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ON AN EXACT WKB APPROACH TO ABLOWITZ-SEGUR'S
CONNECTION PROBLEM FOR THE SECOND PAINLEVE
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Abstract

We discuss Ablowitz-Segur's connection problem for the second Painleve equation from the
viewpoint of WKB analysis of Painleve transcendents with a large parameter. The formula
they first discovered is rederived from a suitable combination of connection formulas for
the first Painleve equation.

1. Introduction

Exact WKB analysis, initiated by Voros ([19]) and developed by Pham and his collab-
orators ([5, 9] etc.), is a powerful tool for analyzing the global behaviour of solutions
of one-dimensional Schrodinger equations (see [13] also). In parallel to the case of
Schrodinger equations, Aoki, Kawai and the author have recently established an anal-
ogous analysis for Painleve transcendents (that is, solutions of Painleve equations)
with a large parameter ([3, 12, 14, 17]). Although mathematically rigorous justifica-
tion of the theory is still an open problem, this analysis has gradually turned out to
be effective for studying global connection problems in Painleve equations. In this
paper, to show both validity and effectiveness, we explain an outline of the theory and
discuss Ablowitz-Segur's connection problem for the second Painleve' equation from
this viewpoint.

2. Review of WKB analysis of Painleve transcendents

The equations treated in our WKB analysis of Painleve transcendents are the
following Painleve equations (Pj) with a large parameter r\:

d2k/dt2 = r)2Fj(X, t) + Gj (A, dX/dt, t) ( 7 = 1 , . . . , VI) , (/>,)
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where Fj and Gj are rational functions. For example, (P{) : d2k/dt2 = t)2{6k2 + t),
(/>„) : d2k/dt2 = r)2(2k3 + tk + c).

For these equations (Pj) we can construct the following. 2-parameter family of
formal solutions called instanton-type solutions ([3, 16]):

kj(t;a, p) = ko(t) + t)-l/2kl/2(t, r,) + r,~%(t, !?) + •••, (1)

where ko(t) is an algebraic function determined by Fj(ko(t), t) = 0 and kJ/2(t, rf)
(/ > 1) has the expansion

kj/2 = J2b«™l(tWAtW)<l-2k>*eV-w'*'U (j > 2).

Here

^•(A.0(r), 0 dt (t0 : a fixed point), (2)

/xj(t) and 0/(0 are some functions of t (whose explicit description is given in [14]),
and (a, /?) denotes a pair of free parameters. (Precisely speaking, both a and fi
are infinite series 5Zn>o ̂ ~"an and 12n>orl"Pn s m c e *±i+'/2)(0 (" - 1) m a y contain
additional free parameters (<*„, ̂ n ) . In this paper, however, we are concerned only
with computations of the top degree level and accordingly consider a and /J as ordinary
parameters.)

Instanton-type solutions can be regarded as a substitute for WKB solutions of
Schrodinger equations. For these solutions let us introduce the notion of turning
points and Stokes curves in the following way.

DEFINITION 1. (i) A turning point of (Pj) is a point r satisfying

dF,
Fj(ko(r), r) = -f-(ko(r), r) = 0. (3)

ok

A turning point r is said to be simple if (d2Fj/dk2)(k0(r), r) ^ 0.
(ii) A Stokes curve of (Pj) is defined by the relation

' / '

where r is a turning point of (Pj).

For example, for (Pi) / = 0 is a unique simple turning point and the Stokes curves
are given by the relation %x5/4 = 0 (see Figure 1 below).
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FIGURE 1. Here X\(t;a, P) is an instanton-type solution of (Pi) in the region {—3n/5 < arg/ < — TT/5);
X|(/;<*', P') is its analytic continuation to {—n/5 < arg t < n/5).

Stokes curves divide the complex r-plane (or rather the Riemann surface of
Fj(k, t) = 0) into several small regions called Stokes regions. In the case of Schro-
dinger equations, by employing the Borel resummation technique, we find that a
(Borel resummed) WKB solution represents an analytic solution in each Stokes re-
gion. Similarly an instanton-type solution kj(t;a, ft) of (Pj) should be expected to
represent a true solution in a Stokes region, although it is not known how to give it an
analytic meaning at the present stage. The so-called "connection formula", that is, a
formula describing the relation between the instanton-type solutions in two adjacent
regions corresponding to the same analytic solution, then plays a crucially important
role in analyzing the global behaviour of solutions of (Pj). The following theorem
may reduce the determination of the explicit form of the connection formula for (Pj)
to that for (P,).

THEOREM 2.1 (Local reduction to (Pi); [14]). In a neighbourhood of tt, a point on
a Stokes curve emanating from a simple turning point r of (Pj), the Painleve equation
(Pj) can be formally transformed to (Pi). To be more precise, for each instanton-type
solution kj(i;a, fi) of (Pj) we can find an instanton-type solution Xt(t;a, ft) of(P\)
for which the following holds:

x(lj(t;ot, 0), i, n) = A,(r(f, r));a, 0), (5)

where x(x, t, rj) and t(t, r\) are formal series of the form

J,r)), t(t,r)) = Y^n~i/2tj/2(li)> (6)
j>0 j>0

and the parameters obey the relation

(a,P) = (i«aJ*P) + 0(r)-
1) (7)

with some integer K. (Here we are assuming that the end-point t0 in the definition (2)
of<pj(t) and <pi(t) is taken to be r and 0 respectively.)
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For the canonical equation (PO we have the following connection formula. (Here
we discuss only a Stokes curve {arg/ = — n/5} as there is no essential difference
between the five Stokes curves due to symmetry.)

THEOREM 2.2 (Connection formula for (Pi); [17]). Let \\(t;a, fi) (normalized so
that t0 = 0 in (2)) be an instanton-type solution of (Pi) in the region {—3n/5 <
argf < —n/5) and X\(t\a', /}') its analytic continuation to {—n/5 < argf < n/5]
(see Figure 1). Then the following relations hold between (a, ft) and (or', ft'):

j J'W + pe>"E/2
X(-E) = P'einE'/2X(-E'),

where x(z) = Jn2ll4+l/ T(z/4 + 1), E = -8a£ and E' = -8a10'.

For a given instanton-type solution X](t;a, P) in {—3n/5 < arg/ < — n/5} its
analytic continuation across {arg t = — n/5] should be obtained by solving the relation
(8) with respect to (a', P'). Note that (8) is not uniquely solvable for (a', fi'). This
kind of non-uniqueness is related to analytic interpretation of instanton-type solutions
(see [18]). Establishing the analytic version of these theorems is still an open problem.

In parallel with the Schrodinger case, the connection formula at a simple turning
point for (Pj) should, in principle, be derived from a combination of these two
theorems (that is, the formula for (Pj) should be obtained by substitution of (7) into
(8)). Repeated use of the formula thus obtained according to the configuration of
Stokes curves should then enable us to solve global connection problems for (Py).
In the subsequent sections, to exemplify the validity of our approach, we discuss
Ablowitz-Segur's connection problem from this viewpoint.

3. Ablowitz-Segur's connection problem

Let us consider a solution u(z) of the equation

K" = zu + 2M3 (9)

with the following asymptotic behaviour for z > 0, z -> oo:

u(z) ~ -Z-z-We-2*** (z^+oo) (10)
2/n

where a is a constant satisfying 0 < a < 1. It is known that, after the analytic
continuation along the real axis, u(z) has the following asymptotic expansion for
z -*• - oo :

(11)u(z) ~ d(-zy1/4sin (J(-z)3/2 - \d2log(-z) + d\ (z -> -oo),

https://doi.org/10.1017/S1446181100007963 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100007963


[5] Ablowitz-Segur's connection problem for Painleve II 115

where d and 9 are given by

2

0 = ̂ -^2log2-argr(l-^).

The formula (12) was first discovered by Ablowitz and Segur ([1,15]), then discussed
by many people (for example, [6] and especially [11] are closely related to our
approach in the sense that they discuss a singular-perturbative form of (9)), and finally
proved rigorously in [7] and [8]. See also, for example, [4] for more recent research.

Our goal is to derive this formula (12) by using the WKB analysis explained in the
preceding section.

4. WKB analysis for the second Painleve equation

By a simple scaling transformation

u = r}l/3k, z = r)2nt, (13)

(9) is transformed to our second Painleve equation

= >72(2A.3 + tk) (P°)

with the parameter c being equal to 0. Furthermore, taking a solution of (P,°) of
instanton type A.°,(r,Q!, fi) with identically vanishing top term A.0(0 = 0 and #2(0 =
fo</idt, we readily find that both the asymptotic solutions (10) and (11) of (9)
correspond through the scaling transformation (13) to k^tia, fi) (at least at the
leading order level) on the condition that the parameters are related in the following
manner:

(forz ->• oo),

Act? = id2, ^(I6^3"t)"2o/i = -e2ie (for z - • -co) .

Our problem is thus to solve the connection problem between A.°,(r; 0, fi) for z -*• oo
and k°x(t\a, /J) for z -*• - co .

Let us here draw the configuration of Stokes curves of the second Painleve equation
(Pn) (see Figure 2). In the case of c = 0 there is a unique turning point at t = 0 and
three Stokes curves (lines) emanate from it. The connection problem in question can
be solved using connection formulas on these Stokes curves. However, it is not an
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FIGURE 2. Stokes curves of (Pa) for c = 0 (left) and for c £ 0 (right).

easy task to determine their explicit form as t = 0 is not a simple turning point. On the
other hand, in the case of c ^ 0 (although the configuration itself is quite complicated)
all of the three turning points r, = -6(c/4)2/3coi (j =0,l,2,co = e2i7l/3) are simple
and hence the connection formula (8) for (Pi) is expected to be applicable to each
Stokes curve. Taking this situation into account, we first consider (Pn) with a non-zero
parameter c and then take a limit c —*• 0 to study the connection problem for (P^).

As is pointed out and explicitly done using Mathematica 3.0.1 in [2], the con-
figuration of Stokes curves of (Pn) should be lifted onto the Riemann surface of
îi(̂ -> t) = 2A.3 + tk + c = 0. (See Figure 3, where a wiggly line, a solid line and a

dotted line respectively designate a cut, a Stokes curve on the sheet concerned and that
on another sheet.) Let us consider a limit c -*• 0 for this lift of Stokes curves. In the
process of c -*• 0 all of the turning points tend to the origin and the cut between the sec-
ond and third sheets disappears. Consequently the Riemann surface at c = 0 becomes
the disjoint union of two connected components; the double-covering part (first and
second sheets) and the simple-covering part (third sheet). Note that this is consistent
with the fact that Fn(k, t) at c = 0 may be factorized as 2k3 + tk = k(2k2 +1). Since
we are interested in instanton-type solutions of (P^) with identically vanishing top
term ko(t) = 0, we should discuss instanton-type solutions of (Pa) on the third sheet
for c ^ 0. The configuration of Stokes curves on the third sheet, in fact, approaches
that of (P°).

Having these geometric facts in mind, we now try to determine the connection
formula for (P,°) on, for example, the positive real axis, that is, the relation between
A°(/;a,/3) in the region {-27r/3 < arg/< 0} and kn(t;a', P')'m (0 < argf < 2^/3}.
Let kn(t;a, fi) and kn(t;a', /$') respectively denote instanton-type solutions of (Pn)
in the corresponding regions on the third sheet. (See Figure 3. Here we assume that
the end-point t0 in (2) is taken to be a simple turning point r2 for both the solutions.)
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(First sheet) \ \ (Second sheet) \ \
\ \

(Third sheet)

FIGURE 3. The lift of Stokes curves of (Pn) onto the Riemann surface of 2X3 + tk + c = 0.

Note that there is an intermediate region between these two regions, an instanton-type
solution in which is denoted by kn(t;a", ft"). It then follows from the simplicity of
the turning point r2 that the relation between ku(t;a", /}") and Xu(t;a', P') should
be described by the connection formula (8) for (Pi), provided that our expectation
explained at the end of Section 2 is true, that is,

\a"e-i*E"IAx(E") = a'e-i7TE'/
(15)

On the other hand, considering the local reduction to (P{) at ru since the integer K in
the relation (7) of parameters is equal to 2 and the end-point t0 of </>n(f) is now chosen
to be r2, the parameters obey the relation (at the top degree level with respect to TJ)

(16)

Hence, as fr<
 I/6A.Q + tdt = line holds, the relation between kn(t;a, fi) and
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An(/; a", P") should be described by

Eliminating (a", P") from (15) and (17) and taking a limit c —> 0, we thus obtain the
"connection formula for (P,j) on the positive real axis"

"E/2 _ I - P'e"e/2x(-E') (18)
X ~ 1 - ia'e-inE''4x(E') '

(Note that a = a' = 0 and P — P' satisfy (18). This reflects the well-definedness of
A.°,(f; 0, P) on the positive real axis.)

Connection formulas on the other Stokes curves can also be derived from (18) using
the rotational symmetry of angle 2n/3 of (Pr°). For example, replacements a i->- —ip,
P !->• —ia in (18) give the following connection formula on {arg t = 2n/?>}:

(19)

1 - ,

Putting a = 0 in (19), we finally obtain the following solution of the connection
problem in question: Consider an instanton-type solution Aj(r;O, P) of (P,°) on
the positive real axis (which is well-defined as mentioned above) and denote by
A°[(f;a!', P') its analytic continuation to the negative real axis through the upper-half
plane. Then we have

f ^ p x ( ) ,
\ l^ip P''^iE') K }

By a straightforward computation we find that the formula (12) certainly follows
from (20) and (14) (assuming that (a, P) in the second relation of (14) is replaced by
(a1, P')). In other words, AblowitzTSegur's formula can be derived from repeated use
of the connection formula for (Pi).

We believe that this result strongly supports the validity and effectiveness of our
WKB theory for Painleve equations. To complete the theory, however, we need an
analytic interpretation of instanton-type solutions. (A recent work of Joshi ([10])
may be regarded as the first step in the study of this problem.) Clarifying the precise
analytic meaning of the local reduction to (Pi) is also an important open problem in
this theory.
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