing

more than mass-relations, thin monadic profiles or thicker absolute masses.

So, here is the puzzling case. Suppose a comparativist initial world Wy, i.e. a fundamental
distribution of mass-relations r; among objects and a y such that, for any objects x and vy, if

rixy then mg(x,y) = wy(r;). Then, generate a candidate for a distinct possible world Wo* by

applying:

Active Leibniz p-power-transformation: for all x, y of W, with rixy, duplicate them such
that their counterparts x* and y* in Wo* are in a mass-relation r; with y(r;) = w(r)? (B> 0),

to the effect that mg*(x*,y*) = mr(x,y)", ceteris paribus.

13 This is how comparativists typically view the unit choice — compare with note 4. See

(Dasgupta, 2014, 2020) for an alternative approach to unit definitions.
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With B = 2, this generates Wo* by redistributing mass-relations such that all the mass-
ratios are uniformly squared. The question is: are Wy and W;y* to be counted as two
fundamentally different initial worlds?

The immediate answer is that they obviously are, since Wy and Wy* differ in the
distribution of fundamental mass-relations, in a way that is even metrically detectable: two
objects that previously were measured as being twice as massive as one another are now 4
times as massive, and the difference doesn’t seem to depend on representational choices. Also,
besides being apparently the case, Comparativists are required to treat Wy and Wy* as two
distinct initial worlds for dynamic reasons. Suppose indeed that both worlds obey the same
comparativist ND in which the laws govern mass-ratios. Then W, and Wy* have different
dynamic evolutions. Just like scalar multiplications are not dynamic symmetries of an
absolutist ND, power transformations are not symmetries of a comparativist one. So, if
Comparativism, with its fundamental ontological furniture, failed to distinguish between W,
and Wy*, the same problem would arise once again, as in the classical doubling scenario of
Baker (2020) and Martens (2021).

| claim that, despite appearances, Comparativism precisely fails to do just that. The core
issue is the assumption that mass-relations have a unique numerical representation, each
expressed by a single ratio.* This is unproblematic in Absolutism: fundamental absolute
masses, endowed with a primitive additive structure, admit a ratio scale with invariant mass-
ratios. But in Comparativism, mass-relations are fundamental. Hence, to determine how
uniquely they are represented, and by which type of scale, one must first and foremost look at
their primitive structure. So, let me start with that, unfold the problem, before seeing how
comparatists might respond to it.

By hypothesis, mass-relations are primitively imposed with a total weak order g and a
weakly associative, monotonous, multiplicative concatenation relation og, that on R is closed,
has an identity element and includes an inverse. Given this structure &, they actually admit

many numerical representations, that are unique only up to power transformations y* = yP

14 Or, that they are “kinematically absolute” in Martens’ terms (2024), and admit of an “absolute
scale” in the language of the Representational Theory of Measurement (Luce, Krantz, et al. 2007,
113).
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(B > 0), that form their metrical symmetry group. Define a function y* = f(y) with f(x) = x'/P
(B >0). Then:

(1)  w(ri) > w(r) iff w*(r;) > y*(rj), since f is strictly increasing
(i) w(ri or 1) = w(rw(r) iff w¥(ri or 1) = w(ri or 1) = w(r) Py(r)* = wH(ry*(r)
(iii) w* has the same identity element as y and includes an inverse for all relations of R

So y* is also an equally good representation of R. Contrary to what is usually assumed,
mass-relations are uniquely represented only up to power transformations, by what may be

called “log-ratio scales”,'® in which only the ratios logwy(ri)/logy(r;) are meaningful.

Given this, one can see the “squared mass-ratios puzzle” unfold. Simply redescribe the
world Wy* by using y* instead y as the conventional function for the mass-relations. Then for

all x* and y* that stand in the relation r;:

me*(x*,y*) = y*(ry) = w(ry)"P = (w(r)")'" = y(r)) = ma(xy)

So, by changing the representation from y to y*, it is possible to describe Wo* and W,y
with the same numerical ratios, but in different “scales”: objects in Wy* that were previously
described as being 4 times as massive as one another are now twice as massive, just like in
W,. The difference between Wy* and W, can be “passively absorbed”. Hence, by virtue of the
Comparativist Razor, they don’t fundamentally differ. With its own tools, Comparativism is

prima facie unable to distinguish between the two worlds W, and Wy*.

To borrow Wiithrich’s (2009) witty term, this is abysmally embarrassing (for
comparativists). First, remember that, as granted above, comparativists are able to formulate a
version of ND with active Leibniz k-rescalings as dynamic symmetries. But obviously, power
transformations are not symmetries even of a comparativist ND. Initial worlds Wy and Wy*
are predicted by the theory to have different dynamic evolutions. Now, comparativists find
themselves again in the situation of being unable to distinguish two worlds, Wy and Wo*, that
should be counted as distinct for dynamical reasons.

!> There is no canonical name for this type of scale; this one is adapted from Stevens’ “log-interval

scales” (1959) — see below.
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Here is a second, most undesirable consequence. If all this were true, then (monadic) mass
would simply not be the additive quantity that we (empirically) know. Remember the function
m such that, if rixy then mg(X,y) = w(ri) = m(x)/m(y). For a fixed “scaling” y, m is unique up to
multiplication by k > 0. But v itself admits power transformations of the form y* = " (§ > 0).
This implies that, m is unique only up to transformations of the form: m* = km? (k, p > 0). If
those transformations were admissible, then monadic mass wouldn’t have a ratio scale
anymore, but what Stevens (1959, 31) calls a “log-interval scale”. In log-interval scales, only
the ratios of log-intervals (logm(x) — logm(y))/(logm(w) — logm(z)), and not the ratios
m(x)/m(y), are meaningful. And to measure monadic mass, it would then require to fix not
one, but two points: the unit (the kilogram) and a free exponent 3; mass simply wouldn’t be
an additive quantity anymore. So, one dimension of the puzzle is: how come empirical,
monadic masses admit of a ratio scale, if all there fundamentally is the structure % of mass-
relations? This is a metaphysical problem: fundamental mass-relations with their primitive

structure don’t provide a sufficient ground for monadic masses with a strong ratio scale.

Comparativists would never accept such damaging consequences. To solve the puzzle,

they can tackle one of the two premises of the puzzle:

(a) Mass-relations, given their structure 9, admit of a “log-ratio” scale with power

transformations as their metrical symmetry group.

(b) Applying the Comparativist Razor, no active transformation that corresponds to a metrical

symmetry can generate a fundamentally distinct world.

So, Comparativists can either attack premise (b) and deny that the Comparativist Razor
applies, or attack premise (a) and insist that mass-relations do have a unique numerical

representation. Let me consider these strategies in turn.
3. Is Comparativism an undeclared Absolutism (about mass-relations)?

One strategy is to accept (a) but deny that (b) the Comparativist Razor applies, insisting
that an active pB-transformation makes for a distinct world possibility. A redistribution of the
mass-relations makes a fundamental difference even if it preserves their structure. In other

terms, comparativists now become “absolutists about mass-relations.*® This is Robert’s

16 Martens, in a footnote, anticipates this move by saying that comparativists should endow their
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(2016) expression, which can be confusing since “Absolutism” is defined as the commitment
to monadic mass properties.’” But it is dialectically useful to keep the term in a generalized
sense, as the claim that two worlds that differ only by a relevant Leibniz transformation (here,
a power transformation) are numerically distinct, being different in their fundamental,
substructural ingredients (here, “absolute” mass-relations). Although this sounds like a
solution, it is a very weak position from a dialectical viewpoint. In fact, why should this
absolutist move be considered legitimate now, when it comes to mass-relations, when it

wasn’t earlier with absolute masses?

First, the very same reason for using the Comparativist Razor applies here. Remember:
comparativists argued that the metrical symmetries of the ratio scale make mass-values
representationally redundant and, prior to dynamic considerations, absolute masses
uneconomical surplus. Since only the mass-ratios were meaningful, only the mass-relations
that they represent were to be counted as fundamental. The same applies here: the symmetries
of the “log-ratio” scale make the values of mass-ratios representationally redundant and
“absolute mass-relations” uneconomical surplus. Then, by virtue of the Razor, comparativists
should be asked to get rid of them, and to admit relations among mass-relations as the only
fundamental ingredients, mass-wise (again, before the dynamics dictates otherwise). If not,

then it is up to them to explain why suspend now their own principle of economy.

As a matter of fact, comparativists do have a good reason not to apply the Razor.
According to their own comparativist ND, mass-relations do play a determinative and
empirically detectable role in the subsequent evolutions of W, and Wy*, so they are right to be
absolutist about mass-relations. But then, they must justify why dynamic considerations now
prevail, to make their case, when they did not deem it sufficient to defend the absolutists’
absolute masses — or, equivalently, they must explain why they no longer find it necessary to
seek a reformulation of ND, one that quantifies on relations among mass-relations only.

Without answers to these questions, they are in a dialectically weak spot.

fundamental mass-relations with a quiddistic identity, to avoid precisely the problem that I call the
“squared mass-ratios puzzle” (2022, 4, fn. 7). However, I don’t think that Quidditism is the only
way here: the comparativists may very well adopt a “sophisticated” absolutist stance about mass-
relations, only individuated by their second-order relations.

17| thank an anonymous reviewer for pointing this out.
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Comparativists may also argue that the Razor, although legitimate, cannot be applied
indefinitely without entering into a vicious regress. After all, there is no principled reason to
stop here: once relations among mass-relations only are admitted at the fundamental level,
one may look at their own structure, find out that they have non-trivial symmetries too, apply
the Razor once again and climb the ladder of algebraic abstraction one rung higher, and so on
ad infinitum. This obviously has to stop somewhere, as recognized by Roberts (2016, 5). But
why stop here, and be absolutist about mass-relations, and not before as the absolutists
claimed we should? Again, | am afraid that any good reason for the comparativists to stop
here will only recycle an equally good reason for the absolutists to stop one step earlier: either
by relying on dynamic relevance a la Martens, or explanatory relevance a la Jacobs, etc.
(section 1).

So, the comparativists cannot without some inconsistency (or bad faith) resist the
application of their own principle of economy in the at-hand case. Perhaps their hope then lies
in the other strategy, in attacking the puzzle at its root: the fact that (a) the structure % of
mass-relations has a “log-ratio” scale with power transformations (y* =", > 0) as its

metrical symmetries.
4. Are mass-relations uniquely representable?

The rejection of (a) is motivated by the persistent idea that mass-relations should be
“kinematically absolute” (Martens 2024), expressed by unique and constant numerical ratios,
independent of any free parameter such as a unit choice (Roberts 2016, 6-7). In what follows,
| consider three ways in which this can be more precisely articulated: by claiming the scale-
independence of mass-relations (4.1), or their kinematic absoluteness (4.2), or by arguing that
mass-relations actually have more structure than &2, so as to suitably restrict their symmetries
(4.3).

But let me first make a quick answer, which will set the direction for subsequent, more
elaborate responses. As it is widely admitted, calling mass-relations “ratios” may be
misleading (Martens 2016), (Jacobs 2024). As Roberts also admits, “the dyadic relational
quantity we call ‘mass-ratio’ is (...) & ‘ratio’ by courtesy only. Really, it’s just a fundamental
2-place relational quantity, (...) for there is nothing for them to be ratios of”” (2016, 13). But if
that is the case, I don’t see where fundamental mass-relations get enough structure to be

uniquely representable. Calling them “ratios” won’t change the fact that their structure & is
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not uniquely representable. Surely, one can impose that any function m representing monadic
masses be such that mg(x,y) = m(x)/m(y). But for mg to be unique, one also has to assume that
m is a ratio scale (and not a log-interval scale), unique up to scalar multiplications only. That
is, the monadic masses must be endowed with an additive structure, that nevertheless they
cannot inherit from more fundamental mass-relations. So, the comparativist must either admit
that mass-relations are not uniquely representable, and crash into the puzzle, or assume that
monadic masses are additively structured independently of mass-relations, which is a serious

concession to absolutists. Let me now unfold this dialectic.
4.1.Scale-independent mass-relations?

First, one may argue with Baker (2020) that mass-relations are scale-independent, and if
it’s the case, that their numerical representation doesn’t rely on any scaling convention and is
simply unique. As Baker sees it, scale-independence is an ontic notion, closely linked to the
existence of ontic symmetries. If absolute masses were to be actively and uniformly doubled,
then the mass-relations would admittedly remain the same. They are independent of how mass
is “scaled” in reality. Ontic scale-independence is mirrored, on the representational side, by a
value invariance: “a comparative relation for a quantity like mass is scale-independent iff,
when the quantity is represented numerically, multiplying its values by a constant cannot
change whether the relation holds (2020, 81). Mass-ratios are preserved by any k-rescaling of
the mass-values, so they represent scale-invariant aspects of reality.

Yet, Baker plainly relies on the (familiar but) crucial assumption that the admissible
transformations of the mass-values are of the right, multiplicative sort, that preserves mass-
ratios. If, however, power transformations were allowed, then mass-values could be
transformed in many ways that do not preserve the ratios. So, what decides the scope of the
legitimate transformations? The answer, unsurprisingly, is: the structure of what is to be
transformed, and the usual reason to admit the multiplicative sort only is that monadic masses
have an additive structure. Now, this is of course unproblematic for absolutists, who posit
fundamental absolute masses with the suitable structure A. But how could comparatists do

the same?

Take basic Comparativism first, i.e. Anti-realism about absolute masses. Fundamental
mass-relations with the structure & are all there is. And & allows for a transformation group

much broader than multiplications by a positive scalar (the similarity group). Since there are
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simply no absolute masses, there is nothing else to rely on to further reduce the group.
Monadic mass-values can therefore be redistributed according to power transformations:

m’ = kmP (k, B > 0), under which mass-ratios are scale-variant.

However, comparativists may admit absolute masses, as long as they depend on the
underlying mass-relations. But to solve the present puzzle, the comparativist needs absolute
masses be delivered with their additive structure. Since this additive structure puts additional
constraints on the way absolute masses can be distributed over the network of mass-relations,
the additive structure excludes certain arrangements that are nevertheless permitted by the

underlying & structure. Therefore, the latter simply cannot determine the former.

Here is another, last attempt. The additivity of monadic masses has an empirical meaning.
The concatenation relation o5 can be operationally interpreted, for instance, as the placing of
two massive objects on the same pan of a balance, to compare them with a third. More
generally, it is an empirical law that monadic masses behave in a regular, additive way
(Mundy 1987). So, perhaps the required restriction (to multiplicative transformations) can be
obtained, if not by dependence on the structure of fundamental mass-relations, then by
“piggy-backing” on the additive behavior of empirical masses. By analogy with Martens’
(dynamical) “Regularity Comparativism” (2017), the strategy may be called “Kinematical
Regularity Comparativism”, where the required kinematic properties of monadic mass, such
as its additivity, are provided by the regularities selected by the theory that “best

systematizes” the global mosaic.

However, on top of the problems from which “Regularity Comparativism” generally
suffers,*® this specific brand of Comparativism has one major explanatory flaw. The additive
behavior of masses is treated as a brut fact, left unexplained. Of course, any theory is allowed
some unexplained primitives. But here, the brut, unexplained fact involves entities (absolute
masses) that are not primitive, but supposedly dependent on mass-relations. And as already

explained, the structure of mass-relations is not rich enough to force masses to behave in an

'8 In a nutshell: first, Comparativism is in conflict with the separability thesis of the Humean view
of the world mosaic — see (Martens 2017, 1232) ; second, “[the piggy-back approach] would make
life too easy for people who want to get rid of objects and properties that they do not like for some

whimsical reason” (Arntzenius 2012, 170).
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additive way.'® So, although nothing fundamental forces them to do so, they behave as if
constrained by a structure of absolute masses. Here, Comparativism is plagued with another
sort of “cosmic conspiracy” (Jacobs 2024). Or, as Martens notes, “there is an obvious cry for
inference to the best (i.e. only!) explanation: the comparativist worlds are constrained as if

there were fictitious absolute masses exactly because there are absolute masses!” (2016, 111).

Thus, I simply don’t see how comparativists could endow monadic masses with the
required additive structure, for mass-relations to be scale-independent in Baker’s sense. This

road to representational uniqueness for mass-relations is closed off.
4.2 “Kinematically absolute” mass-relations?

Comparativists may also argue that mass-relations are “kinematically absolute”. Whereas
absolute masses (if real) can only be numerically reported by being compared one to another
(Martens 2021, 2520), mass-relations are measured non-comparatively. For instance, the
relation “being 5 times as massive as” between x and y is detected by balancing, on a pan
balance, 5 exactly similar copies of y with X, without any standard or comparison point.
Therefore, just like in the number of fingers of a glove (Martens 2021, 2521), there is really
something “5-ish” in “being 5 times as massive as”, and this is why mass-relations have a

unique numerical representation.

In response, | will argue that mass-relations are indeed kinematically absolute, but again,
only if absolute masses are posited and endowed with an independent additive structure.

First, let me consider this commonly-held notion that, in ordinary measurement systems, it
is actually mass-relations that are measured (Roberts 2016, 4). Is it truly the case? To directly
measure mass-relations would require to devise an operation that associates a (positive) real
with any pair of objects (x,y). This simply is not what is done with common mass-
measurement systems: they associate a (positive) real with pairs of (x,S), with “x” the only
variable and “S” a logical constant, holding for a chosen mass-standard which remains the
same within a same scaling. In other words, what is operationalized here is monadic mass
(“the mass of x”) with its traditional ratio scale. To obtain a value for the mass-relation

between any x and y, one has to make two distinct measurements m(x,S) and m(y,S) within the

1% In the next section, | examine the idea, which comes up naturally here, of enriching the

structure of fundamental mass-relations beyond Z, to ground this restriction.
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same scaling and then take the ratio m(x,S)/m(y,S). This ratio is undeniably constant across all
change in the standard S. Therefore, the kinematical absoluteness of mass-relations here can
only be secured if monadic masses are first granted the suitable, additive structure. This brings
the comparativist back to the previous impasse: it is not possible to grant this without positing

independently structured absolute masses.

Comparativists might object that the measurements m(x,S) still stand for mass-relations.
True enough, they can be expressed by relational predicates: “being K times as massive as S”
instead of traditional monadic values (“being k S in mass™).?° Strictly speaking though, since
“x” is the only variable in m(x,S), “being Kk times as massive as S” expresses relational
properties (of the x) rather than relations. So comparativists would then need to argue that
these relational properties ultimately depend on the mass-relations (between the x and S),

rather than on their absolute masses, so that very little is actually gained.

Yet, one may object that there are ways to uniquely measure mass-relations from (ratios
of) quantities, such as velocity or acceleration, without assuming additive monadic mass. For
instance, Martens declares that the structure 92 of mass-relations “corresponds nicely to
Weyl’s operational definition of (inertial) mass” (2021, 2519) (2024, 16). So, let’s have a look

at it, to see if they really provide an operationalization of mass-relations.?

Consider this experimental set-up: two bodies a and b (inertially) moving with inward
velocities v, and vy, (top box in Figure 1), before colliding inelastically and coalescing into the

aggregate a+b, with velocity va+p (bottom box).

Weyl’ operationalization of mass proceeds first by defining equality and order in mass
(Weyl 1949, 139):

20 | thank an anonymous reviewer for pointing out this objection.
2L One could also think of Mach’s famous operational definition of inertial mass, which relies on
(observable) acceleration-ratios and Newton’s third law — see (Jammer 1961, 92). For present

purpose, it is sufficiently similar to Weyl’s for me to consider only one of them (Jammer 2000,
10).
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(1) ais as massive as b iff, with equal (opposite) velocities va = — Vp, Va+p, =0
(2) ais more massive than b iff, with v, = — Vp, Vaip # 0 and sign(Va+p) = Sign(Vva)

Then Weyl defines a concatenation operation which “consists simply in joining the two
bodies” (Weyl 1949, 139), which clearly shows that he is building nothing more than a
traditional additive scale of monadic masses. As such, this in no way constitutes an
operationalization of mass-relations. | suspect that Martens actually referred to Jammer’s
account of Weyl’s ideas (2000, 10). Instead of a concatenation operation, Jammer defines the

mass-ratios mg(a,b):
(3) If vasrp = 0, mg(a,b) = — vplvy

This relies on the principles of conservation of mass and momentum: mgyV, + mpv, =
(Mg + Mp)Vas+pn, With m, and m, the monadic masses of a, b. By imposing Va+, = 0, one easily
obtains my/m, =— vp/va. Then, for all x and y, by independently measuring the velocities
vy and vy, one is able to obtain a unique, positive real value for mg(x,y), thus providing the
structure of mass-relations with a unique numerical representation. Values for monadic
masses m(x) can then be defined by choosing a as the mass standard (m(a) = 1), such that for
all x, m(x) = mg(x,a). And m(x) is unique only up to a multiplicative factor, typical of ratio

scales.

So, runs the objection, the Weyl-Jammer definition provides a way to measure and
uniquely represent mass-relations, without making any explicit assumption about the additive

structure of monadic masses, but recovering it as a by-product. What more could one ask for?

First, remark that (pace Martens) the Weyl-Jammer definition is not, strictly speaking, an
operationalization of the structure 9, since it does not provide ways to compare mass-
relations. In fact, because (1) and (2) reduce to (3), it is nothing but a method to measure
mass-relations derivatively from independent velocity measurements (with their own ratio
scale). Still, the core of the objection remains: it provides a unique representation of mass-

relations without explicitly assuming an additive structure for monadic mass.

But it does, implicitly. To see this, let me compare it with another way to measure mass-

relations, which provides them with just the required “log-ratio scale” that fits their structure
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. What follows is adapted from what Luce and Tukey (1964) invented under the name
“Simultaneous Conjoint Measurement™.?? The idea is to measure mass and velocity conjointly
as components of a third quantity, momentum. This is done, basically, by building an ordering
of momenta that allows to match mass-relations with velocity-relations. First, one must be

able to order masses (with Weyl’s (1) and (2)) and velocities:

(4) a goes as fast as b iff if they collide exactly in the middle of the segment defined by
their initial positions

(5) a goes faster than b iff, if a is as massive as b, then Va4, # 0 and sign(Va+p) = Sign(Va)

Next, by varying the velocities and masses of bodies a and b, one produces an ordering of

momentum Z:
(6) a has more momentum than b (pa Zp Po) iff Vasp # 0 and sign(Va+b) = Sign(va)

If these qualitative axioms are satisfied, then there are two positive-real-valued functions

¥m €t y, such that:

(7) Pa Zp P iff ym(@)x(@) = xm(B)xu(b)

Such representation functions are unique up to power transformations: y’m = o1.xm" and
vy = az.F (a1, a2, B> 0). Therefore, a conjoint measurement of mass and velocity yields log-
interval scales for both quantities.”® Now, instead of functions for monadic masses and

velocities, one may want functions for mass- and velocity-relations. To that end, simply
define mgr(X,y) = m(X)/xm(y) and vr(X,y) = x(X)/x(y), such that:

(8) pa Zp Py iff mr(a,b) > vr(b,a)

22 See (Krantz, et al. 1971, 267) and (Aczél et Luce 2001, 5828) for an application to the present
case, and (Narens et Luce 1986) for treatment of similar cases. It requires some adaptation
because Conjoint Measurement was not, originally, designed to operationalize relational
quantities, but to measure quantities that lack a proper concatenation operation and are very
common in psychology and in the social sciences (Michell 1990, 68).

2 proof in (Krantz, et al. 1971, 258). Additional conditions (independence, double cancellation,
solvability and an Archimedean condition) are also required — see also (Michell 1990, 68 et sq.). |

come back to the independence condition below.
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Such functions are unique up to power transformations of the form mg’ = mg” and vy’ =
vg? (B > 0), which characterize them as (what I called) “log-ratio scales”, which is exactly the
type of scale that suits the structure . So, I take conjoint measurement of mass-relations
(and velocity-relations) to provide just the type of operationalization required by their

assumed structure.

Three remarks are in order. First, as Luce and Tukey insist, this method provides a
fundamental measurement of the conjoint quantities (here, mass and velocity). This is the
main difference with Weyl’s method, where mass is measured derivatively, from velocity.
Second, since mass (and velocity) can also be fundamentally measured with the traditional
extensive methods, this means that a same quantity can be fundamentally measured in
different ways.?* So, the question naturally arises of how the conjoint measurements (of mass
and velocity) yn and y, relate to their extensive measurements m and v. Krantz et al. (1971,
485) show that:®

(9) m=v1.m" and 3, = y2.V° (y1,72,8 > 0)

This means that the traditional ratio scale for monadic mass (velocity), obtained when
extensively measured, is a special case (with p = 1) of the log-interval scale obtained when it

is measured conjointly with velocity (mass) (Wolff 2020, 86). This also entails that:

(10) mr(xy) = (M(x)/m(y))” and va(x.y) = (VO (Y))" (B > 0)

So, the apparently unique mass- and velocity-ratios obtained by taking the ratios of
monadic masses and velocities is also a special case (with f = 1) of mg(X,y) and vg(x,y) when

obtained by a conjoint measurement.

Third, one crucial condition (for the representation and uniqueness theorems) is of
particular interest. Indeed, it has to be assumed that mass and velocity independently
contribute to momentum, in the sense that a measure of momentum y, is a non-interactive

function of y, and y,:%®

24 For a useful classification of the different uses of “fundamental” and “derived” in the literature,
see (Krantz, et al. 1971, 502).
%5 See also (Narens et Luce 1986, 172) and (Aczél et Luce 2001, 5828) for similar results.

%8 f js noninteractive iff it is a monotonic transformation of an additive function — see (Michell
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(11) %p = "% (B> 0)

This differs from the way momentum is traditionally defined, as p = mv, where no free
exponent 3 appears. But, as Krantz et al. explain, “this difference is only apparent since we
could rewrite all physics in terms of p> = p? = mPv?, where B > 0. It is pure convention that we
choose B =17 (1971, 267).2” What is not conventional, but physically meaningful, is that the
exponent is the same for mass and velocity, i.e. that “the ratio of their exponents is 1 rather
than some other number. This ratio establishes the trading relation (...) between m and v in
their contributions to momentum™ (ibid.). By conventionally setting § = 1, one ensures that
the conjoint measurements of mass and velocities just match those obtained when both
quantities are independently measured, and represented by ratio scales — and therefore, that
mg(X,y) just matches the unique ratios m(x)/m(y) of additive mass. As Narens and Luce write:

By selecting the exponent B to be 1 (or equivalently, by identifying [y,] with [v]), we have
by fiat altered what is really a log-interval representation [of momentum] into one that
appears to be a ratio scale. (This means that in order to force [momentum] actually to be a
ratio scale, more physical structure than the ordering of the mass-[velocity] pairs is
needed.) (1986, p. 172)%®

This last point allows me to fully meet the challenge posed by the Weyl-Jammer
operationalization of mass-relations. Remember that it is a method to derivatively measure
mass-ratios from velocity-ratios. Apparently, it does recover unique mass-ratios (and a ratio
scale for monadic masses) without making any assumption about the structure of monadic
masses. But it actually makes an equivalent assumption! In Jammer’s (3), momentum p is
implicitly defined as mv, i.e. by setting B to 1 in (11). As Narens and Luce suggest, this is
assuming that momentum has a ratio scale rather than a more general log-interval scale. Now,

this can be justified in only two ways: either by the (independent) assumption that both

1990, 77).

%" See also (Krantz, et al. 1971, 487), (Narens et Luce 1986, 172) and (Ellis 1966, 118-126).

%8 In the quote, Luce and Narens do speak of the same exponent B as Krantz et al., i.e. the one in
(9), (9) and (10). But they are actually treating a case of conjoint measurement of mass and
volume through a density ordering. | adapt the quantity terms (and the symbolism) to suit the case
at-hand.
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velocity and mass have ratio scales, or by assuming that momentum actually has an extensive

structure, with a definable concatenation operation.

In the first case, assuming that both velocity and mass have ratio scales automatically sets
B to 1. But clearly, this entails that, even though no extensive structure for masses has been
explicitly posited in the Weyl-Jammer procedure, the ratio scale for masses is not a by-
product of the measurement, but its precondition. This was presupposed as soon as
momentum were defined as mv. In the second case, momentum is endowed with more
structure than it has in conjoint measurement. Actually, the principle of momentum
conservation that Jammer mobilizes can be interpreted as a concatenation operation: the
momentum of the aggregate a+b is the sum of a’s and b’s momenta. But this is empirically
sound only if the masses are also conserved, i.e. the mass of a and b add up to the mass of the
aggregate. So, this already presupposes that mass has an extensive structure and therefore,

once again, a ratio scale.

I conclude that the Weyl-Jammer operationalization of mass-relations only yields unique
numerical ratios because of a hidden assumption (B = 1) that, one way or another, imposes a
ratio scale on monadic mass. As discussed in section 4.1, this assumption is not accounted for
in a comparativist framework: from fundamental mass-relations exhibiting the structure &, it

simply doesn’t follow that monadic masses have the structure required by ratio scales.
4.3.Enriching the structure of mass-relations?

There is one last road to explore: why not enrich the structure & of mass-relations to
restrict their metrical symmetries from the power group (y* =P, p>0) to the identity

(8 =1), so that each mass-relation corresponds to a unique real?

The most straightforward way is, I think, to rely on what is known as “Holder’s theorem”;
but it is traditionally formulated in an absolutist framework, so let’s see if it can be twisted for
comparativist purposes. Basically, one assumes that the monadic masses M satisfy a total
weak order (Z ), a weakly associative, monotonous, additive concatenation relation (o), plus
two qualitative conditions of order density and unboundedness, to reach “Dedekind-
completeness.” It is then possible to build infinite, additive standard sequences for all m; of

M: S(m;) = <m;, 2m;, 3m;,... >, so that the ratio mi/m; is uniquely determined as a relation (the
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“Dedekind cut”) between S(m;) and S(m;). Holder’s theorem states that the set of such ratios is

isomorphic to the positive reals, so that each corresponds to a unique real number.?®

To twist this adequately, comparativists need to identify the ratios mi/m; with the
fundamental mass-relations. This implies reversing the order of dependency assumed above,
where the ratios are determined by additive standard sequences of monadic masses. In the
reversed view, mass-relations come first and primitively determine pairs of standard

sequences, so that absolute masses be delivered with their additive structure.

Yet, on closer analysis, the problem encountered in section 4.1 “appears only to have
been wished away”.®® The fact remains that the underlying 2 structure is still not rich
enough to uniquely determine monadic masses with the required additive structure.®* Simply
saying that it does so “primitively” is not illuminating, since it is not clear by virtue of what

additional primitive structure.

Returning to the problem: to secure that mass-relations are uniquely represented by the
positive reals, comparativists need to add more primitive structure to . Intuitively speaking,
mass-relations need to be endowed with some sort of a “distance metric” that &, as a
multiplicative structure, lacks. This is certainly the most promising option for comparativists.
Since it can be tried in many ways, | go with the simplest, hoping that my general answer will

also cover the others.

The idea is to embrace Bigelow & Pargetter’s “three levels theory” of quantities (1988),
which posits (1) particular objects, standing in (2) whole arrays of mass-relations, themselves
bearing (3) second-order proportion relations — a theory which (now) qualifies as a brand of
Comparativism.** That two mass-relations r; and r; stand in the n:m proportion means

intuitively that ri" (r; concatenated m times) amounts to r;". Together these proportions

%9 Details can be found in (Hélder 1901, 1996), (Michell 1994).

%0 | am paraphrasing van Fraassen here (1989, 107).

3 A further reason for this can be found in (Michell 1994, 396): since no constraints are imposed
on the type of additive operation that can be applied to monadic masses, it may be traditional
numerical additivity (compatible with a ratio scale), but also many others obtained by
exponentiation (not compatible with a ratio scale).

%2 Despite Bigelow’s reservations (1988, 72).
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determine a metric for mass-relations: since “being as massive as”, the identity element, is
invariantly associated with the number 1, any relation r; standing in the n:1 proportion with it

is associated with the real n.*®

Note, however, that these (second-order) proportions are external, superimposed on mass-
relations.** But given their structure Z, the mass-relations can receive many different
geometries. For instance, r; and r; may stand in the n/m but also in the (n/m)® proportions
(3 >0). It is the same problem, over and over again. Why should one contingent mass-
geometry, the one with 3 =1, be posited rather than another? One good reason is, again, to
best explain the empirical additive behavior of monadic masses, and this time (compared to

section 4.1), comparativists are equipped to do so.

| accept this as consistent way out of the puzzle, one which comparativists can take. But
note that now, comparativists are far from their initial, economical stand of positing (as
fundamental) only the mass-relations expressed by the invariant ratios of empirical masses.
Now, faced with the fact that empirical masses exhibit constant numerical ratios, both
absolutists and comparativists posit fundamental structures with unobservable ingredients:
either absolute masses with their structure A4 (Mundy 1987), or mass-relations with their
second-order geometry. It is then sufficient for my purpose to conclude that comparativists

have lost all their initial advantage at the kinematic level.

% In Michell’s terms, the (unique) “representation” is backed up by “instantiation”. Contemporary
comparatists may be reluctant to view real numbers as worldly, scale-independent proportion
relations, instantiated by physical mass-relations. But if preferred, these proportions relations can
be replaced by any suitable “qualitative” relations without changing the substance of my response
below.

% They are in Bigelow’s account. But why couldn’t they be internal, supervening on the nature of
the mass-relations? Armstrong (1988) did try to make numbers qua relations supervene on
magnitudes qua properties, with no success (Eddon 2007), (Tricard, On Armstrong’s Radical

Absolutism 2022). | see no reason to expect more success with relations.
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5. Conclusion

That comparativists run into the problem I have presented here, and are prima facie unable
to distinguish between a world W and its duplicate W* where all mass-relations have been
uniformly squared, is deeply puzzling. Until now, the picture seemed pretty clear. On the table
were absolute masses, with their ratio scale, and mass-relations, represented by unique
numerical ratios. Comparativists considered it more economical to posit only the latter, at the
fundamental level, and to have them mirrored by the constant empirical ratios. What |
showed, basically, is that comparativists had it too easy by assuming that these ratios were
unique. As it happens, mass-relations with their structure & admit of many equivalent

representations depending on the conventional choice of a free exponent.

To evade the puzzle, comparativists may become absolutist about mass-relations, but then
have to explain why they have the right to do so. Or they may endow monadic masses with an
additive structure, which they cannot inherit from the underlying mass-relations, and must
thus possess primitively — which is precisely what Comparativism initially rejected. Unless, of
course, they supply their fundamental relations with more primitive, unobservable structure.
But then, on what grounds do this, if not to account for the constant ratios of monadic masses,

which Absolutism does just as well?
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Figure 1: Weyl’s operationalization of mass
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