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Abstract

The stress balance within an ice shelf is key to the resistance, or buttressing, it can provide and in
part controls the rate of ice discharge from the upstream ice sheet. Unconfined ice shelves are
widely assumed to provide no buttressing. However, theory and laboratory-scale analogue experi-
ments have shown that unconfined, floating viscous flows generate buttressing via hoop stresses.
Hoop stress results from the viscous resistance to spreading perpendicular to the flow direction in
a diverging flow. We build on theoretical work to explore the controls on the magnitude of hoop-
stress buttressing, deducing that buttressing increases with increasing effective viscosity and
increasing divergence. We use an idealised model calibrated to unconfined sections of
Antarctic ice shelves and find that many shelves have low effective viscosity, most likely due to
extensive damage resulting from high extensional stresses. Therefore, they are unable to sustain
the large hoop stresses required to resist flow. Some ice shelves that are surrounded by sea ice
year-round have a greater effective viscosity and can provide buttressing, suggesting that sea
ice reduces fracturing. However, we find that most unconfined ice shelves provide insignificant
buttressing today, even when hoop stresses are considered in the stress balance.

1. Introduction

Ice shelves are the floating extensions of ice sheets and provide resistance to the flow of
grounded ice upstream. This is known as ice-shelf buttressing. The magnitude of buttressing
is determined by the viscous deformation of the ice shelf, which is dependent on: the geometry
of the ice-shelf embayment; the location of pinning points within the shelf; the ice-shelf thick-
ness (controlled by ice-shelf flow, surface and basal mass balance); ice-shelf extent (controlled
by the position of the calving front and iceberg calving); ice rheology and structural integrity
(controlled by ice temperature, damage and crevassing).

Ice-shelf thinning in key locations, such as near grounding lines (the boundary at which ice
begins to float) and in shear margins, has been shown to decrease ice-shelf buttressing in numer-
ical ice-flow models (Reese and others, 2018; Goldberg and others, 2018). Observations show
that the collapse of ice shelves, and therefore the removal of buttressing, can lead to a rapid
speed up and thinning of the grounded ice upstream (Rack and Rott, 2004; Rignot and others,
2004; Scambos and others, 2004).

Ice shelves are often found within embayments and are rarely observed to advance substan-
tially outside of a lateral confinement. A small number of ice tongues (unconfined ice shelves)
do exist and appear to be partially supported and prevented from collapsing by the presence of
landfast sea ice for much of the year (see Fig. 1 and S7) (Cuffey and Paterson, 2010, p. 127).

The extent of present-day ice shelves providing significant buttressing has been determined
by Fürst and others (2016). In this work, areas of ice shelves that provide little or no buttres-
sing are classed as areas of passive ice that could be removed without triggering a significant
increase in ice flow across the grounding line. These areas are consistently found close to the
present-day calving front, often where the ice shelf begins to protrude out past the lateral con-
finement of pinning points. The buttressing number – a measure of resistance provided by the
ice shelf – was used to inform the design of numerical ice-flow experiments to determine the
extent of passive ice. Contours of maximum buttressing number were used to incrementally
remove sections of the ice shelf in the model, while the instantaneous change in grounding-
line flux determined whether these regions were deemed passive (Fürst and others, 2016).

There is a long held assumption that unconfined ice shelves provide no buttressing and
often ice-sheet models ignore the effects of unconfined ice shelves (Cuffey and Paterson,
2010, p. 385). One mechanism by which unconfined ice shelves can theoretically generate
buttressing is through hoop stresses (Morland and Zainuddin, 1987; Pegler and Worster,
2012, 2013). Hoop stresses are the viscous resistance to lateral spreading in a diverging
flow. They act perpendicular to the flow direction and thickness gradient, and must be
overcome in order for the flow to diverge. Therefore, along-flow extension is reduced in
comparison with the equivalent 2D non-diverging case (see the Theory section below
for a full explanation).

Morland and Zainuddin (1987) considered the potential of an ice shelf bordering the whole
of the Antarctic Ice Sheet to provide buttressing via hoop stresses. This geometry had an origin
at the centre of the continent and a radius of curvature corresponding to the average distance
to the ice-sheet grounding line. They concluded that at this large radius of curvature the effect
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of buttressing from hoop stresses would be insignificant. They
overlooked the fact that it is possible for individual ice shelves
to have a much smaller radius of curvature as they leave the lat-
eral confinement of final pinning points. However, observations
of unconfined ice shelves in Antarctica indicate that ice shelves
do not advance large distances into open ocean. This raises two
questions: Do unconfined Antarctic ice shelves provide buttres-
sing? Can hoop stresses allow ice shelves to regrow or advance
beyond lateral confinements?

We build on results from theoretical work (Morland and
Zainuddin, 1987; Pegler and Worster, 2012, 2013) and fluid-
mechanical laboratory experiments (Pegler and Worster, 2012,
2013) that demonstrate how ice-shelf hoop stresses can provide
buttressing. We present the theory, from Morland and
Zainuddin (1987), Pegler and Worster (2012, 2013), modify this
for application to downstream-unconfined sections of ice shelves
and explore the controls on the magnitude of buttressing using
idealised examples. Using these theoretical tools we analyse the
flow field of present-day unconfined sections of Antarctic ice
shelves. We infer that in general these areas have low effective vis-
cosity, most probably due to the high density of fractures within
these regions, and as such are unable to sustain the high azi-
muthal stresses required to generate significant buttressing.

However, where ice shelves are additionally stabilised by sea ice,
it appears the shelf has higher effective viscosity and azimuthal
stresses can be generated to provide buttressing. This suggests
that sea ice may prevent an ice tongue from collapsing and poten-
tially allows it to advance.

2. Theory: buttressing and hoop stresses

The theory of hoop-stress buttressing has been presented previously
by Morland and Zainuddin (1987), Pegler and Worster (2012,
2013). Here we present a consolidated version of this, with modi-
fication for application to the analysis of geophysical data from
Antarctic ice shelves. The stresses within an ice shelf can be
approximated using the Shallow Shelf Approximation (Morland,
1987; MacAyeal, 1989; Pegler and others, 2012), under the assump-
tion of small gradients in ice thickness, such that the 2D
depth-integrated horizontal force-balance is

∇mH ∇.u( ) + ∇ · mH e
( ) = rg ′

2
H∇H. (1)

Here ∇ is the horizontal component of the gradient tensor, μ is the
effective viscosity given by Glen’s Flow Law, H is the ice-shelf

Fig. 1. Worldview imagery of Amery, Fimbul, Land,
Mertz, Thwaites and Totten ice shelves showing the
extent of the laterally confined and unconfined regions
of each ice shelf along with sea ice cover in April 2009.
The grounding line and ice-ocean boundary are denoted
by a black line, with regions of grounded ice, ice shelf,
open ocean and sea ice denoted with symbols shown
in key. Coordinates are given in WGS 84/Antarctic Polar
Stereographic, with origin at the South Pole.
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thickness, u is the horizontal component of the ice velocity, e is the
strain-rate tensor, ρ is the density of ice and g′ is the reduced accel-
eration due to gravity. (g′ = (1− (ρ/ρw)) g, with ρw the density of
seawater and g the full acceleration due to gravity.) The first term
on the left hand side (LHS) is the horizontal gradient in the
vertically-integrated isotropic stress (or pressure) within the ice
shelf, while the second term on the LHS is the divergence of the
vertically-integrated deviatoric stress. The sum of these terms is
balanced by the horizontal gradient in the vertically-integrated
hydrostatic pressure difference between the ice and the ocean,
which acts to drive ice flow in the direction of decreasing H.

We now consider three fundamental geometries of ice-shelf
flow; a one-dimensional flowline, a laterally-confined ice shelf
and a non-confined radially-spreading ice shelf.

2.1. Base case: 1D flowline model – no buttressing

First consider a simple one-dimensional approximation to an ice
shelf with the domain aligned along a flowline. This simple case
has been considered by many previous authors (e.g. Schoof,
2007; Robison and others, 2010) and we include it here as the
first-order representation of an ice shelf. Here ice-shelf thickness
and velocity vary in one dimension only (Fig. 2a). In this case, the
horizontal force-balance Eqn (1) reduces to

4
∂

∂x
mH

∂u
∂x

( )
= rg ′H

∂H
∂x

, (2)

with x aligned in the flow direction. This equation can be inte-
grated along the length of the shelf, from the calving front, xC
back to any point within the ice shelf, xi, (most commonly the
grounding line, xG) to determine the depth-integrated horizontal
stress at that point,

mH
∂u
∂x

∣∣∣∣
xi

= mH
∂u
∂x

∣∣∣∣
xC

+rg ′

8
H2

∣∣∣∣
xi

−rg ′

8
H2

∣∣∣∣
xC

, (3)

where in each term variables are evaluated at xC or xi as denoted
by the vertical bar to the right of each term. The depth-integrated
horizontal stress at the calving front is equal to the hydrostatic
pressure difference between the ice and the ocean

mH
∂u
∂x

∣∣∣∣
xC

= rg ′

8
H2

∣∣∣∣
xC

. (4)

Therefore, the two terms cancel in Eqn (3), giving

F = mH
∂u
∂x

∣∣∣∣
xi

= rg ′

8
H2

∣∣∣∣
xi

= F0. (5)

The extensional stress at point xi in the presence of this 1D
ice shelf is equivalent to the extensional stress felt in the absence
of the shelf. We consider this to be the base state in which no
buttressing is generated by the ice shelf, and hence denote the
depth-integrated stress F0. The following two sections describe
fundamental ice-shelf geometries that generate buttressing.

2.2. Laterally confined ice shelf – shear-stress buttressing

Consider an ice shelf laterally confined within a parallel embay-
ment. Ice flow is parallel to the side walls, aligned in the
x-direction only, with y aligned perpendicular to flow. The ice-
shelf thickness, H, is uniform across the width of the shelf (i.e.
H(x, y) ≡H(x)) (Pegler and others, 2013; Kowal and others,
2016; Pegler, 2016; Wearing, 2016; Haseloff and Sergienko,

2018), as shown in Figure 2b. The horizontal force-balance
Eqn (1) reduces to

4
∂

∂x
mH

∂u
∂x

( )
+ ∂

∂y
mH

∂u
∂y

( )
= rg ′H

∂H
∂x

. (6)

The additional term on the LHS is due to shear within the
shelf, induced by friction or no-slip at the side walls of the
embayment. Integrating along the length of the shelf

mH
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[ ]xC
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=
∫xC
xi

rg ′

4
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− 1
4
∂
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⇒ F = mH
∂u
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= F0 +
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1
4
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mH

∂u
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( )
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= F0 − Fshear, (9)

⇒ Fshear = −
∫xC
xi

1
4
∂

∂y
mH

∂u
∂y

( )
dx. (10)

In this case, the depth-integrated horizontal stress, F, is
reduced in comparison with the base case because of buttres-
sing from shear stress, Fshear.

The level of ice-shelf buttressing can be quantified using the
buttressing number (Gudmundsson, 2013),

BN = F0 − F
F0

. (11)

BN is the difference between the depth-integrated horizontal stress
in the absence of an ice shelf, F0, and the actual depth-integrated
horizontal stress F, normalised by F0. While the value of F0 is
the same in all directions, the orientation of F must be defined.
At the grounding line, the depth-integrated horizontal stress of
interest acts perpendicular to the grounding line. In this case,
with F aligned perpendicular to the grounding line, BN = 0 signi-
fies that there is no buttressing generated by the shelf, while
BN = 1 implies that the downstream ice shelf provides complete
buttressing such that extensional stress is zero.

The buttressing number can also be used to determine buttres-
sing within the ice shelf. In this work we consider buttressing in
the flow direction ( flow buttressing Fürst and others (2016)) and
calculate the difference between F and F0, where F is aligned with
flow. In contrast, Fürst and others (2016) used the orientation and
magnitude of the depth-integrated second principal stress (SPS)
to define the maximum buttressing number within the ice shelf.
The SPS is often not aligned in the flow direction (much of the
time it is aligned perpendicular to the flow). If a section of the
shelf is removed via calving, the flow and stress field within the
shelf would be altered. Therefore, although BN aligned with the
SPS within the ice shelf may be a useful way to choose which sec-
tions of an ice shelf to remove in a numerical model, the corre-
sponding value of BN does not signify the magnitude of
buttressing generated to resist ice flow upstream. As such, in
Fürst and others (2016) the maximum buttressing number varies
between each section of passive ice. It is an open question whether
a buttressing number is an effective way to measure buttressing
within ice shelves, where flow and stress fields may be complex.
We avoid this issue by considering simple geometries where the
flow is perpendicular to the grounding line, such that buttressing
in the flow direction acts across the grounding line. We use the
flow buttressing number throughout the following analysis and
hereafter refer to this as the buttressing number, BN.
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2.3. Unconfined radially-spreading ice shelf – hoop-stress
buttressing

The third fundamental configuration we consider is an uncon-
fined ice shelf, which is able to spread laterally in two directions.
The simplest idealised example of this is an ice shelf spreading
from a point source. In cylindrical coordinates, with the source
at the origin, the flow is radially outwards and axisymmetric
(symmetric with respect to rotation around the vertical axis)
(Fig. 2c). This type of geometry has been considered previously
by Morland and Zainuddin (1987), Pegler and Worster (2012,
2013). With the radial coordinate, r, aligned in the flow direction
and no variation in flow azimuthally (with respect to rotation
about the vertical axis), the force-balance Eqn (1) becomes

2
∂

∂r
mH 2

∂u
∂r

+ u
r

( )( )
+ 2mH

∂

∂r
u
r

( )
= rg ′H

∂H
∂r

. (12)

The full derivation of this equation is given in Appendix A.
The first term on the LHS is the radial derivative of the
vertically-integrated isotropic stress and along-flow (radial)
deviatoric stress (identical to the LHS of Eqn (2), but in cylin-
drical coordinates). The second term on the LHS of (12) is the
depth-integrated radial gradient in the azimuthal strain rate,
multiplied by the effective viscosity. This is the additional com-
ponent from the divergence of the strain-rate tensor, which
emerges in cylindrical coordinates, and is required to ensure the
flow is incompressible when the shelf flows radially (Appendix A).
Equation (12) can be integrated radially back from the ice front
(rC) to a point in the ice shelf (ri) to give

F = mH
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mH
2
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u
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= −
∫rC
ri

mH
2r

∂u
∂r

− u
r

[ ]
dr, (16)

as in Pegler and Worster (2012). Therefore, hoop stresses make a
positive contribution to buttressing where the azimuthal exten-
sion u/r exceeds the radial extension ∂u/∂r. Conversely, negative
hoop-stress contributions are made where azimuthal extension is
less than radial extension. When the hoop-stress buttressing is
negative the viscous resistance to azimuthal extension acts to
increase radial extension and pulls ice downstream. From the inte-
grand it is clear that the magnitude of hoop-stress contributions
increases for increasing effective viscosity (μ) and thickness (H ),
but decreases with a radial distance.

Physically, hoop stresses act as the viscous resistance to
spreading in the azimuthal direction as the ice shelf flows radi-
ally. For an axisymmetric shelf there is no azimuthal thickness
gradient, so azimuthal spreading must be induced by the radial
thickness gradient. As with the shear-stress case, the integrated
effect of this viscous deformation back from the ice front pro-
duces buttressing and may reduce the extensional stress at the
grounding line.

For an axisymmetric ice shelf extending to infinity, Pegler and
Worster (2012) established analytically an upper bound for the
radius of curvature at the grounding line that would provide posi-
tive buttressing; L ; (mQ0/2prg ′H2

0)
1/2, where H0 and Q0 are the

ice thickness and flux at the grounding line. Pegler and
Worster (2012) estimated that for a typical ice shelf L≈ 5 km.
Furthermore, for ice shelves with radius of curvature at the
grounding line greater than 6L, hoop stresses provided negative
buttressing – generating additional extension at the grounding
line. This analytical work was accompanied by laboratory-scale
analogue experiments.

Here we consider hoop-stress buttressing generated by
unconfined sections of ice shelves of finite length, found
where ice shelves flow out past lateral pinning points, such as
Amery and Fimbul Ice Shelves, Figure 1. The downstream sec-
tions of these ice shelves can be approximated as sectors of an
annulus with radius of curvature at the upstream boundary (rE)
dependent on the lateral divergence of the flow, Figure 3. With
no shear against lateral boundaries, these sections can be

Fig. 2. Fundamental ice-shelf geometries: (a) 1-D flowline. (b) Laterally confined ice shelf in a parallel embayment. (c) Axisymmetrical radially-spreading shelf. (d)
Sector of an axisymmetric radially-spreading shelf, which in plan view forms an annulus.
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approximated as azimuthally symmetric. We first consider
some idealised examples, determining the magnitude of
hoop-stress buttressing produced in each case. Then, using geo-
physical, data we assess hoop-stress buttressing in unconfined
sections of Antarctic ice shelves.

3. Idealised examples

We model the unconfined downstream section of an ice shelf,
with geometry resembling a sector of an annulus in plan-view,
as shown in Figures 2d and 3. We assume there is no azimuthal
variation in flow or ice thickness so consider a radial flowline.
We denote an imaginary origin, r = 0, from which we determine
positions rE and rC, as the radius of curvature at the upstream
boundary (exit of the embayment) and the ice front respect-
ively. We impose a fixed ice thickness and velocity at rE, and
balance extensional stress with the vertically-integrated hydro-
static pressure difference between the ice and ocean at the calv-
ing front rC. We assume a Glen’s Flow Law rheology

m = 1
2
A−1/n e(1−n)/n

II , (17)

with rate factor A = A−10 = 3.5 × 10−25 s−1 Pa−3, appropriate for
ice at −10° C (Cuffey and Paterson, 2010), n = 3 the flow-law
exponent and eII the second invariant of the strain-rate tensor.
Simulations are initiated with an ice shelf of uniform thickness.
We solve Eqn (12) numerically using successive over relaxation
(Young, 1971) to determine the radial velocity and then evolve
the thickness of the ice shelf according to the continuity
equation

∂H
∂t

+H
∂u
∂r

+ u
∂H
∂r

= b, (18)

where b is the net specific mass balance; the sum of surface
accumulation and ablation, and basal melting and freeze-on.
The thickness is evolved forward in time using an explicit time-
stepping scheme until a steady state is reached. We calculate the
buttressing from hoop stresses produced in the shelf down-
stream of rE. For these idealised examples we set b = 0.

3.1. Example 1

Figure 4 shows the steady-state results for an ice shelf of length
50 km, with radius of curvature at the upstream boundary of
70 km. The input thickness is 400 m and the input velocity is
500 m a−1. For an angle of divergence of 10°, the shelf diverges
from a width of 20 to 40 km along its length. Throughout the
shelf the azimuthal strain rate is greater than the radial strain
rate, implying a positive hoop-stress contribution everywhere.
This can been seen from the increase in the buttressing number
back from the calving front to rE where it reaches 0.2; i.e. 20%
of the hydrostatic stress is balanced by hoop stresses.

3.2. Example 2

A similar shelf is shown in Figure 5, however the radius of curva-
ture at the upstream boundary has been increased to 400 km and
the shelf is now 100 km long. Due to the large radius of curvature
the width of the shelf only increases from 140 to 170 km along its
length, for an angle of divergence of 10°. Figure 5c shows that the
azimuthal strain rate is greater than the radial strain rate in the
downstream section of the shelf (>435 km) only. This leads to a
transition from positive to negative hoop-stress buttressing contri-
butions in the upstream direction. The peak in buttressing num-
ber is just downstream of this transition (Fig. 5e) because the ice is
thinner and the driving stress (hydrostatic pressure difference
between ice and ocean) decreases downstream. In this case the
buttressing number at the upstream boundary (rE = 400 km) is
very small and the shelf provides insignificant buttressing via
hoop stresses (<1.5%).

3.3. Positive and negative hoop-stress contributions

For steady-state ice shelves the sign of the hoop-stress buttressing
contribution is dependent on the local ice-shelf thickness profile.
For a radially spreading shelf, with angle of divergence θ at the
origin, the flux at radius r in the steady state is

uru(r)H(r) = q0 + 1
2
bur2, (19)

where q0 is the input flux at r = 0 and the second term on the RHS
is the net mass gain/loss between the origin and r, due to surface
or basal processes. The ice must thin in the downstream direction
and we approximate the local ice thickness profile as

H ≈ H̃r−a, (20)
where the exponent a is dependent on the local curvature of the
ice thickness and in turn the deformation of the shelf at this point.
Therefore the radial velocity takes the form

u(r) =
q0 + 1

2
bur2

uH̃r1−a
. (21)

This can be used to determine the radial and azimuthal strain
rates, such that hoop-stress buttressing contributions are
positive when

u
r
.

∂u
∂r

, (22)

⇒ (2− a) q0 + bu
r2

2

( )
. bur2−a. (23)

In the case of b = 0, this reduces to a < 2. Therefore, in the
steady-state with b = 0, at locations where the ice thickness

Fig. 3. Approximating an unconfined section of an ice shelf as an annulus diverging
from an imaginary origin (r = 0). The ice shelf flows out from an area of confinement
and diverges into open ocean. The radius of curvature at the exit of the embayment
(rE) and at the calving front (rC) are labelled.
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Fig. 4. Example of an idealised ice shelf with rate factor A−10. The radius of curvature at the upstream boundary is 70 km and shelf has a length of 50 km. (a) Ice
speed. (b) Ice-shelf thickness profile (blue) and value of the local thickness-profile exponent, a (red), for function H = H̃r−a , calculated at each point by fitting
the function to an 11-km interval around each point. (c) Radial strain rate (blue), azimuthal strain rate (red), difference; radial minus azimuthal strain rate
(orange). (d) Depth-integrated stresses; radial extension (blue), hydrostatic driving stress (red dashed) and hoop stress (dotted yellow). (e) Buttressing number
along the length of the shelf.

Fig. 5. Same as Figure 4, but with a 400 km radius of curvature at the upstream boundary and shelf of 100 km in length. Hoop-stress buttressing remains positive
throughout the length of the shelf. However, negative hoop-stress contributions are made in the upstream section and hence the peak in hoop-stress buttressing is
located at r≈ 440 km.
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profile can be approximated by H̃r−a with a < 2, positive
hoop-stress buttressing is generated. The exponent for the
local ice-thickness profile, a, is calculated at each point
along the shelf using the MATLAB curve fitting function fit,
which uses the ice thickness within an 11 km interval centred
at each point to determine a. The spatially-evolving value of a
is shown in Figure 5b, where there is a transition from a > 2 to
a < 2 at r ≈ 435 km, where the magnitude of the radial and azi-
muthal strain rates are equal. For a > 2 hoop-stress buttressing
contributions are negative. In contrast, in Figure 4b,
hoop-stress contributions are positive throughout the length
of the shelf and a < 2 everywhere.

3.4. Varying parameters

As identified by Pegler and Worster (2012), the magnitude of but-
tressing from hoop stresses is dependent on the radius of curva-
ture at rE, the shelf viscosity, the input thickness and input
velocity. In Figure 6 these parameters, along with the length of
the ice shelf, are varied to assess the impact on buttressing.

As the length of a shelf is increased the buttressing number
at rE increases (Fig. 6a). However, the magnitude of this increase
decreases with shelf length, and the peak in buttressing number
is shifted downstream. This implies that hoop-stress buttressing
increases at a reduced rate in comparison with the driving

hydrostatic pressure as the ice thickens (it is the ratio of
hoop-stress buttressing to driving stress that determines the
buttressing number). It may also suggest that the upstream sec-
tion of the shelf begins to produce negative hoop-stress contri-
butions. However, further assessment shows that in these cases
the azimuthal extension remains larger than radial extension
and the thickness-profile exponent a remains less than
2. Therefore, hoop-stress contributions remain positive.

Figure 6b shows the effects of varying both the radius of curva-
ture at the upstream boundary and the rate factor for an ice shelf
of fixed length (75 km). Buttressing is reduced as the radius of
curvature at the upstream boundary, rE, increases and the lateral
divergence of the shelf decreases. There is a transition to slightly
negative buttressing once rE increases past a critical point. This is
dependent on the rate factor in the ice rheology. For decreasing
rate factor, and therefore increasing effective viscosity, hoop stres-
ses provide greater buttressing.

Figures 6c and d show the buttressing number for varying
input fluxes at the upstream boundary. Increasing the input thick-
ness and maintaining input velocity leads to reduced buttressing.
This is because thicker ice produces a larger driving stress, which
generates large radial strain rates. Conversely, for a fixed input
thickness and increased input velocity, buttressing increases.
This is because the hydrostatic driving stress remains the same,
but the azimuthal strain rate increases like u/r.

Fig. 6. Varying parameters in the idealised model. Each panel shows the buttressing number (vertical axis): (a) along the length of the shelf when increasing the
shelf length; (b) at the upstream boundary (rE) of a 75 km shelf, when the radius of curvature at the upstream boundary (rE; horizontal axis) and rate factor (AX;
coloured curves) are varied; (c) and (d) along the length of the shelf for varying input thicknesses (fixed velocity 500 m a−1) (c) and varying input velocities (fixed
thickness 400 m) (d).

Journal of Glaciology 355

https://doi.org/10.1017/jog.2019.101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2019.101


4. Hoop-stress buttressing from Antarctic ice shelves

We now use this theory to approximate the magnitude of hoop-
stress buttressing generated by unconfined Antarctic ice shelves.

4.1. Method

We approximate the unconfined section of each ice shelf as an
annulus using ice-surface velocities and the divergence of flow-
lines to determine the geometry. We then model the ice flow
within the annulus, as in the previous section, to estimate the
hoop-stress contribution to buttressing. The process is detailed
in Appendix B and summarised here. A geometric argument is
used to determine upstream, downstream and lateral boundar-
ies along with the radius of curvature. We used a Gaussian
smoothed version (Wearing and others, 2015; Wearing, 2016)
of MEAsUREs V2 surface velocity data (Rignot and others,
2011, 2017) and Bedmap2 ice thickness data (Fretwell and
others, 2013).

Flowlines are used to identify the lateral extent of the spreading
ice shelf once it leaves lateral confinement. We draw lines perpen-
dicular to the approximate central flowline at the upstream and
downstream extent of this unconfined region to mark the pos-
ition of the upstream and downstream boundaries. We draw
two additional lines connecting the outermost points of the
upstream and downstream boundaries and extend them
upstream until they intersect. This defines the imaginary origin
and the radius of curvature at the upstream and downstream
boundaries. The ice thickness and speed at the boundaries are
determined by the mean along each boundary. Assuming steady
state, we estimate the mean specific mass balance, �b, over the
unconfined area of the shelf using the difference in flux across
the upstream and downstream boundary.

Once the geometry, input flux and specific mass balance are
known, we use the radial force-balance Eqn (12) and continuity
Eqn (18) (with b = �b) to model the thickness profile, velocity
field and hoop-stress buttressing. We begin with a uniform thick-
ness ice shelf (equal to the average ice thickness at the upstream
boundary) and the shelf is evolved to steady state. The process
is repeated for three different rate factors in the rheological
model, A = A−2, A−5 and A−10, with subscripts denoting appropri-
ate ice temperature in degrees Celsius (Cuffey and Paterson,
2010). The final ice thickness and speed profiles are compared
to the data along six flowlines. The root mean square error
(RMSE) is calculated between the model output and the flowline
data, with the mean of the RMSEs used to determine which rhe-
ology provides the best fit. We restrict analysis to six ice shelves of
varying sizes that clearly extend beyond lateral confinements:
Amery, Fimbul, Land, Mertz, Thwaites and Totten.

Alternative approaches for determining hoop-stress buttres-
sing may be possible. For example, using velocity data along
streamlines to compute hoop-stress contributions directly.
However, differentiating the often noisy data generates sharp fluc-
tuations in strain rates, which impede interpretation of the results.
(An outline of this method and some preliminary results are
shown in the Supplementary Material (SM) and Wearing,
2016.) Alternatively, a formal inversion procedure could be used
to simulate the stress field and assess hoop-stress buttressing.
However, the simplicity of our approach aids our understanding
of the controls on hoop-stress buttressing and our conclusions
do not rely heavily on a fully resolved stress field.

4.2. Results

Figure 7 shows results from Amery Ice Shelf. The radius of curva-
ture at the upstream boundary is approximately rE = 150 km, with

a further 55 km of unconfined ice shelf downstream. The best fit
to the flowline data of ice thickness and speed is achieved for an
idealised ice shelf with rate factor A−5 (Figs 7b, c). Hoop-stress
buttressing contributions are positive throughout the shelf; i.e.
azimuthal strain is greater than radial strain (Fig. 7d, dashed
curves for A−5). For a weaker rheology, A−2, this is not the
case, with negative hoop-stress contributions in the upstream
part of the shelf (Fig. 7d, dotted curves for A−2). The buttressing
number at the upstream boundary is approximately 0.04. This
relatively small buttressing number is due to the large radius of
curvature at the upstream boundary and the low rate factor
which leads to low effective viscosity.

The buttressing numbers from the upstream boundary, rE,
downstream to the calving front for each of the ice shelves consid-
ered are shown in Figure 8 with a complete set of plots for each ice
shelf, as for Amery Ice Shelf in Figure 7, given in the SM (Figs S1–
S6). The buttressing number is shown for three rate factors (A−2,
A−5 and A−10) with thick blue curves corresponding to results
with the smallest mean RMSE between the model and the flowline
velocity and thickness.

Fimbul Ice Shelf has a very large radius of curvature as it flows
beyond the final lateral pinning points, rE = 320 km, and an
unconfined shelf of 50 km in length. The buttressing number at
the upstream boundary is approximately 0.04, for rate factor
A−10, suggesting insignificant buttressing (Fig. 8b). This is largely
due to the large radius of curvature, which implies low azimuthal
spreading and therefore little buttressing despite colder and there-
fore more viscous ice.

Land Ice Shelf, Figure 8c, is a relatively small ice shelf with an
unconfined section of 8 km in length, and a radius of curvature of
32 km at the upstream boundary. Here it is unclear which rheo-
logical parameters provide the best fit to the data, as ice-shelf
flow increases along all flowlines, but the ice thickness appears
to thin along some and thicken along others (Figs S3b, c). This
uncertainty leads to a large range in potential buttressing num-
bers at the upstream boundary between 0.04 and 0.15. However,
the lowest mean RMSE is achieved for rate factor A−2, with but-
tressing 0.04.

For Mertz Ice Tongue, Figure 8d, rate factors between A−5 and
A−10 appear to be most appropriate (Figs S4 b, c). The smallest
mean RMSE is obtained for A−10 with a buttressing number at
the grounding line of 0.09, produced by a shelf of length 29 km
and rE = 101 km.

For Thwaites Glacier Ice Shelf (rE = 230 km and length 30 km)
the best match between velocity, thickness and the idealised
model is for ice with A−2 (Fig. S5). However, this fit could be
improved further with an even weaker rheology. This suggests
the shelf is made up of very weak ice. This can also be inferred
from the high density of visible surface fractures on the shelf
Figure 1. In this case hoop-stress buttressing from the ice
shelf is very small and potentially negative at the upstream
boundary.

The best match between the idealised model and flowline data
for Totten Ice Shelf is achieved for relatively warm ice temperatures;
A−2, A−5, with RMSE values lowest for the ice flow speed and ice
thickness respectively. This leads to buttressing numbers at the
upstream boundary of between 0.01 and 0.03.

5. Discussion

For most of the ice shelves analysed, except Mertz Ice Tongue
(and possibly Land Ice Shelf ), hoop-stress buttressing from the
unconfined section of the ice shelf produces insignificant but-
tressing, with buttressing numbers less than 0.05; buttressing
from hoop stresses balances less than 5% of the driving stress.
This is due to weak rheology and large radii of curvature. None

356 Martin G. Wearing and others

https://doi.org/10.1017/jog.2019.101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2019.101


of the ice shelves assessed produce negative hoop-stress but-
tressing, with the exception of Thwaites Ice Shelf, which poten-
tially produces insignificant negative buttressing (<0.5%). In
the case of Amery and Totten ice shelves, the geometry of
the divergent flow has the potential to provide hoop-stress but-
tressing of approximately 10% of the radial driving stress if the

ice had a larger rate factor (i.e. A−10 or more). In general, the
rheological parameters that produce the best fit to geophysical
data are appropriate for warm ice (A = A−5, A2 ), with tempera-
tures greater than would normally be expected for ice shelves
(depth-averaged englacial temperatures are typically less than
or equal to −5°C; Fig. S8). This suggests that the ice is

Fig. 7. Applying idealised model annulus to Amery Ice Shelf: (a) ice speed map with geometry of flowlines and upstream and downstream boundaries. (b) Flow
speed along flowlines 1 - 6 (bottom to top in (a)) (dashed curves) with simulated speed (solid curves) at three rate factors (A−2, A−5 and A−10). (c) Same as (b) but for
ice thickness. In both (b) and (c) the mean RMSE for each rate factor is given in the brackets in the legend. (d) Strain rates from model and (e) buttressing number
along length of shelf. In (d) and (e); A−2 (dotted), A−5 (dashed) and A−10 (solid).
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weakened by damage such as fracturing and crevasses (Borstad
and others, 2016).

We hypothesise that most unconfined Antarctic ice shelves are
unable to provide buttressing of greater than 0.05 because they are
unable to sustain the large azimuthal stresses required without the
formation of fractures that weaken the ice. For substantial
hoop-stress buttressing the azimuthal strain rate needs to be sig-
nificantly larger than the radial strain rate. For typical radial strain
rates of 0.01 a−1 with a rate factor A−10 this leads to stresses on the
order of 75 kPa. Stresses larger than this are likely to generate
fractures (Vaughan, 1993) and once fractures are initiated the
ice can no longer support such large stresses (Borstad and others,
2016). In addition, laboratory-scale fluid-mechanical experiments
have shown that radially-flowing shear-thinning fluids (Glen’s
flow law implies ice is shear thinning) produce radial fractures
(Sayag and others, 2012).

Ice shelves with larger buttressing from hoop-stresses, such as
Land and Mertz, form ice tongues that are potentially further stabi-
lised by sea ice for much of the year. Figure 1 shows the unconfined
regions of each ice shelf in April 2009 at the end of the austral
summer (this year corresponds to when the majority of the velocity
data were collected; Rignot and others, 2011, 2017). Equivalent plots
for September 2009 are shown in SM; Figure S7. In both periods
extensive regions of landfast sea ice are visible around Land and
Mertz ice shelves. In our modelling, these shelves have lower
rate factors (A−10) and small radii of curvature allowing more
substantial buttressing from hoop stresses. As seen from the theor-
etical examples, buttressing increases for increased ice viscosity and
decreased radius of curvature at the upstream boundary.

Despite the potential for hoop stresses to generate buttressing
in unconfined ice shelves, our findings support those of Fürst and

others (2016), who concluded that these regions should be classed
as passive. However, buttressing of 10% or greater could be
achieved for unconfined ice shelves that maintain a high effective
viscosity, through preventing the formation of fractures and cre-
vasses, possibly through extra stabilisation from sea ice for large
parts of the year. Loss of extensive sea ice has previously been
linked to accelerations in ice flow and reductions in ice-shelf
extent (Miles and others, 2017; Greene and others, 2018;
Massom and others, 2018). However, we can not discount that
the sea ice is providing a substantial portion of the buttressing
we are attributing to hoop stresses.

There are two main limitations of this application of the
hoop-stress theory to Antarctic ice shelves. Firstly, the unconfined
regions at the downstream end of ice shelves do not form perfect
sectors of an annulus and flowlines are not azimuthally symmet-
ric. In particular, there is an imprint of the upstream ice thickness
and speed at the transition from laterally-confined to unconfined
flow. The shear of the ice shelf between lateral pinning points
while the shelf is confined means that ice flow is typically fastest
and ice thicker in the centre of the shelf. As a result, the calving
front usually extends further in the centre of the shelf than at the
flanks, leading to the calving front having a smaller radius of
curvature than the annulus we consider.

Here we have taken the simplest approach in order to produce
first-order estimates of the magnitude of hoop-stress buttressing
generated by unconfined sections of ice shelves. One way to
avoid fitting an approximate annulus geometry would be to ana-
lyse strain rates along a 2D streamtube (bounded by two stream-
lines) to determine the hoop-stress buttressing from lateral
spreading of that streamtube. One reason that this is not effective
is that our theory ignores lateral variation in flow, which may

Fig. 8. Buttressing number along the length of unconfined
section of ice shelves: Amery, Fimbul, Land, Mertz,
Thwaites and Totten. Buttressing numbers are shown for
all rate factors, with bold blue curves, corresponding to
the models with speed and ice thickness that best match
data (the best match is different for speed and thickness
in panel (f), so there are two blue curves). In the legend
the mean RMSE for the speed (S) and ice thickness (H) are
shown in brackets for each rate factor. See Figures S1–S6
for full set of plots as in Figure 7.
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result from lateral variations in ice thickness. There is also noise
in the data, which results from the compilation of multiple sets
of interferometric synthetic-aperture radar and optical feature-
tracking data over multiple time periods (Rignot and others,
2011, 2017). Therefore it is not possible to make direct compari-
sons with the theoretical model and the physical processes that
determine the observed variations of the extensional strain rate;
do they result from hoop stresses, shear or noise in the data?

A second limitation that applies both to the approximate
annulus and streamtube method is that in order to determine
hoop stress it is necessary to know both the strain rates and effect-
ive viscosity. Strain rates can be calculated from surface velocities.
Here we have used a range of rate factors in the ice rheology and
considered a simple comparison between data (ice thickness and
speed) along flowlines and model output in the steady state, to
determine which rate factor is most appropriate. This could be
improved by assimilating the ice flow in an ice-shelf model and
tuning the rheological parameters to match with observed veloci-
ties (MacAyeal, 1993; Gillet-Chaulet and others, 2012; Arthern
and others, 2015; Fürst and others, 2015). The stress field could
then be obtained directly from the model.

However, despite these limitations, our simplified approach
has several advantages over using more complex geometries to
partition ice shelves or taking a data-assimilation approach.
Firstly, it effectively characterises the large-scale flow structure
without incorporating the presence of significant observational
noise, which is problematic when computing velocity gradients.
Secondly, the annulus-based approach provides insight into the fun-
damental controls on hoop-stresses. For example, the clear relation-
ship between radius of curvature and contributions to hoop-stress
buttressing, apparent in our numerical results, can be directly linked
to the relative magnitudes of radial and azimuthal extension
through Eqn (16). Moreover, given that our aim is to assess if sig-
nificant hoop-stress buttressing is generated in unconfined portions
of Antarctic’s ice shelves, rather than quantifying buttressing, these
limitations do not affect our main conclusions.

6. Conclusions

Theoretically, unconfined ice shelves can provide buttressing via
hoop stresses, the viscous resistance to azimuthal extension for
a radially spreading flow (Morland and Zainuddin, 1987; Pegler
and Worster, 2012, 2013). The magnitude of hoop-stress buttres-
sing is dependent on the difference between the rate of azimuthal
and radial spreading, the radius of curvature, the length of the
unconfined ice shelf and the effective viscosity, which is dependent
on the rheological rate factor and extent of ice damage. High posi-
tive hoop-stress buttressing can be produced by rapidly-diverging,
thick ice shelves that have a high effective viscosity.

When we compare our results from idealised modelling with
ice thickness and flow speed along flowlines, rate factors appropri-
ate for relatively warm ice are required to best-match observations.
This suggests that unconfined ice shelves consist of weak ice with a
low effective viscosity, which most likely results from the presence
of a large number of fractures and damaged ice. In order to con-
tribute positively to hoop-stress buttressing, the azimuthal strain
rate must be larger than the radial strain rate. For typical radial
strain rates observed in Antarctic ice shelves, the required azi-
muthal strain rates produce extensional stresses that are at the
lower bound of those that cause fracturing. Once the ice is
damaged it is no longer able to sustain high extensional stresses.

We have shown that some Antarctic ice shelves can provide
buttressing equal to approximately 10% of the extensional driving
stress, with rate factors appropriate for ice at −10°C. These ice
shelves are stabilised by the presence of sea ice, which may pre-
vent large-scale fracturing and break-up. This suggests that the

presence of sea ice is vital in order for an ice shelf to advance
into open ocean, without fracturing and maintaining significant
hoop-stress buttressing. Pinned sea ice may act like a preliminary
ice shelf, reducing ice-fracturing. Processes of this nature may be
important when considering the growth of ice sheets during gla-
cial cycles.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2019.101.
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APPENDIX A. Axisymmetric, radially-spreading shelf: force
balance

The horizontal depth-integrated force-balance equation from the Shallow Shelf
Approximation (Morland, 1987; MacAyeal, 1989; Pegler and others, 2012),
takes the form

∇mH ∇. u( ) + ∇. mH e
( ) = rg ′

2
H∇H. (A1)

For an axisymmetric radial flow, with no azimuthal variation in thickness or
speed, spreading from an origin at r = 0, the horizontal velocity takes the
form u = (u(r), 0). In cylindrical polar coordinates the strain-rate tensor is

e = 1
2

∇ u+ ∇ u( )T( ) = ∂u
∂r 0
0 u

r

( )
, (A2)

and the divergence in the horizontal velocity is

∇ · u = 1
r

∂
(
ru(r)

)
∂r

= ∂u
∂r

+ u
r
. (A3)

Therefore the radial component of the force balance Eqn (A1) becomes

∂

∂r
mH

∂u
∂r

+ u
r

( )( )
+ ∂

∂r
mH

∂u
∂r

( )
+ mH

r
∂u
∂r

− mHur2 = rg ′

2
H
∂H
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, (A4)

⇒ ∂

∂r
mH 2

∂u
∂r

+ u
r

( )( )
+ mH

∂

∂r
u
r

( )
= rg ′

2
H
∂H
∂r

. (A5)

The first term on the LHS is the radial derivative of the vertically-integrated
isotropic stress and along-flow (in this case, radial) deviatoric stress (the
equivalent to Cartesian cases). The second term on the LHS is the
depth-integrated radial gradient in the azimuthal strain rate, multiplied by
the effective viscosity. Here the radial force-balance equation is split into
two terms on the LHS: (1) the extensional terms resulting from the radial
derivative of the vertically-integrated isotropic stress and the radial deriva-
tive of the radial deviatoric stress; and (2) the hoop-stress term resulting
from the radial derivative of the azimuthal strain rates. These additional
terms (in comparison with the Cartesian case) are included when working
in cylindrical polar coordinates because the ice shelf must spread laterally
in additional to radially when flowing in a divergent geometry to ensure
incompressibility, Figure 9. The along-flow terms are the equivalent to
those in the Cartesian case, however here an additional azimuthal compo-
nent results from the divergent flow.

These equations demonstrating how hoop stresses arise in radially spread-
ing flows have been derived previously by Morland and Zainuddin (1987),
Pegler and Worster (2012, 2013).
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APPENDIX B. Approximation to Antarctic ice shelves:
method

We calculate flowlines and perform numerical calculations in MATLAB and
determine the geometry of the annulus in ArcMap. We calculate flowlines
from 10 equally-spaced points spanning the width of the ice shelf just
upstream of the transition from laterally confined to unconfined, as seen in
Figure 10. These flowlines are used to determine the approximate lateral
extent of the ice that spreads in a manner similar to a sector of an annulus,
as discussed in the main text. We draw a line perpendicular to the central
flowline between the final lateral pinning points signifying the upstream
boundary of the annulus. We consider the intersection of this line with the
outermost flowlines of the spreading and unconfined shelf to mark
the upstream lateral boundaries of the annulus. Once the geometry of the
upstream boundary is established, a second set of six flowlines originating
from equally spaced points along the upstream boundary are calculated,
Figure 7a. The downstream boundary is marked by a second line parallel
to the first, which spans the downstream limit of the flowlines before reaching

the calving front. The two parallel lines and lateral flowlines form an approxi-
mate trapezium, or sector of an annulus.

Two straight lines are drawn between the edges of the upstream and
downstream boundaries, which are extended upstream until they intersect.
Using the distance measuring tool in ArcMap, the distance from the
upstream boundary to the intersection is determined giving the approxi-
mate radius of curvature at the upstream boundary. The distance from
the upstream to downstream boundary is measured, as well as the length
of the upstream and downstream boundaries, giving the width of the
flow at these locations.

Ice thickness and speed are sampled along the flowlines. The flux across
the upstream and downstream boundaries is calculated by averaging the ice
thickness and speed at the intersection of each flowline with the boundary
and then multiplying by the width of the flow. Assuming the shelf is in steady
state, the difference between the flux over the upstream and downstream
boundaries gives the volume of ice lost (or gained) through basal melting
(or freeze-on and surface accumulation). The average melt (freeze-on) rate
is calculated by dividing the flux difference by the area of the annulus.

Fig. 10. Map showing the original 10 flowlines spanning the width of
Amery Ice Shelf used to determine the extent of the laterally spread-
ing region.

Fig. 9. Schematic of incompressibility terms in a laterally confined (a)
and radially spreading (b) flow.
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