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1. Introduction and statement of results

Throughout this paper, G will denote a locally compact Hausdorff
group with a chosen left Haar measure m. For each s e G, x, denotes the left
translation operator which acts on functions / according to the rule
xsf(x) = f(s~1x) and on measures or distributions in the corresponding
way. The associated left difference operator TS—1 is denoted by A,. On
occasions it will be more convenient to write r(s) and A(s) in place of T,
and As.

The type of problem to be considered is as follows: Suppose that / is
a function, measure or distribution on G with the property that, for each s
belonging to a not-too-thin subset S of G, the difference AJ (or an iterated
difference A"f) belongs to some pre-assigned function space. What can then
be said about /? In particular, when can one infer that / itself belongs to
the same function space?

N. G. de Bruijn [1], [2] obtained many results of this type, both positive
and negative in nature, for the case in which G = S = R (the additive
group of reals). De Bruijn's results have been significantly extended in
certain directions by Kemperman [14] and Carroll [15], [16] (for reference
to which the present writer is indebted to a referee). The results in Edwards
[3] are of a somewhat similar nature, the hypotheses there being that
m* (S) (the supremum of m(K) for compact sets K C S) is positive and that
the set of differences {AJ : s e S} is relatively compact in a suitable sense.

The aims and methods of de Bruijn, Kemperman and Carroll are,
however, somewhat different from those of the present paper. They are
concerned to some extent with the pathology of non-measurable functions
and with that of noncomplete function spaces. With these aspects we are
never concerned; we shall assume outright that the functions are at least
locally integrable (although we do admit non-functions in the shape of
measures or distributions), and we make full use of the fact that the function
spaces considered are complete.

An example illustrates well the difference in viewpoint. De Bruijn ([1],
pp. 211-212) shows that if / e RR is such that AJ e Z.foc(#) for each s e R,
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[2] Differences of functions and measures 251

then / = g-\-h-\-k, where g e L\OC(R), h is additive and k is such that Ask = 0
a.e. for each s e R. The analogous problem with Lfoc in place of Lfoc is left
open. We, on the other hand, will show (as a corollary of Theorems 3
and 5) that if 1 ^ p 5S oo, and if / is a distribution on R with the property
that AJ e Lfoc(R) for each s belonging to a set SCR which is either non-
null or contains a nonmeagre FCT-set, then feLf^R). Although it is true
that special cases of this corollary of Theorems 3 and 5 are derivable from
de Bruijn's result with little trouble, this approach is limited in scope and
(we feel) not the natural one.

Our positive results, as well as coping with general values of the
exponent p in the range [1, oo], also apply to cases in which the data
involves iterated differences A"foi arbitrarily high orders.

A few negative results are obtained, applying in cases where the set
S is locally negligible or meagre but may well be perfect and uncountable.
Here again the examples are quite different in nature from those of de
Bruijn insofar as we countenance no dealings with nonmeasurable functions.

Immediately following a description of notations are the statements
of the positive results, the proofs of which occupy §§ 2 and 4. The negative
results are considered in § 5.

NOTATION. The term "measure" will always mean "Radon measure"
and M(G) will denote the space of measures on G. If Q is a nonvoid open
subset of G, CC(Q) denotes the space of continuous functions on G with
compact supports contained in Q.

For simplicity we shall, when speaking of distributions, assume that
the underlying group G is a Lie group. In such cases &(G) denotes the space
of distributions on G; and, for any nonvoid open subset Q of G, C™(Q)
denotes the space of indefinitely differentiable functions on G with compact
supports contained in Q. The space of indefinitely differentiable functions
on G is denoted by C°°(G).

The usual Lebesgue spaces LV(G) and Lfoc(G) are constructed relative
to left Haar measure m on G, the exponent p satisfying always 1 ^ p ^ oo.
These, and the other function spaces already mentioned, may and will
be injected into M(G) in a familiar way; when G is a Lie group we go one
step further by injecting M(G) itself into @'(G).

If £ is a subset of G and r a positive integer, Ellr denotes the set of
x e G satisfying xT e E. At times we shall need to impose upon G one or
more of the following conditions:

(Cr) There exists a number cr > 0 such that

miE1'') ^ cT • m(E)

for each relatively compact measurable subset E of G.
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Evidently, the condition (Cx) is void.
If r is an integer exceeding 1, and if jr denotes the map x -*• xr of G

into itself, then jr is a continuous homomorphism of G and Exlr = fcx{E).
If G is divisible ([13], p. 440), then jr(G) = G for all r; and G is torsion-free
([13], p. 439) if and only if jr is 1 — 1 for all r. Hence, if G is cr-compact,
locally countably compact, divisible, and torsion-free, then ([13], (5.29),
p. 42) Z"1 is continuous. In any case, continuity of j ~ l will suffice to ensure
that (Cr) is satisfied (thanks to the essential uniqueness of left Haar
measure).

STATEMENTS OF THE POSITIVE RESULTS. Some of these apply to measures
only, others to distributions.

THEOREM 1. Suppose that 1 < p <[ oo, that [i e M(G), and that

satisfies either (i) m*(S) > 0 or (ii) 5 is nonmeagre. Then JX eL£c(G).

THEOREM 2. Suppose that p and [i are as in Theorem 1. Suppose further
that G satisfies (Cr) for each positive integer r, and that

S — {s eG : An,n eLf^G) for some positive s-dependent integer n]

satisfies either (i) or (ii) of Theorem 1. Then again one may infer that

THEOREM 3. Suppose that G is a Lie group. A true statement results if,
in Theorem 1, the hypothesis [i e M(G) is replaced by n e @>'(G).

THEOREM 4. Suppose that G is a Lie group satisfying (Cr) for every
positive integer r, that 1 < p 5S oo, that fi e @'(G), and that S is defined as
in Theorem 2. If S is nonmeagre, then fi e LJ^(G).

Concerning the case p = 1, excluded from the preceding theorems,
we have

THEOREM 5. Suppose that p = 1. The conclusions of Theorems 1 and 2
again follow on the basis of hypothesis (i), and the conclusion of Theorem 1
follows on the basis of the hypothesis (ii') S contains a nonmeagre Fa-set.

If G is a Lie group, these extensions are valid if the hypothesis fieM(G)
be replaced by n e 3>'{G).

In connection with Theorem 5 we observe that (in any locally compact
Hausdorff space G) any nonvoid open set U is nonmeagre (see [4], 0.2.18
and 0.3.16); and that any such set U contains a nonvoid open (and therefore
nonmeagre) F^-set V. On the other hand, a nonmeagre set S may contain
no nonmeagre F^-set (as when G = R and S is the set of irrationals).

The techniques used to prove Theorems 1—5 can be adapted so as to
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apply to cases in which Z£C(G) is replaced by certain other spaces, among
which are:

(a) LV(G) — provided we assume in advance that ft is a bounded
measure or, if a distribution, belongs to i^»(C) (see [5], Tome II, p. 56);

(b) Cl(G) with / a nonnegative integer or oo, G being a Lie group.

2. Preliminaries

2.1 If g eL](G), the set of integrable functions on G having compact
supports, fieM(G) and r is a nonnegative integer, we define g^
by the vector-valued integral

(2.1-1) g^fi =

here and elsewhere we shall write J"G • • • ds in place of J c • • • dm(s) for
integrals with respect to left Haar measure m. The existence of the integral
in (2.1.1) is assured by 8.16.1 and 8.16.3 of [4]. In particular,

where g * n is the usual convolution of g and [i (cf. [4], p. 568). In view of
the formula

4 > 2 ( ) n r ( ) (
r=0

it appears that
(2.1.3) f g(s) • An.it -ds = i (-l)*-*nCrg¥r

JG r=0

for g e L\(G) and /x e M(G), n denoting any positive integer.

2.2 Properties of g%][i.

(a) It is well known that g^fi = g*fi eLfoc(G) whenever geL*(G),
fieM(G), and 1 ^p <i oo.

(b) If G = Rm, it is easy to see that

(2-2.1) g¥f*=gr*l* ( r = l , 2 , - - - ) ,

where gr(x) =r-1g(r~1x). This in turn makes it clear that g^fi e L^R"1)
whenever g e L*(Rm), p e M(Rm), r = 1, 2, • • • and 1 ^ p ^ oo. We need
to know that the last statement is true for any G satisfying condition (Cr)
for every r.

In any case, (Cr) ensures that

(2-2-2)
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for any y> e CC(G), where if is defined by

y>r(x) = w{xr)

and where r is a positive integer.
On the other hand the action of the measure g^ /n on the function

<j> e CC(G) is specified by

W.gVfiy = jog(s) • <+.T(?)

(2.2.3) =fgg(s)dsjo+(s'x)dp{x)

Now (2.2.2) and Holder's inequality shows that the inner integral
in (2.2.3) tends to zero in Ce(G) as <f> -»- 0 in Lf (G), where (as usual) p'
is the conjugate exponent defined by l//>-fl//)' = 1. If p > 1, this shows
that indeed g^fi e Z.,*C(G), and this case is thus disposed of.

Consider next the case in which p — 1. Here it suffices (see [6], § 5)
to show that to each relatively compact open set .QCG and each number
s > 0 corresponds a number c = c(Q, e) such that

(2-2.4) K^Wl^e-IWL+c-IWIi

for functions <f> e CC(G) with support contained in Q. In view of (2.2.3) and
the fact that the inner integral appearing therein vanishes outside a compact
set K depending only on Q and the support of g, to prove (2.2.4) it is enough
to show that for x e K one has

(2.2.5) I = \jG<f,(s'x)g(s)ds 5S e

under the same hypotheses on </>. However, a number k can be chosen so
large that, if Ek is the set of s e G at which \g(s)\ > k, then

Consequently one has for x e K

where k' absorbs a factor depending on the supremum on K of the modular
function of G. Using condition (Cr), (2.2.5) is now obtainable with c' = k'c1.

(c) If G is a Lie group and [i is any distribution on G, the formula
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(2.1.1) defines g(£ [i as an element of @>'(G). In this case it is very simple
to see that g^p eC°°{G) whenever g eC™(G) and r is a positive integer.

2.3 The functions NpQ. If 1 < p ^ oo and Q is a relatively compact
open subset of G, A ^ Q is defined as a function from M(G) into [0, oo] by
the formula

(2.3.1) ^,>a(/*) = Sup|<^iu>|.

where the supremum is taken relative to those functions <f> e CC(Q) satisfying
\\<f>\\p. 5s 1. If G is a Lie group, and /i e @'(G), we modify the definition of
NPi/1{Q) by demanding that <f> e Cf(Q).

It can be seen without difficulty (cf. [3], p. 404) that, if 1 < p fSL oo,
the restriction fi\Q belongs to L"(Q) if and only if NPtQ(ji) < oo, in which
case NPiQ(u) is equal to the Lp(Q)-norm of ft\Q. Hence, fi eZ.J .̂(G) if and
only if NPtO{fi) < oo for each relatively compact open subset Q of G.

The preceding assertions are no longer valid when p = 1, which is
why this case demands separate treatment at various points. It remains
true, however, to assert NltO(/i) coincides with the Z.1(i2)-norm of (i\Q
whenever ,M e Lj^G).

2.4 In the course of the proofs of Theorems 1—4 we shall be con-
fronted with the situation in which fie M(G) or @'(G), 1 < p jg oo, and

(2.4.1) N,iO(A:fi)£k [seW)

for some relatively compact open subset Q of G, some positive integer n,
some number k, and some relatively compact measurable subset W of G
satisfying m(W) > 0.

We aim to show that as a result

(2.4.2)

and therefore, by (2.1.3), that

(2.4.3) I 2 (-l)"-\Crgfcv) \QeL»{Q),

in each case for any g e L\ (G) which vanishes a.e. outside W.
To this end, we observe first that the substance of § 2.3 shows that the

restrictions A"/i,\Q form a bounded subset of L"(Q) when s ranges over W.
Let us verify next that the LP(Q) -valued function F defined on W by
F(s) = A"fi\Q is scalarwise measurable. Granted this, since p > 1 and
therefore LP(Q) may be viewed as the dual of LP'(Q), (2.4.2) will follow from
[4], 8.16.1 and 8.16.3.

As to scalarwise measurability of F, observe first that for each
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(f> e CC(Q), the scalar-valued function s -»• <<£, F(s)> is continuous. Given
y)eLv'(Q), choose a sequence (< )̂ from CC(Q) (or Cf(Q), if G is a Lie
group) converging in LP'(Q) to y; this is possible since p' < oo. Then,
thanks to the boundedness of F(W) in LV(Q), we obtain

uniformly for s e W. It follows that F is scalarwise continuous (a fortiori,
scalarwise measurable) on W.

2.5 The case p = l. The proof of Theorem 5 will demand an analogue
of § 2.4 for the case p = 1, in which it is assumed that

{seW),
and that

(2.5.1) iVljf l(4» = \\F(s)\\LHa) Sk (s e W),

and from which it will be necessary to infer that

(2.5.2)

and so, by (2.1.2), that

(2.5.3) ( | (-l)*-*nCrg<{>(

for any geL\ (G) which vanishes a.e. outside W.
Some vital steps in the argument appearing in § 2.4 being no longer

valid, because in general L1^) is not a dual space, we are forced to adopt
a different approach.

As a beginning, we can show easily from (2.5.1) that

exists as a bounded measure on Q: for this another appeal to 8.16.1 and
8.16.3 of [4] suffices, regarding the space of bounded measures on Q as the
dual of C0(Q), the space of continuous functions on Q which tend to zero at
infinity equipped with the supremum norm. The residual problem is to
show that, in fact, h e ̂ (Q). For this we shall again make use of § 5 of [6].

Choose and fix any sequence (e,.)^ of positive numbers tending to
zero. For each s eW and each r we have (since F(s) e V-(Q)) the existence
of a finite infimum cr(s) of numbers c 5: 0 for which

\<<f>,F(s)>\ ^e

for all <f> e CC(Q). For cT(s), we have the formula

cr(s) = Sup {!<<£, _F(s)>|-fir
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wherein <j> ranges over all elements of CC(Q) satisfying H l̂d = 1. This
formula shows that each function cr is lower semicontinuous and therefore
measurable.

Since cr is finite-valued on W, given any 6 > 0, there exists a measurable
set WTyS C W such that m(Wrt) ^ m(W)—2~rd and on which cr is bounded
above, say cT(s) ^ qrS for seWr>s. Putting

r= l

we shall have m(Ws) ^ m(W)—3 and cr(s) 5g qrS for all r and all s eWs.
Define gs to be equal to g on Ws and to zero elsewhere, and write

Then for all r and all <j> e CC(Q) we shall have

Therefore, by the converse portion of § 5 of [6], hs e Ll(Q).
Now let 6 range through a sequence of values 6t -> 0 and write

From (2.5.1), it follows easily that

where Et ~ Ei denotes the symmetric difference of Et and Ei. Since
m(Ei ~ Ej) -> 0 as i, / ->• oo, it follows that the sequence (A,) is con-
vergent in ViQ). Let the limit be h*. Then for <f>eCc(Q) it will be the
case that

= lim, <<A, A,.> = lim, jegt(s)<4, F(s)}ds

= jGg(sK<f>,F(s)>ds,

the last equality following from (2.5.1) and Lebesgue's convergence theorem.
It appears thence that h* = h, and therefore h e V-{Q). Our goal has thus
been reached.
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REMARKS (i) It is immediately apparent that, if G is a Lie group and
H eS>'(G), one may in the preceding argument replace everywhere CC(Q)
by C?(Q).

(ii) If G is first countable one may proceed otherwise. The final para-
graph of § 2.4 will serve to show that F is scalarwise measurable, i.e. that
s -> < f, F(s)y is measurable for each xp e L°°(Q): this is so because, thanks
to our hypothesis on G, we can still choose a sequence (<£*) from CC(Q)
(or C™(Q), if G is a Lie group) which converges weakly in L°°(Q) to y>.
Besides this, first countability of G and relative compactness of Q ensure
that L1(Q) is separable. That heLl{Q) thus follows from (2.5.1) on the
basis of 8.14.14 and 8.15.2 of [4].

It could also be shown directly that (if G is first countable) the function
F is measurable from W into L1(Q) (and not merely scalarwise measurable).

3. The basic lemma

Once again we shall need to separate the cases 1 < p 5S oo and p = 1.

3.1 Suppose that 1 < p ^ oo and that n* is a positive integer or oo.
Let jj, eM(G) and define

S = {s eG : A" ft e Lf^G) for some integer n = n(s) ^ «*}.

Let Q be a relatively compact open subset of G.
(a) / / m+lS) > 0 then there exist positive integers n ̂  n* and k so that

(3-1.1) Nv>Q(A^)^k

for all s in some compact subset W of G satisfying m(W) > 0. // , furthermore,
n* = 1, the set W may be assumed to be a neighbourhood of e in G.

(b) If S is nonmeagre then there exist positive integers n 5S n* and k
such that (3.1.1) holds for all s in some nonvoid relatively compact open subset
WofG.

(c) / / G is a Lie group, the conclusions (i) and (ii) remain valid if we
assume merely that fi e @'{G).

PROOF. The substance of § 2.3 shows that in all cases we have

(3.1.2) 5 C ( J {Sn,k : n , k = l , 2 , - - - , n ^ n*},

where

(3.1.3) Sntt={seG:N,tOWri£k}.

Moreover, the definition (2.1.1) of NvO shows that each set Sn>fc is closed in
G; in this connection observe that
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and that Ax depends continuously on x e G when regarded as an endomor-
phism of Ce(G) (or of C™(G) if G is a Lie group).

(a) If w«,(S) > 0 it follows from (3.1.2) that m*(Snk) > 0 for some
pair (n, k) with n 5S n*. It thus suffices to take for W a suitably large
compact subset of Snk.

Consider now the case in which n* = 1, so that n is forcibly also equal
to 1. The relations

( 3 1 4 ) A(s~i) = -r(s-i)A(s)

Ast = rs

combine with left translation-invariance of Lf^G) to show that S is a sub-
group of G. Since m* (S) > 0, Steinhaus' theorem (see, for example, Exercise
4.21 of [4]) entails that S is a neighbourhood of e in G.

Choose a symmetric compact neighbourhood V of e in G such that
V C S, and let U be a relatively compact open subset of G containing
Q • V2. According to the substance of § 2.3 we have

V C {s € V : NP>u(Asp) > oo}

= U {* e V : N^a(Alti) ^ * : ft = 1, 2, • • •}

say. The set 5fc is closed. Since V is a neighbourhood of e, there exists k
such that w(Sfc) > 0. Therefore, by Steinhaus' theorem once more,
W = Sk • S^1 is a neighbourhood of e in G.

Let s e W, so that s = xy~x for some x, y e Sk. Using (3.1.4), we have

Hence

Now rtQ C U since s = xy~x e V2; and, of course, QCU. Therefore

= 2k,

and this holds for any s eW.
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(b) If S is nonmeagre, (3.1.2) shows that at least one of the closed sets
Snk has interior points, and we take for W any nonvoid relatively compact
open subset of G contained in that Snk.

(c) Only verbal changes are required in the preceding arguments to
cover the case in which G is a Lie group and fi is an arbitrary distribution
on G, the remaining hypotheses being as before.

3.2 The case p = \. Let n*, S, /J, and Q be as in § 3.1, except that p
is taken equal to 1. The conclusions are as follows:

(a) if w*(S) > 0 then there exist positive integers n 5S n* and k such
that

(3.2.1) An
sli\QeH{Q) and N1<o{Ay) ^ k

for all s in some compact subset W of G satisfying m(W) > 0. If, further-
more, n* = 1, the set W may be assumed to be a neighbourhood of e in G.

(b) If n* = 1 and S contains a nonmeagre F^-set S^ then there exists
a positive integer k such that (3.2.1) holds for n = 1 and all s in some
nonvoid relatively compact open subset W of G.

(c) If G is a Lie group, the conclusions (a) and (b) remain valid if we
assume merely that n e @'(G).

PROOF, (a) We write

(3.2.2) S = U {Sn>k : n, k == 1, 2, • • •, n ^ «*},

where

(3.2.3) Sn_k ={seG: A^\Q 6 V-(Q), NltQ(A^) ^ *}.

This time, however, we cannot affirm that Snk is a closed subset of G.
Nevertheless, on the basis of § 5 of [6], if we choose and fix a sequence
(fir)^! of positive numbers tending to zero, then we may write

OO 00

Sn,k = fl U •Jn;fcrj8,
r = l a=l

where Snk^Q denotes the set of s e G satisfying

and

for all <f> e CC(Q). (If G is a Lie group and fx e 2>'{G) we restrict <f> to Cf{Q).)
Since it is easy to verify that Sn^ry9 is a closed subset of G, the measurability
of SH:k is plain.

This being so, the hypothesis m^.(S) > 0 and the relation (3.2.2)
combine to show that m*(Sn k) > 0 for some pair (n, k); and so, as in § 3.1,
we may take for W any sufficiently large compact subset of Snk.
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The case in which n* = 1 proceeds much as in § 3.1: in the definition
of Sk we add the clause "As/i\U e L1(C7)", and it is necessary to repeat the
argument just given to show that Sk, although possibly nonclosed, is at
any rate measurable.

(b) Write S^ as the union of an increasing sequence (Sjjf J ^ of closed
subsets of G. Then one has

(3.2.4) S # C [ J {Sk : & = 1, 2, • • •}

where

(3.2.5) Sk = {seSf : A./t\Q e L^Q), N1>o(A.p) g *}.

Since 5 ^ is closed and contained in S, Sk is easily seen to be closed. The
relation (3.2.4) then entails that, for some k, Sk has a nonvoid interior and
we may take for W any nonvoid relatively compact open subset of Sk.

(c) This requires no special comment: the preceding arguments are
applied with Ce(Q) everywhere replaced by C™(Q).

4. Proofs of theorems 1-5

In all cases we suppose given any relatively compact open subset Q
of G and aim to deduce in each case that fi\Q eLp(Q). Once this is done,
the free choise of Q shows that fi e Lfoc(G).

4.1 PROOF OF THEOREM 1. By the case n* = 1 of 3.1 (a), or by 3.1 (b),
there exists a number k and a relatively compact open subset W of G
such that m(W) > 0 and

(4.1.1) Np,o(A.j*) ^k (SB W).

Now apply § 2.4 with n = 1: the relation (2.4.3) yields

that is,

(4.1.2) ( - feg(s)ds

for any g eL](G) which vanishes a.e. outside W. In this we take g e LV
C(G)

vanishing a.e. outside W and such that lGg(s)ds = 1. By § 2.2(a) and
(4.1.2), it follows that fi\Q e LV(Q), which relation is our aim.

4.2 PROOF OF THEOREM 2. By § 3.1 (a) or § 3.1 (b) we see that for
some k, some positive integer n, and some nonnull compact set W, we have

N,,o{A:ri?Zk (seW).

By 2.4, therefore,
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(4.1.3)

for any g e L](G) vanishing a.e. outside W. To this relation we now apply
§ 2.2(b), choosing geL*(G) vanishing outside W and such that $Gg(s)ds = 1.
It follows that JX\Q e L"(Q) once again.

4.3 PROOFS OF THEOREMS 3 AND 4. We here rely on § 3.1(c). The set
W may now be taken to be nonvoid, relatively compact, and open in G.
The only modification in the arguments appearing under § 4.1 and § 4.2
is in the choice of g, which is now chosen from C™(W), and in the use
of § 2.2(c) in place of § 2.2(a) or § 2.2(b).

4.4 PROOF OF THEOREM 5. This follows exactly the same type of recipe
as was used in §§ 4.1—4.3, with the sole difference that § 3.2 is used in place
of § 3.1 and § 2.5 in place of § 2.4.

Consider, for example, the analogue for p = 1 of Theorem 1 with
hypothesis (i). Then § 3.2(a) or § 3.2(b) shows that, for some number k
and some compact set W satisfying m(W) > 0, we have

(4.1.4) As/i\QeL1(Q),Nia(As,u) ^k {sew).

An appeal to § 2.5 shows that (4.1.2) holds with p = 1, from which point
the proof proceeds as in § 4.1.

Similarly for the proof of the analogue for p = 1 of Theorem 2 with
the hypothesis (i).

For the analogue for p = 1 of Theorem 1 with the hypothesis (ii'),
we rely on § 3.2(b).

The remaining cases call for no comment beyond what has been said
under § 4.3 in relation to the case in which 1 < p ^ oo.

5. Same negative results

5.1 Throughout this section we shall specialise G by assuming it to
be a first countable compact Abelian group containing a nonvoid Kronecker
set S (see [7], p. 97); G is thus necessarily infinite. It is our aim to show
that there exist many true pseudomeasures [i on G such that Asfi is a well-
behaved function for each s e S; and that there exist functions / $ £°°(G)
such that AJ is very well-behaved for each s e S. Concerning pseudomeasures
see the Appendices attached to [11], § 2.2 of [8], and also [9]. The con-
structions depend upon a simple lemma.

5.2 Suppose that G and S are as in 5.1. Then there exist a sequence
{Xn)^Li 0 I distinct (continuous) characters of G such that limn_co %„ = 1
uniformlv on S.
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PROOF. Denote by 0 the set of continuous complex-valued functions
loonS satisfying \w(s)\ = 1 for all s e S. For any s > 0 the set

0e = {We0: Ms) —1| ^ e (s e S)}

is evidently uncountable since it contains the constant functions
1—2c+2iVc(l—c) corresponding to values of the number c satisfying
0 ^ c ^ Min (1, ^e2). On the other hand, since G is first countable, its
character group is countable. So, for any s > 0, there exists a function
w e 0e which coincides on S with no continuous character of G.

In particular we can choose a sequence (wn)'^=1 from 0 such that

(5.2.1) K 0 O - 1 I ^ l/» (seS)

and wn agrees on S with no continuous character of G.
We now define the %n (w = 1, 2, • • •) inductively in the following

way. Since S is a Kronecker set, any continuous function on S with absolute
value everywhere equal to 1 is the uniform limit on S of continuous characters
of G. Accordingly we begin by choosing a continuous character x.i s 0 that

Assuming that continuous characters Xi> Xi> ' ' '> Xn have been chosen so
that

(5.2.2) \wt{s)-Xi{s)\^lli (seS)

for i fS, i f^, n, and %t ̂  %t whenever 1 fS, i, j f^,n and i ^ /, define

i5= Inf Sup \Xi(s)-wn+1(s)\.

Then 6 > 0 by choice of the wm, and so a continuous character y_n+1 can
be chosen so that

It is then easy to see that xn+i is different from %t for 1 ^ »' g », and that
the sequence (xn)%Li n a s aU the desired properties as a consequence of (5.2.1)
and (5.2.2).

5.3 Let G and S be as in 5.1, and denote by X the character group of
G. We will show that an infinite sequence (£n)~=i °f dictinct characters of
G may be chosen from X in such a way that the following is true. Given
any sequence (en)^=1 of positive numbers, there exists a true pseudomeasure
\i on G such that, for each s e S, Asfi has an absolutely convergent Fourier
series and has a Fourier transform (/4SJM)A satisfying

(5 3 1) (Asf*r(x) = 0 if ^ e X is distinct from all Xn<
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One can even choose fi so that, in addition, its singular support is equal
to G (see [9]).

PROOF. The desired sequence (xn) is obtained by thinning out the
sequence constructed in § 5.2 in such a way that {xn '• n — 1, 2, • • •} is a
Sidon subset of X (see [7], p. 126), and such that, if

*„ = S u P \Xn{s)-M>
seS

then
00

(5-3.2) 2 aB < oo, aB ^ en (n = 1, 2, • • •).
n = l

(a) Take any sequence (cJSLi of complex numbers such that

(5.3.3) Sup \cn\ < ex., 5 \cn\* = co
n n=l

and consider the pseudomeasure

n = l

Then JJ, is a true pseudomeasure on G: if not, in fact, an easy extension
of 5.7.7 of [7] would entail that

S
in conflict with (5.3.3). On the other hand,

so that (5.3.1) is evidently satisfied for each s e S by virtue of (5.3.2),
which also ensures that AS(JL has an absolutely convergent Fourier series.

(b) We have still to show that a bounded sequence (cn) can be chosen
so that the pseudomeasure defined by (5.3.4) has its singular support equal
to G. But suppose this were not the case: let us proceed to derive an ab-
surdity.

A category argument similar to those used in [9] leads from our
hypothesis (that sing supp/* is distinct from G for all bounded sequences
(cj) to the conclusion that there exists a fixed nonvoid open subset U of
G such that every fi of the type (5.3.4), with (cn) a bounded sequence,
coincides on U with a measure. By using a partition of unity, it is easily
seen that U may be taken to be the whole of G; in other words, for any
bounded sequence (cn), the right hand side of (5.3.4) is a Fourier-Stieltjes
series. But then ([10], Theorem (1.1)) we may infer that
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oo

I K? < ».
n=l

This conclusion is, it appears, a consequence of the mere boundedness of
(cn), whence the absurdity.

5.4 Next we show that, retaining the notations of § 5.3, there exist
functions / such that

(5.4.1) feLv{G) (1 ^p < oo), f$L°°(G)

and yet, for each s e S, AJ has an absolutely convergent Fourier series and

(5 4 2) ( ^ / H * ) = ° if X e X is distinct from all Xn,

PROOF. We consider sequences (cB) satisfying

(5-4.3) | |CB|« < oo

and the corresponding functions

(5-4.4.) / = \cnxn.

Since the %n form a Sidon subset of X, (5.4.3) combines with a known
result ([7], 5.7.7) to show that / e LP(G) for every finite p. It is also clear
(as in § 5.3) that, for each s e S, AJ has an absolutely convergent Fourier
series and satisfies (5.4.2).

It remains to show that (cn) can be chosen satisfying (5.4.3) and such
that / ^ L°°(G). Now, were such a choice not possible, the uniform bounded-
ness principle (or the closed graph theorem) would entail that

{
n=l n = l

for all such (cn) and all /feL](G). This in turn would show that

(5.4.5.) | |A(Zl,)p < oo
B = l

for each heL1{G). On the other hand, since the %n form a Sidon subset of
X, the function heL1(G) may (see Theorem 5.6.3 of [7]) be chosen so that
the sequence (h{%n)) coincides with any preassigned sequence which con-
verges to zero. This leads to a flat contradiction of (5.4.5) and completes
the proof.

5.5 In connection with the results stated in § 5.3 and § 5.4, we remark
that if G contains arbitrarily small elements of infinite order, then the
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Kronecker set S may be chosen to be perfect and metrisable ([7], pp.
99—100); since G is nondiscrete, S is then necessarily uncountable.

On the other hand, if G is the circle group, and if S is any subset of
G for which § 5.2 is provable, the positive results established in the present
paper show that S must be meagre and of zero measure. In fact it is easy
to see that no compact subset K of S can carry any nontrivial measure
whose Fourier transform tends to zero at infinity (i.e., K is a set of uniqueness
in the wide sense; see [11], pp. 53—57), so that K must have zero generalised
capacity relative to any positive convex sequence {%k)%Li satisfying
2£Li K = °o (see [12], Vol. I, p. 404).

5.6 Assuming still that G is the circle group, similar counterexamples
can be constructed for the case in which S is the dense subgroup generated
by (the residue classes modulo 2n of) any finite number sx, • • •, sk of real
numbers such that at least one of the ratios sJ2n (1 fS / ^ k) is irrational.
For in this case we can choose integers pjn (1 5S / ^ k, n = 1, 2, • • •) and
qn (n = 1, 2, • • •) such that 0 < q1 < q2 < • • • and

Isjte-p,^ ^ q-1-1'* (1 ^ / < k, n = 1, 2, • • •);

we may suppose furthermore that

We then replace the right hand side of (5.3.4) or (5.4.4) by
oo

(5.6.1) 2 cn • exp {iqnx).

If (cn) satisfies (5.3.3), then (5.6.1) defines a true pseudomeasure \i on
G such that, for each s e S, Asft has an absolutely convergent Fourier series;
and (cn) may be chosen so that sing supp fi = G. Also, (cn) can be chosen
satisfying (5.4.3) and such that the function / defined by (5.6.1) fails to
belong to L°°(G) and yet has the property that, for each seS, AJ has
an absolutely convergent Fourier series.

By taking qn = n\, it could be arranged that (5.6.1) defines a function
/ or a pseudomeasure n which is itself relatively "wild" and yet which is
such that, for any s for which s/2n is rational, AJ or As/x is a trigonometric
polynomial.

Yet another variant is obtainable by taking a rapidly increasing sequence
ink)kLi 0 I positive integers such that nk divides nk+1 and

very rapidly. Consider then a distribution
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oo

/ = Zc*exp (inkx).
k=l

If s is the coset modulo 2nZ of any real number of the form
oo

s' = 2njibklnk,
k=l

where {bk)'^=1 is a bounded sequence of integers, then
oo

4 / = 2 ck (exp (inks') — l) exp (inkx),
k=l

and here
exp (inks') — l = exp {2nink^.bi\n1)-\ = 0(dk).

j>k

It is thus clear that AJ can be made a very well-behaved function for each
of the uncountably many cosets s defined by the real numbers s' of the
form (5.6.3). (Incidentally, if the nk be suitably chosen, all but countably
many of the numbers s'j2n will be transcendental Liouville numbers.)

5.7 The preceding constructions depend quite crucially on the cir-
cumstance that fj, and / possess lacunary Fourier series. For this very
reason, however, they fail to procedure examples of functions (or even of
measures) / such that, for some finite p, AJ e LP(G) for infinitely many
s e G and yet f $ LV{G). Can this phenomenon actually occur?
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